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Abstract

Authentic induced pluripotent stem cells (iPSCs), capable of giving rise to all cell types of an adult animal, are currently only
available in mouse. Here, we report the first generation of bovine iPSC-like cells following transfection with a novel virus-
free poly-promoter vector. This vector contains the bovine cDNAs for OCT4, SOX2, KLF4 and c-MYC, each controlled by its
own independent promoter. Bovine fibroblasts were cultured without feeders in a chemically defined medium containing
leukaemia inhibitory factor (LIF) and inhibitors of MEK1/2 and glycogen synthase kinase-3 signaling (‘2i’). Non-invasive real-
time kinetic profiling revealed a different response of bovine vs human and mouse cells to culture in 2i/LIF. In bovine, 2i was
necessary and sufficient to induce the appearance of tightly packed alkaline phosphatase-positive iPSC-like colonies. These
colonies formed in the absence of DNA synthesis and did not expand after passaging. Following transfection, non-
proliferative primary colonies expressed discriminatory markers of pluripotency, including endogenous iPSC factors, CDH1,
DPPA3, NANOG, SOCS3, ZFP42, telomerase activity, Tra-1-60/81 and SSEA-3/4, but not SSEA-1. This indicates that they had
initiated a self-sustaining pluripotency programme. Bovine iPSC-like cells maintained a normal karyotype and differentiated
into derivatives of all three germ layers in vitro and in teratomas. Our study demonstrates that conversion into induced
pluripotency can occur in quiescent cells, following a previously undescribed route of direct cell reprogramming. This
identifies a major species-specific barrier for generating iPSCs and provides a chemically defined screening platform for
factors that induce proliferation and maintain pluripotency of embryo-derived pluripotent stem cells in livestock.
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Introduction

Pluripotent stem cells (PSCs) are capable of unlimited

proliferation in vitro and generation of all adult cell types,

including functional gametes. They are either derived from a

transient cell population in the inner cell mass of pre-implantation

blastocysts (embryonic stem cells or ESCs) [1,2] or from post-natal

testis [3]. More recently, PSC-like cells were also derived from

post-implantation egg cylinder embryos [4,5]. These epiblast stem

cells (EpiSCs) express the core transcriptional pluripotency

network [6,7,8] and are capable of multi-lineage differentiation

[4,5]. However, ESCs and EpiSCs represent discrete pluripotent

states, termed ‘naı̈ve’ and ‘primed’, respectively [9]. In contrast to

naı̈ve ESCs, primed EpiSCs show flattened rather than packed

dome morphology. They have predominantly undergone X-

chromosome inactivation in female cells, up-regulated certain

specification markers (e.g. Fgf5, Lefty2, T or T-brachyury) and

down-regulated others that distinguish them from ESCs (e.g.

Dppa3 or Stella, Zfp42 or Rex1, Nr0b1, Klf2, Stat3, Lifr, Stat3 and

Socs3) [10,11,12].

Functionally, EpiSCs are poised to differentiate into primordial

germ cells in vitro and neither contribute to all somatic cell

lineages nor the germline in chimeras [13]. Under chemically

defined conditions, murine ESCs will self-renew or differentiate,

respectively, in response to leukemia inhibitory factor (LIF) and

fibroblast growth factor (FGF)/extracellular signal-regulated

kinase (ERK)-signaling [14]. In contrast, EpiSCs do not respond

productively to LIF and can be stably propagated in the presence

of FGF and activin [4]. Upon FGF/activin withdrawal and ectopic

expression of either Klf2, Klf4 [10], Nanog [15] or Nr5a [16],

EpiSCs can robustly revert to naı̈ve ‘ground state’ pluripotency.

Delivering ectopic pluripotency-inducing genes into somatic

cells has become an established route of generating fully

pluripotent cells (induced pluripotent stem cells or iPSCs) by
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genetic manipulation [17]. iPSCs can be identified by morpho-

logical, molecular and functional criteria [18,19,20,21,22].

Completely reprogrammed iPSCs show mRNA and microRNA

expression patterns that are highly similar to isogenic ESCs [23].

DNA demethylation of the Oct4 (or Pou5f1) and Nanog promoter

regions and global patterns of histone methylation are virtually

indistinguishable from ESCs [19,21,22,24,25]. Functionally,

genuine iPSCs contribute to the germline in chimeric mice

[22,26,27] and support the development of embryos entirely

derived from iPSCs [28,29,30]. These functional assays have

become the most stringent criteria to define naı̈ve pluripotency

[31].

Somatic cells from mouse [17], rat [32,33], pig [34,35], sheep

[36], horse [37], rabbit [38], monkey [39,40], and human [41]

have been reprogrammed using different factor combinations,

including OCT4 (O), SOX2 (S), KLF4 (K), c-MYC (M), LIN28,

NANOG [41] or Nr5a2 replacing OCT4 [42]. Factors are usually

delivered into cells by integrating viral vectors [18,41,43], but

integration-free reprogramming has also been achieved

[44,45,46,47,48,49]. To stabilize signaling pathways that maintain

pluripotency, culture media can be supplemented with small

molecules that alleviate differentiation cues. Ying et al. cultured

murine ESCs in medium that relies on the double inhibition (‘2i’)

of mitogen-activated protein kinase kinase (MAP2K1/2 or

MEK1/2) by PD0325901 and glycogen synthase kinase 3 beta

(GSK3B) by CHIR9902, respectively, to effectively promote

pluripotency [14]. Together with the self-renewal cytokine LIF,

which directly improves reprogramming efficiency [12], 2i/LIF

medium enabled the conversion of mouse EpiSCs into ESCs [10]

and from partially into fully reprogrammed iPSCs [50]. It also led

to the first derivation of bona fide ESCs from rat embryos [51,52].

Notably, application of 2i/LIF helps establishing a naı̈ve or ‘mouse

ESC-like’ pluripotent state in human embryonic stem cells and

human iPSCs [11].

Over the past three decades, it has been difficult to derive PSCs

from other mammalian species and all attempts to derive chimera-

competent bovine PSCs have failed [53,54]. Here we explore the

possibility that 2i/LIF promotes pluripotency in cattle, a species

previously considered non-permissive for PSC-derivation [50].

Results

Bovine iPSC-like colonies form in 2i/LIF medium
In order to deliver all four factors into the same cell, we

constructed poly-promoter plasmids containing the complete

bovine cDNAs for OCT4, SOX2, KLF4, and c-MYC (Fig. 1A, B).

We first optimized several parameters for inducing pluripotency.

Eight different cell lines (embryonic [1 line] vs fetal [4 lines] vs

adult [2 lines] fibroblasts vs follicular cells [1 line]) were transfected

(lipofection vs nucleofection) with two different plasmids (pOSKM

vs pKMOS). SOX2, OCT4, and KLF4 showed appropriate

nuclear localization after transient transfection (Fig. 1C). Follow-

ing passaging and re-plating after 48 h, SOX2 immunostaining

showed that embryonic and fetal fibroblasts transfected most

efficiently (16% and 26%, respectively, Fig. 1D). Lipofection was

generally superior with no significant differences between the two

plasmids (data not shown). We then passaged lipofected cells onto

laminin-coated plates and replaced the somatic with 2i/LIF

medium (Fig. 1E). Dome-shaped, tightly packed colonies with

clear borders started to appear around 10 days post-transfection

and continued to increase in size and number thereafter (Fig. 1F).

With the exception of BFF-MBP, all cell lines gave rise to colonies

(Fig. 1F). Transfection efficiency correlated well with colony

formation (r2 = 0.9591). We observed no significant differences

between the two plasmids and only a small number of BEF40-

derived colonies after nucleofection (data not shown). Since BEF40

resulted in the highest yield of colonies, we concentrated on this

line for subsequent experiments.

Following transduction, 2i/LIF medium has been shown to

promote reprogramming into naı̈ve pluripotency in both mouse

and human iPSCs [11,50]. We therefore cultured mock- or

pOSKM-transfected cells in N2B27 supplemented with or without

LIF, PD or CHIR. PD applied alone or in combination with

CHIR and LIF greatly decreased phospho-MEK1/2 levels, while

total MEK1/2 protein was not affected (Fig. S1). CHIR alone did

not modulate phospho-MEK1/2. BEF40 cultured in either N2B27

or N2B27/LIF retained the typical morphology of bovine

fibroblasts serum-starved into quiescence [55] (Fig. 2A). Addition

of PD or CHIR to non-transfected cells, either with or without

LIF, was sufficient to induce formation of colonies, of which

7764% were AP+ (Fig. 2A). These colonies were in size,

morphology and AP staining intensity indistinguishable from

transfected colonies cultured under the same conditions (Fig. 2A).

The average area and number of nuclei per AP+ colony on D16,

determined from confocal sections of Hoechst-stained samples

(n = 14), was 4742962839 mm2 and 156621, respectively. iPSC-

like cell nuclei were significantly smaller than their ancestral

BEF40 nuclei (2364 mm2 vs 131615 mm2, P,0.001). The

number of CHIR-induced AP+ single cells and colonies was

higher than for non-supplemented N2B27 or PD alone but not

significantly different from cells treated with PD/CHIR or PD/

CHIR + pOSKM (Fig. 2B). PD also induced AP+ colonies but this

was not significant (P = 0.20) compared to non-supplemented

medium. Culture in 2i/LIF was necessary to induce AP activity, as

pOSKM-transfected BEF40 in N2B27 did not give rise to AP+
colonies. When we cultured non-transfected murine embryonic or

human skin fibroblasts in LIF, PD, and CHIR, alone or in

combination, we saw no morphological transformation into

colonies or AP induction (n = 4 independent experiments).

Overall, we transfected 2.356104 cells/cm2 with a transfection

efficiency of approximately 16% ( = 3.766103 transfectants/cm2)

and obtained about 15 AP+ colonies/cm2, resulting in a

reprogramming efficiency of 0.4%.

To better characterize the response of bovine vs comparable

murine and human cell types to 2i/LIF, we conducted non-

invasive kinetic cell profiling using the xCELLigenceTM. This

integrated real-time system displays changes in cell proliferation,

viability, morphology and adhesion as CI values. In bovine,

addition of LIF, PD, or PD/LIF had no significant effect

compared to non-treated controls. After normalization on LIF-

treated controls, both CHIR and PD/CHIR significantly reduced

the CI in different bovine cell types (Fig. 2C). In contrast, PD,

CHIR and PD/CHIR all significantly increased the CI in both

murine and human fibroblasts (Fig. 2C).

Bovine iPSC-like colonies do not expand in 2i/LIF
Next we investigated the mechanism of bovine iPSC-like colony

formation. As a proxy for cell proliferation, we quantified DNA-

synthesis following different EdU-incorporation protocols. Only

AP+ colonies were quantified (Fig. 3A). EdU was added to each

transfected culture on D0, 2, 4, 6, 8, 10, 12 or 14 following the

addition of 2i/LIF and cells fixed 48 h after labelling (‘pulse-fix’,

Fig. 3B). When the first colonies become visible, only 561% of

cells still synthesized DNA and this further declined to 260.6%

after two weeks in culture. To determine what proportion of EdU-

incorporating nuclei became part of iPSC-like colonies, cells were

labelled every two days (‘pulse’), washed out of EdU (‘chase’) and

further cultured until fixation on D16 (‘pulse-chase’, Fig. 3B). After
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a pulse during the first two days in 2i/LIF, 68612% of nuclei within

each colony ended up being labelled with EdU on D16. When

pulsed around the time of colony formation (D8), only 862% of

cells within each colony still synthesized DNA. This proportion

further declined to 262% after two weeks in culture, closely

matching results from pulse-fix experiments. In order to detect

slowly cycling cells, cultures were continuously kept in EdU until

fixation at D16 (‘cumulative label’, Fig. 3B). This demonstrated that

most cells in colonies (8160.02%) were cycling at least once during

the culture period. However, during the time of primary colony

formation only 10% of cells within each colony still synthesized

DNA and, in agreement with the pulse-label experiments, colonies

labelled towards the end of the culture period (.D12) contained less

than 5% proliferating cells. Cumulatively labelled non-transfected

control cells, cultured in either 2i/LIF or N2B27, also became non-

proliferative over time (Fig. S2A). This indicates that culture

conditions, not plasmid-induced reprogramming, induced quies-

cence. Using immunofluorescence, we further quantified the

proportion of cells expressing cell proliferation markers Ki-67 and

proliferating cell nuclear antigen (PCNA) in pKMOS-transfected

BEF40 cells (Fig. S2B) and colonies (Fig. S2C). For both antigens,

the proportion of positive cells progressively declined over time (Fig.

S2D). Using the Click-iT EdU assay, the proportion of apoptotic

cells in primary colonies was small (,5% of total nuclei), indicating

that most bovine iPSC-like cells in 2i/LIF were neither proliferating

nor apoptotic but quiescent (Fig. S2E). Taken together, these results

suggest that colonies primarily formed from non-proliferating cells

and did not expand further through cell division.

Once colonies had formed, we determined whether their growth

was influenced by the culture substrate. Colonies were manually

picked and plated on feeder cells or laminin. Individual colonies

were tracked for two weeks and their area was determined at

regular intervals (Fig. 3C). All tracked colonies stained AP+ at the

end of the tracking period. On both substrates there was no

significant increase in colony area (n = 13 and n = 4 for feeders vs

laminin, respectively). Regression splines plotted for each colony

and colony averages showed no significant differences in shape

(P = 0.2), indicating that colony growth was not differentially

affected by substrate composition.

In order to establish bovine iPSC lines, we passaged colonies

using either accutase or microblade dissociation. Initial plating

efficiency was high (20/22 = 91% vs 22/22 = 100%, respectively).

After first passaging, colonies growing on laminin were tracked for

65 days and their area determined (Fig. 3D). Tracked colonies

stained AP+ at the end of the tracking period. In all cases (n = 5

and n = 12 for accutase vs blade, respectively), colony area

significantly declined over time (P,0.001). Regression splines

plotted for each colony and colony averages showed no significant

differences in shape (P = 0.13), indicating that colony growth was

not differentially affected by the passaging regime. In summary,

colonies that formed from quiescent cells in 2i/LIF showed no

signs of expansion for extended periods of time after passaging.

Bovine iPSC-like colonies express discriminatory markers
of pluripotency

We then evaluated molecular markers of pluripotency. Cultur-

ing BEF40 in somatic medium or 2i/LIF did not induce detectable

expression of pluripotency-associated transcription factors

(Fig. 4A). In contrast, pKMOS-transfected BEF40 in 2i/LIF

induced NANOG, SALL4 and DPPA3, while markers of primed

EpiSCs (FGF5, LEFTY2, T-BRACHYURY) were not detectable

(Fig. 4A). Using primers that distinguished between endogenous

(Fig. S3A) and ectopic iPSC factors (Fig. S3B), we determined that

one day post-transfection most SOX2, OCT4 and KLF4 transcripts

were of ectopic origin (99.7%, 99.9% and 88%, respectively),

whilst in primary colonies (18 days post-transfection), most

transcripts were transcribed from endogenous loci (99.9%,

56.7% and 78.5%, respectively, Fig. 4B). Using plasmid-specific

primers, we detected presence of the transgene in genomic DNA

of D38 colonies, indicating stable integration of the vector (Fig.

S3C). Telomerase activity, evident by a ladder of products with 6

base increments, was high in bovine iPSC-like cells and mouse

ESCs used as a positive control (Fig. 4C). Neither non- or mock-

transfected BEF40 in 2i/LIF, nor pKMOS-transfected BEF40

without 2i/LIF showed detectable telomerase activity. Confocal

immunofluorescence analysis showed that iPSC-like cells ex-

pressed the pluripotency surface markers SSEA-3/4 and TRA-1-

60/81, but not SSEA-1 (Fig. 4D). They also expressed OCT4 and

SOX2 (Fig. S4). None of these markers were detected in non-

transfected BEF40 in 2i/LIF (data not shown). Taken together,

these data show that bovine iPSC-like colonies displayed several

discriminatory markers of pluripotency.

Bovine iPSC-like colonies differentiate in vitro and in
teratomas

Bovine iPSC-like colonies formed solid and cystic EBs after 5

days to 3 weeks, respectively, in N2B27 suspension culture

(Fig. 5A). These expressed ectoderm- (TUBB3, GFAP, NES),

endoderm- (AFP) and mesoderm- (GATA4, MEF2C) markers

(Fig. 5B). Following injection of iPSC-like cells from two

independent tranfections into SCID mice, large tissue masses,

ranging from 8–20 mm in diameter and 1–5 g in weight, were

harvested after seven weeks from two out of four hind legs.

Histological examination of the two specimens showed differen-

tiation into ectoderm (epidermis, neural tissue), endoderm (ciliated

epithelium) and mesoderm (bone, cartilage) (Fig. 5C). These

features were consistent with intramuscular grade 3 teratomas.

Bovine-specific primers detected ACTB in both genomic DNA

(Fig. S5A) and reverse transcribed cDNA (Fig. S5B) from bovine

iPSC-, but not murine ESC-derived, teratomas. This confirms that

the tumor originated from bovine cells. We conclude that iPSC-

like cells are capable of multi-lineage differentiation and

production of complex teratomas. Lastly, we karyotyped bovine

iPSC-like cells after 24 days in culture and all cells (n = 12/12)

showed a normal number of 60 chromosomes (Fig. 5D).

Discussion

Here we report the first reprogramming of non-proliferating

bovine cells into pluripotency under conditions of chemically

defined signal inhibition. We refer to these cells as ‘‘iPSC-like’’

because their capacity for germline chimerism remains to be

demonstrated. The first iPSC reports used integrating viruses to

carry the pluripotency genes into cells, potentially disrupting

Figure 1. Generating bovine iPSC-like cells. (A, B) Maps of poly-promoter constructs used in this study; (C) Immunofluorescence 24 h post-
transfection with pOSKM. DNA was counterstained with Hoechst 33342. OCT4 and SOX2 co-localized in nuclei (arrowheads), circled cells stained
negative; (D) Transfection efficiency; bars with different superscripts differ P,0.05 for lipofection (abc), nucleofection (xyz) or across groups (*, **); (E)
Timeline of iPSC generation using lipofection. (F) iPSC-like colonies appear after pOSKM lipofection. Insert: AP+ BEF40-derived colonies (arrowheads),
18 days post-transfection. Scale bar = 100 mm.
doi:10.1371/journal.pone.0024501.g001
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endogenous genomic information and causing tumors [56].

Episomal viruses reduce the risk of insertional mutagenesis during

iPSC generation [45,57,58]. However, viral DNA may still trigger

the immune system [59]. This raises biosafety concerns for

agricultural applications where the products (e.g. meat, milk) of

iPSC-derived farm animals or their offspring ultimately enter the

human food chain. Our constructs avoid lentiviral backbones or

foot-and-mouth disease virus 2A oligopeptides [46,60,61] that in

many countries would not be permissive for commercial livestock

applications. Instead, we used single transfection of a novel

expression vector where each bovine iPS factor was flanked by its

own independent CMV promoter. Since our work in bovine

started, iPSCs in other species have been produced using plasmid-

mediated approaches. This either involved serial co-transfection of

two plasmids containing different sets of factors [44,46,49] or

transfection of a polycistronic vector transcribing several factors

from a single promoter [44,49,61]. In some cases, transfection

approaches have resulted in iPSCs with no evidence of transgene

integration [46,61]. As primary bovine iPSC-like colonies were

likely of mixed origin, i.e. derived from more than a single

reprogrammed fibroblast, and generation of clonal cell lines was

unsuccessful, we did not attempt to identify non-integrative iPSC

clones. Presence of the transgene in genomic DNA of D38 colonies

indicated that at least some cells had stably integrated the vector.

Compared to virus-mediated delivery methods, plasmids are

technically simple and relatively cheap, eliminating the need for

specialized biohazard containment facilities to produce viral stocks

[21]. Overall, bovine reprogramming efficiency, corrected for

transfection efficiency, was 0.4%. This was consistent with virus-

and plasmid-mediated approaches (ranging from 0–8% and

averaging 1% [44,46,48,62]). It remains to be determined if the

new poly-promoter design and use of isogenic bovine sequences

results in higher reprogramming efficiency of bovine cells than

using alternative vector designs carrying homologous mouse or

human iPS genes.

Following transduction, 2i medium promotes reprogramming

into naı̈ve pluripotency by neutralizing inductive differentiation

stimuli in both mouse and human iPSCs [11,50]. This effect

appeared even more pronounced in bovine cells. CHIR and, to a

lesser extent, PD induced colony formation and AP activity in

bovine, but not murine or human, fibroblasts. How these two

compounds elicit the transformation from single cells to compact-

ed colonies, including changes in cell shape and size, migration

and intercellular clustering, is not clear. It would be important to

better characterize the dependency of bovine cells on MEK,

GSK3B and components of their respective signaling pathways.

Likewise, the signaling cascade leading to AP induction in bovine

cells is not known. AP induction was unrelated to the

morphological and molecular changes that caused colony

formation, as it also occurred in single cells. High level of AP

expression is a fairly non-specific marker for PSCs [63] that

appears very early during the iPSC reprogramming [43]. More

stringent molecular markers of pluripotency, such as telomerase

activity, NANOG, and SALL4, were only induced when the cells

were transfected with iPS vectors in the presence of 2i/LIF. This

also applied to DPPA3, SOCS3 and ZFP42, all discriminatory

markers of naı̈ve pluripotency [10]. Silencing ectopic gene

expression and activating endogenous iPS factors is considered

another hallmark of full reprogramming [64]. We observed that

SOX2, OCT4 and KLF4 transcripts predominantly originated from

the endogenous loci. This indicates progressive epigenetic silencing

of the CMV promoter, as previously described after transient

transfection of ESCs [65]. Cell surface antigens SSEA-3/4 and

TRA-1-60/81 also appear late during reprogramming and are

considered among the most definitive markers of fully repro-

grammed iPSCs [64]. Bovine iPSC-like cells strongly expressed

both marker sets, similar to undifferentiated iPSCs in pig [35],

monkey [39,40], and human [41] but different from mouse [17]

and rat [32,33] which express SSEA-1 instead. Lastly, diagnostic

markers of human embryo-derived stem cells and rodent EpiSCs

(FGF5, T-BRACHYURY, and LEFTY2) were not detectable in 2i/

LIF-cultured bovine iPSC-like cells, providing additional molec-

ular evidence of reprogramming into pluripotency.

A molecular link between pluripotency and the capacity for

unlimited self-renewal is the presence of telomerase. This

ribonucleoprotein is specifically active in immortal cells, such as

cancer, germ cells and PSCs [66,67], stabilizing telomere length

and extending cellular life span [68]. Bovine iPSC-like cells

exhibited telomerase activity similar to mouse ESCs, suggesting

that they were poised for long-term proliferation. The formation of

large solid teratomas from a few thousand injected colonies

indicates that bovine iPSC-like colonies did not irreversibly lose

their proliferation potential in 2i/LIF and can resume cell division

in the right environment.

Under serum-free 2i/LIF conditions, ERK-reliant cell types

(e.g. MEFs) either die or become quiescent [50]. Murine and

human iPSCs, on the other hand, arise from rapid proliferation

[62,69,70]. In fact, it has been suggested that proliferation pro-

motes pluripotency induction, whereas cell cycle arrest inhibits

reprogramming and induces irreversible differentiation [70]. In

mouse and human, individual reprogrammed cells first start to

divide faster, getting smaller in the process and then giving rise to

primary colonies through symmetric cell divisions [62,69,70]. As

primary colonies expand, cells detach and form secondary colonies

elsewhere [62]. Consequently, the number of primary colonies

remains constant after some time, while the number of secondary

colonies continues to increase [62]. We also observed a reduction

in nucleus size as fibroblasts converted into iPSC-like cells, most

likely during the first few days in 2i/LIF when most cells were still

cycling. However, several lines of evidence suggest that prolifer-

ation was unlikely to play a major role during colony biogenesis: i)

95% of cells did not synthesize DNA when colonies formed (EdU

pulse-fix); ii) .90% of cells present in colonies on D16 were

outside S-phase one week earlier, around the time of colony

formation (EdU pulse-chase); iii) .90% of cells within the

population did not synthesize DNA during the week following

colony formation (EdU cumulative labelling); iv) the proportion of

Ki-67 and PCNA expressing cells decreased over time, correlating

well with the decline in EdU-incorporation; v) primary colonies

did not expand for several weeks before or after passaging; vi) the

number of primary colonies stabilized after some time with no

subsequent multiplication into secondary colonies. Irrespective of

the EdU labelling protocol, ,2% of cells still synthesized DNA in

D16 colonies. At that time, almost all cells within each colony were

Figure 2. 2i/LIF affects colony formation and AP induction. (A) AP+ colonies after no, empty vector (pCMVe) or pOSKM-transfection. Scale
bar = 100 mm; (B) Quantification of AP+ iPSC-like colonies, 15 days after passaging BEF40; ab treatments differ P,0.005 for colonies. (C) xCELLigenceTM

real-time kinetic profiling. Cell indices were determined for bovine and murine embryonic (BEF40, MEF, respectively), bovine fetal (BFF) and bovine,
murine and human adult fibroblasts (AESF, MLF, and BJ, respectively). Curves were normalized after compound addition (blue vertical line) and slopes
(red bars) determined during log phase (between blue and red vertical lines); * = slopes differ P,0.05 from LIF-treated control.
doi:10.1371/journal.pone.0024501.g002
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non-apoptotic and positive for SSEA-3/4 and TRA-1-60/81,

providing direct evidence for the quiescence of molecularly

reprogrammed iPSC cells. The kinetic response of bovine

fibroblasts vs their murine and human counterparts was also

characterized using an xCELLigenceTM electronic cell sensor

array. Based on their reduced CI values, bovine cells significantly

diverged from mouse/human in their overall cell proliferation,

morphology, and/or adhesion response to PD and CHIR, but not

LIF, addition. This provides further evidence for previously

unidentified differences in signaling pathways between these

species. Varying PD and CHIR concentration may alleviate their

anti-proliferative effect, perhaps through minimizing side effects

on other kinases. Excluding cell proliferation as the main

mechanism of colony formation, bovine iPSC colonies in 2i/LIF

likely formed through migration and aggregation of individual

cells that had become quiescent before or during re-acquisition of

pluripotency. It is conceivable that quiescence may have even

enhanced cell reprogrammability, similar to its beneficial effect in

nuclear transfer-induced epigenetic reprogramming [71,72].

Several applications await bovine iPSC-like cells. First, they

provide a chemically defined screening platform for candidate

factors that maintain both proliferation and pluripotency of

pluripotent stem cells in livestock. This is particularly relevant for

establishing embryo-derived stem cells. Second, they may be

converted into animals by using them as donors for somatic

cloning with the prospect of significantly increasing cloning

efficiency compared to conventional donors [73,74]. Bovine

iPSC-like cells will also be tested for their ability to generate

germline chimeras. Since germline transmission of superior

genetics is the most important criterion for breeding, such animals

would serve the same purpose as clones. Third, the pluripotent cell

state facilitates transgenesis and homologous recombination

[75,76,77]. Provided their proliferation block can be overcome,

bovine iPSC-like cells would facilitate the precise genetic

engineering of farm animals for improved production traits and

biopharming. Beyond these agricultural applications, bovine

iPSC-like cells would help to provide large animal models for

human diseases [78,79,80,81,82,83,84], complementing research

currently carried out with laboratory animals.

Materials and Methods

Plasmid construction
Complete protein coding cDNA sequences of bovine OCT4,

SOX2, KLF4 and c-MYC were obtained from GeneBank (accession

numbers NM_174580, NM_001105463.1, BC134523, and

NM_001046074, respectively). After introducing silent mutations

in KLF4 (TCG to TCC at position 1398) and OCT4 (GGT to

GGA at position 967) and adding a 59- XhoI and 39-SalI site,

respectively, the altered sequences were synthesized (GENEART,

Germany). The CDS encoding a zinc finger nuclease was removed

from pRK5.GZF1-N and the plasmid ligated using a linker (Fw 59-

GGCTAGCTCGAGACGTG-39, Rv 59- GTCGACACGTCTC-

GAGCTAGCCGC-39) that added an XhoI site downstream of the

CMV promoter. The resulting plasmid was linearized with SacI,

and ligated using a linker (Fw 59- CCTAGGGTACCACGT-

GAGCT -39, Rv 59- CACGTGGTACCCTAGGAGCT-39) that

added a KpnI site upstream of CMV promoter (‘pCMVe-K).

Following XhoI and SalI digest, the four factors were each inserted

into pCMVe-K, resulting in single-factor plasmids (pO, pS, pK,

pM). pO and pK were digested with KpnI, and the fragment

containing both CMV promoter and vector sequence cloned into

KpnI-linearized pS and pM, respectively, resulting in double-factor

vectors (pKM, pSO). Both were partially digested with KpnI to

isolate one fragment containing the vector, and one containing

the two transcription factors with their CMV promoter. The

fragments containing two factors were ligated into the linearized

plasmids containing the other two, resulting in four-factor vectors

(pOSKM, pKMOS). Plasmids were isolated using a PureLinkTM

HiPure Plasmid Filter Kit (Invitrogen).

Cell culture and plasmid transfection
Primary bovine cell lines were isolated as described [85,86]:

hypodermal fibroblasts from pooled day (D) 40 male and female

IVF embryos (‘BEF40’); fetal lung fibroblasts from a D64 female

fetus and its male sibling (‘BFF64’); clonal cell strains of transgenic

BFFs (‘BFF-MBP [87]’, ‘BFF-OCT4_GFP’ [88]); adult ear skin

fibroblasts from two different bulls (‘AESF-1’, ‘-801’); and adult

follicular cells (‘EFC’). Mouse lines were either derived from D13.5

embryos (‘MEF’) or adult lung tissue (‘MLF’). Human skin

fibroblasts (‘BJ’) were obtained from ATCCH (CRL-2522TM). In

pilot experiments, mitomycin C-inactivated female D34 embry-

onic fibroblasts (‘BEF34’) served as feeders. Cells were seeded at

2.35614 cells/cm2 and cultured in Dulbecco’s Modified Eagle

Medium: Nutrient Mixture F-12 (DMEM/F12, Gibco) with

GlutamaxTM-I, 10% fetal calf serum (FCS, Invitrogen). This

‘somatic medium’ was supplemented with 2 mM valproic acid

(VPA, Calbiochem). After seeding, cells were cultured for two days

in somatic medium/VPA before transfection with 1 mg DNA per

26105 cells using lipofection (LipofectamineTM LTX/PLUSTM,

Invitrogen) or nucleofection (programme A-24, Lonza, Germany).

Two days post-transfection, lipofected cells were passaged onto 8-

well glass chambers (BD, USA) or tissue culture dishes coated for

1 h at 2–4 mg/cm2 per tissue culture dish and 5–7 mg/cm2 per

glass chamber with natural mouse laminin (Invitrogen). The next

day, they were shifted into iPS medium (‘2i/LIF’), comprising of

MEK1/2 inhibitor PD0325901 (0.4 mM, Stemgent, USA),

GSK3B inhibitor CHIR99021 (3 mM, Stemgent), and human

LIF (20 ng/ml, Genscript) in DMEM/F12 supplemented with N2

(Gibco) and mixed 1:1 with Neurobasal medium (Gibco)

supplemented with B27 (Gibco) and 1 mM L-glutamine

(‘N2B27’) [14]. Nucleofected cells were seeded onto laminin-

coated culture vessels in somatic medium/VPA and shifted into

2i/LIF N2B27 medium the following day. Culture medium was

changed every 3–4 days.

Colony tracking and size determination
Colonies were either passaged by mouth pipette-assisted

dissociation into large fragments in accutaseTM (Millipore, New

Zealand) or by cutting with a splitting blade (ESE 020, Bioniche

Animal Health, USA) mounted to a micromanipulator (MO-188,

Nikon Narishige, Japan). Fragments were cultured in 2i/LIF and

photographed at regular intervals. For size determination, bright-

Figure 3. Bovine iPSC-like colonies do not expand in 2i/LIF. (A) Primary AP+ colonies with EdU+ nuclei (arrowheads) after 24 h label. Scale bar
= 50 mm. (B) DNA-synthesis after EdU addition (solid blue horizontal lines). EdU+ nuclei were counted after fixation (solid blue vertical lines). Open
arrow indicates first emerging colonies. (C) Prior to passaging, colonies from feeders (black triangles) or laminin (green circles) were tracked.
Regression splines were plotted for each colony (left) and averages (right graph). (D) After accutase (black triangles) or blade (green circles)
passaging, colonies on laminin were tracked. Regression splines were plotted for each colony (left) and averages (right graph).
doi:10.1371/journal.pone.0024501.g003
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field images were imported into Image J (http://rsb.info.nih.gov/

ij/) and areas measured using polygon selection.

Cell proliferation assays
Real-time changes in cell number, viability, and morphology

were quantified using an RTCA-SP xCELLigenceTM system

(Roche, New Zealand). For each treatment, cells were seeded in

triplicate in 100 ml somatic medium at 2.356104 cells/cm2 onto

laminin-coated 96-well E-Plates. In pilot experiments, the peak cell

index (CI) for each cell line was determined. Each compound was

diluted in pre-warmed medium and added at 1/4 to 1/3 of the

peak CI, around 24 h after plating. CI readings were taken every

1 h. Curves were normalized on the respective CI values 30 min

after compound addition when temperature of the fresh medium

had equilibrated. Curve slope was determined during the interval

between normalization time point and plateau phase (log phase),

and normalized on the LIF-treated control.

DNA synthesis was assessed using a click-iTH EdU (5-ethynyl-

29-deoxyuridine) proliferation assay (Invitrogen). Cells were: fixed

with 4% paraformaldehyde (PFA) every two days (‘pulse-fix’);

washed out of EdU and cultured in medium supplemented with

10 mM thymidine quench (‘pulse-chase’); or kept in EdU

(‘cumulative’). Cells stained without EdU labelling served as a

negative control. In addition, we performed immunocytochemistry

against Ki-67 and PCNA as described below.

Detection of apoptosis
Apoptosis was examined with the click-iTH TUNEL Alexa

FluorH Imaging Assay (C10246; Invitrogen). Cells were fixed,

permeabilized and stained according to the manufacturer’s

Figure 5. Differentiation of bovine iPSC-like colonies in vitro and in teratomas. (A) Simple (arrowheads) and cystic (arrows) EBs. Scale bar
= 50 mm. (B) RT-PCR analysis of differentiation marker expression in cystic EBs. cDNA from bovine fetal brain (ectoderm), gut (endoderm) and heart
(mesoderm) provides a positive control. (C) Histological sections of intramuscular teratomas from different pools of colonies (#1, #2). (D) Karyotype
of bovine iPSC-like cells after 24 days in culture.
doi:10.1371/journal.pone.0024501.g005

Figure 4. Molecular characterization of bovine iPSC-like colonies. (A) RT-PCR analysis. cDNA was extracted from 10 colonies/pool, cDNA from
10 bovine blastocysts/pool (bovine D16 epiblasts and MII oocytes for T-BRACHYURY and FGF5, respectively) provides a positive control. (B) qRT-PCR of
endogenous vs total target gene expression in cells vs colonies (1 d vs 18 d post-transfection, respectively); target genes values were normalized on
18S expression. * = values differ P,0.05 between time points; (C) Telomerase activity using the TRAP assay. Heat-inactivated (+) samples and CHAPS
buffer serve as negative, mouse ESCs (v6.5) and 36 bp internal control band (arrow) as positive controls. (D) Confocal immunofluorescence. DNA was
counterstained with Hoechst 33342. Arrowheads indicate negative cells. Stainings without primary antibodies (anti-mouse 488 and anti-rat 568)
provide negative controls. Phase = phase contrast, DIC = Differential interference contrast. Scale bar = 50 mm.
doi:10.1371/journal.pone.0024501.g004
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instructions. Cells stained without EdU-incorporation and DNase-

treated cells provide negative and positive controls, respectively.

DNA and RNA isolation
For genomic DNA isolation, cells or 50–100 mg of finely

ground liquid nitrogen frozen tissue samples were lysed in

100 mM Tris pH 8, 200 mM NaCl, 5 mM EDTA, 0.1%

SDS and 1 mg/ml proteinase K at 55uC. After 12–18 hours,

samples were digested with RNAse A (10 mg/ml) at 37uC for

30 min, extracted twice with phenol/chloroform/isoamyl alcohol

(25:24:1) and ethanol-precipitated. The air-dried pellet was

resuspended in 50–100 ml H2O and used for PCR. For RNA

isolation, cells or 50–100 mg of finely ground liquid nitrogen

frozen tissue samples were lysed in TRIZOLH (Invitrogen)and

cDNA synthesized as described [89]. Reverse transcriptase was

omitted in one sample, each time a batch was processed for

cDNA synthesis (‘-RT’).

PCR and RT-PCR
A Mastercycler Gradient (Eppendorf, Germany) or Thermal

cycler (Bio-Rad, New Zealand) was used for PCR amplification

using primers shown in Table S1. Ectopic forward primers bind at

different positions of vector-specific 59-UTR, between pCMV and

the first ATG of the insert (i.e. in pOSKM: pos. 618–711 for

OCT4, pos. 2637–2738 for SOX2, pos. 4544–4631 for KLF4 and

pos. 6902–6995 for c-MYC). Ectopic reverse primers bind in their

respective target gene. Endogenous primers span specifically

between in the 59-UTR (SOX2, OCT4) or 39-UTR (KLF4, c-

MYC) and the adjacent exon of their respective target gene. The

PCR was performed using the following conditions: one cycle

denaturation at 95uC for 5 minutes, followed by 35 cycles of 30

seconds at 95uC, 30 sec at 52–63uC (see Table S1 for primer-

specific annealing temperatures), 30 seconds at 72uC; 7 min

extension at 72uC and cooling to 4uC.

Real-Time RT-PCR
A LightCyclerH (Roche, New Zealand) was used for qPCR

amplification and data analysis. All reactions were performed with

the LightCyclerH FastStart DNA MasterPLUS SYBR Green I Kit.

Primers were designed using LightCyclerH Probe Design 2.0 or

NCBI/Primer-BLAST. The ready-to-use ‘‘Hot Start’’ Light-

CyclerH reaction mix consisted of 0.4 ul of each primer (10 mM),

2.0 ml LightCyclerH SYBR Green I master mix, 5.2 ml DEPC

water, 1.0 ml DMSO if required and 1–2.0 ml cDNA template.

The following four-segment program was used: 1) denaturation

(10 min at 95 uC); 2) amplification and quantification (20 sec at 95

uC, 20 sec at 52–63 uC, followed by 20 sec at 72 uC with a single

fluorescent measurement repeated 45 times); 3) melting curve (95

uC, then cooling to 65 uC for 20 sec, heating at 0.2 uC sec-1 to 95

uC while continuously measuring fluorescence); and 4) cooling to 4

uC. Product identity was confirmed by gel electrophoresis and

melting curve analysis. For relative quantification, external

standard curves were generated from serial 5-log dilutions for

each gene in duplicate. One high efficiency curve (3.6$ slope

$3.1, R2.0.99) was saved for each target gene and imported for

relative quantification as described [89].

Alkaline phosphatase (AP) activity
Cells were washed with PBST (0.05% TweenH 20 in PBS),

and fixed with 4% PFA for 2 min at room temperature. After

PBST washing, cells were stained in 1 ml NTMT buffer

(10 mM Tris pH 9.5, 100 mM NaCl, 50 mM MgCl2, 1%

TweenH 20) with 3.38 ml/ml of 100 mg/ml NBT reagent

(Roche) and 3.5 ml/ml of 50 mg/ml BCIP reagent (Roche) for

20 min in the dark. A commercial staining kit (Stemgent) was

used occasionally.

Immunoblotting
Western blot analyses were carried out using the following

antibodies: phospho(Thr202/Tyr204)-p44/42 MEK1/2 (#9101)

and p44/42 MEK1/2 (#9102, both Cell signalling). Whole cell

lysates (40 mg per lane) were resolved on 4–12% Bis-Tris SDS-

Page gradient NuPage gels, transferred to nitrocellulose mem-

branes and blotted for phospho-MEK1/2 and pMEK1/2 (both

1:1000). The secondary antibody, goat anti-rabbit IgG-HRP

(Dako, P0448), was used at 1:5000 and peroxidise activity was

visualized with Western Lightning Plus-ECL kit (PerkinElmer,

NEL105001EA).

Immunocytochemistry
The following antigens were analyzed: SOX2 (AF2018, R&D

Systems), OCT4 (sc-9081), SSEA-1 (sc-21702), SSEA-3 (sc-21703),

and SSEA-4 (sc-21704, all Santa Cruz), Ki-67 (ab15580), PCNA

(ab29), KLF4 (Ab72543), TRA-1-60 (Ab16288), and TRA-1-81

(Ab16289, all Abcam). Cells were fixed in 4% PFA for 15 min at

4uC, washed in PBS, quenched in 50 mM NH4Cl in PBS for

10 min, permeabilized in 0.1% (v/v) Triton X-100 in PBS for

10 min at room temperature and blocked in 5% donkey serum,

5% BSA in PBS for 30 min. Primary antibodies were incubated

overnight at 4uC, washed in PBS and incubated with Alexa FluorH
488 or 546 donkey anti-mouse, -rat, -rabbit or -goat secondary

IgG antibodies (all Invitrogen) for 30 min at 38.5uC. All antibodies

were diluted in blocking buffer. DNA was counterstained with

5 mg/ml Hoechst 33342 (Sigma). Preparations were washed in

PBS and once in H2O before mounting (DAKO, Med-Bio Ltd.,

New Zealand). Negative controls were processed the same way,

except that the primary antibodies were replaced with blocking

buffer. Images were taken on an epifluorescence (Olympus BX50)

or confocal microscope (Olympus FluoView FV1000).

Telomerase activity
Telomerase activity was determined with the TRAPEZEH kit

(Chemicon, USA). Heat-inactivated (85uC for 10 min) samples

were used as internal negative controls. Reactions were separated

on non-denaturing TBE-based 10% polyacrylamide (19:1) gels,

stained with SYBR Gold (Invitrogen) and visualized on a Gel

DocTM 2000 documentation system (Bio-Rad).

Karyotyping
Bovine iPSC-like colonies (D24 post-transfection) were

cultured for 2 days in 2i/LIF with 10% serum replacer

(Invitrogen), treated with 1.67 mM nocodazole (Sigma) over-

night, trypsinized and centrifuged at 1000 rpm for 5 min. The

pellet was resuspended in 0.56% KCl solution, incubated at

38uC for 15 min and fixed in 220uC methanol: acetic acid (3:1)

at 4uC for 30 min. Washing with fresh fixative was repeated

twice before re-suspending the pellet in 500 ml of ice-cold

fixative, spreading onto chilled microscope slides and staining

with 10% KaryoMAXH Giemsa in Gurr buffer, pH 6.8 (BDH,

New Zealand).

Embryoid body (EB) formation
Undifferentiated iPSC-like colonies were picked by mouth

pipette and cultured on bacterial-grade Petri dishes (Falcon, USA)

for 5–21 days in N2B27. The medium was changed every 2 days.
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Teratoma formation
On D24 post-transfection, cells and colonies were harvested

using a cell scraper, centrifuged and re-suspended in PBS +1%

PVA (10–30k). Using a 23G needle, 100 ml of cell suspension

(approximately 1–56106 cells per site) was injected intramuscu-

larly into the quadriceps of adult immune deficient (SCID) male

mice. After 5–7 weeks, tumors were graded [90], dissected, fixed

overnight in Davidson’s fixative, embedded in paraffin, sectioned,

haematoxylin–eosin stained and analyzed by a pathologist service

(Gribbles, New Zealand). Investigations complied with the New

Zealand Animal Welfare Act 1999 and were approved by the

Ruakura Animal Ethics Committee (AE Application 11849).

Statistical Analysis
All values are presented as mean 6 S.E.M, unless indicated

otherwise. Statistical significance was accepted at P,0.05 and

determined using the two-tailed t-test with equal variance (Fig. 1,

2, 4). Log ratios of the colony tracking data (Fig. 3) were analyzed

using the residual maximum likelihood method in GenStatH (12th

Edition), with the treatments as fixed effects and individual

colonies as random effects.

Supporting Information

Figure S1 Immunoblot analyses of steady-state levels of
phospho(Thr202, Tyr204)-MEK1/2 and total MEK1/2 in
BEF40 after 24h in N2B27 with solvent control (DMSO),
PD at the indicated concentrations, 3 mM CHIR, 0.4 mM
PD plus 3 mM CHIR (2i) or 2i/LIF.

(TIF)

Figure S2 Proliferation and apoptosis in bovine fibro-
blasts and iPSC-like cells (A) Non-transfected BEF40
cells were cultured in 2i/LIF or N2B27. EdU+ nuclei were

counted after EdU addition (solid blue horizontal lines) and

fixation (solid blue vertical lines). BEF40 cells on D4 (B) and D18

(C) post-transfection with pKMOS were analyzed by immunoflu-

orescence. DNA was counterstained with Hoechst 33342. White

circles = positive PCNA/negative Ki-67; red circles = positive

PCNA/Ki-67; arrowheads = negative PCNA/Ki-67. (D) Positive

nuclei were counted at indicated time points. Open arrow

indicates first emerging colonies. (E) Apoptotic nuclei were

identified by Click-iT staining (arrows). DNA was counterstained

with Hoechst 33342. Omission of EdU and DNase-treatment of

cells provide negative and positive controls, respectively.

(TIF)

Figure S3 iPSC-like cells express endogenous and
ectopic iPS factors. RT-PCR using primers specific for

endogenous (A) and ectopic (B) OCT4, SOX2, KLF4 and c-MYC

mRNAs. cDNA was extracted from BEF40 one day post-

transfection or from 10 pooled iPSC-like colonies 18–20 days

post-transfection. cDNA from 50 bovine blastocysts/pool and

pKMOS DNA provide controls. (C) PCR using plasmid-specific

primers (c-MYC, KLF4). Genomic DNA was extracted from ,150

colonies on D38 post-transfection. pKMOS and BEF DNA

provide positive and negative controls; primers amplifying 18S

DNA serve as loading controls.

(TIF)

Figure S4 Molecular characterization of bovine iPSC-
like colonies by confocal immunofluorescence. DNA was

counterstained with Hoechst 33342. Arrowheads indicate positive

cells. Scale bar = 50 mm.

(TIF)

Figure S5 PCR analysis of genomic DNA and RT-PCR
analysis of cDNA from bovine iPSC-like-derived terato-
mas. Mouse ESC-derived teratomas provide a negative control.

Species-specific primers amplify ACTB in bovine iPSC-derived

(#1), but not mESC-derived teratomas, confirming bovine origin

of tumour tissue. Primers amplifying both bovine and mouse 18S

DNA and cDNA provide a loading control.

(TIF)

Table S1 Primers used for end-point and/or quantita-
tive (q) real-time RT-PCR; * = includes 4% or 10%
DMSO for end-point or qPCR, respectively, ND = not
determined.
(DOC)
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