
Faster SEQUEST Searching for Peptide Identification from
Tandem Mass Spectra

Benjamin Diament and
Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA

William Stafford Noble*

Department of Genome Sciences, Department of Computer Science and Engineering, University
of Washington, Seattle, WA, USA
Benjamin Diament: bdiament@cs.washington.edu; William Stafford Noble: william-noble@uw.edu

Abstract
Computational analysis of mass spectra remains the bottleneck in many proteomics experiments.
SEQUEST was one of the earliest software packages to identify peptides from mass spectra by
searching a database of known peptides. Though still popular, SEQUEST performs slowly. Crux
and TurboSEQUEST have successfully sped up SEQUEST by adding a precomputed index to the
search, but the demand for ever-faster peptide identification software continues to grow. Tide,
introduced here, is a software program that implements the SEQUEST algorithm for peptide
identification and that achieves a dramatic speedup over Crux and SEQUEST. The optimization
strategies detailed here employ a combination of algorithmic and software engineering techniques
to achieve speeds up to 170 times faster than a recent version of SEQUEST that uses indexing. For
example, on a single Xeon CPU, Tide searches 10,000 spectra against a tryptic database of 27,499
C. elegans proteins at a rate of 1,550 spectra per second, which compares favorably with a rate of
8.8 spectra per second for a recent version of SEQUEST with index running on the same
hardware.

Keywords
shotgun proteomics; peptide identification

1 Introduction
SEQUEST [1] pioneered the pure database search approach for analysis of tandem mass
spectra from shotgun proteomics data. Despite the passage of some time, SEQUEST
remains popular: a search on Google Scholar returns about 5,800 articles between 2006 and
2010 mentioning “SEQUEST” and “peptides”.

Although SEQUEST enjoys considerable popularity, it runs slowly even on modern
architectures. Performance varies significantly based on the size of the peptide database, and
especially on the number of candidate peptides considered per spectrum, but analysis times
are typically in the range of a second per spectrum identified. Consequently, efficient data
analysis of an MS/MS experiment often requires significant computational resources,

*to whom correspondence should be addressed. william-noble@uw.edu; phone: 206-543-4457; fax: 206-685-7301.
Supporting Information Available
This material is available free of charge via the Internet at http://pubs.acs.org.

NIH Public Access
Author Manuscript
J Proteome Res. Author manuscript; available in PMC 2012 September 2.

Published in final edited form as:
J Proteome Res. 2011 September 2; 10(9): 3871–3879. doi:10.1021/pr101196n.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://pubs.acs.org


including dedicated computing clusters. Barriers of time and expense play a correspondingly
restrictive role in experiment design. Conversely, faster identification broadens the
possibilities for experimentation.

Many approaches exist for identifying peptides from tandem mass spectra (reviewed in
reference [2]). These methods may be categorized broadly as de novo methods, which
analyze spectra without reference to an external set of known peptides; database methods,
which match spectra to the closest candidate peptide in a database of known peptides; hybrid
methods, which employ some combination of the previous two approaches; and library
search methods, which compare observed spectra to a library of previously observed,
annotated spectra.

Database search methods work by comparing each observed spectrum against a theoretically
predicted spectrum for each peptide in a database, typically assigning a score to each
database entry and reporting the highest-scoring result. The main scoring function of
SEQUEST is XCorr [1, 3], which assigns a similarity score to any given pairing between an
observed spectrum and the theoretical spectrum of a candidate peptide.

As originally implemented, XCorr is costly to compute, so several approaches have been
used to improve the speed of the XCorr calculation. SEQUEST itself uses a faster
preliminary score, Sp, expecting that the peptide with the highest XCorr will also have a
sufficiently high Sp to be included in a second scoring round. TurboSEQUEST and Crux [4]
introduced to the SEQUEST method an index based on precursor mass to increase the
efficiency of candidate peptide retrieval. Recently, a faster XCorr computation, performed as
a dot product, was described in [3]. This method is included in Crux and more recent
SEQUEST versions. However, despite such advances, the need for further speed
improvements remains.

In parallel to these SEQUEST-specific developments, a host of competing database search
methods have been described [5–14], along with a variety of methods for performing the
searches efficiently. Many of these tools use a database index, usually indexing on precursor
mass and, in one case, also by MS/MS fragment mass [15]. Other tools gain efficiency by
reordering the spectra themselves [16]. A variety of algorithms use de novo analysis [12],
filtering [17], two-pass searching [14], hashing [18] or metric space indexing [19] to
efficiently reduce the effective size of the database. In general, such methods may perform
very effectively at the cost of losing a few identifications, or slightly less efficiently in a
lossless fashion. Finally, some tools are designed to exploit multi-core or multi-threaded
CPUs [10], GPUs [20], clusters of CPUs [21] or to make efficient use of the CPU cache [13,
22]. At least one vendor, Sage-N, offers a combination hardware/software-based product.

In any database approach to peptide identification, the number of candidate peptides may be
as much as quadratic in the size of the protein database, so all search methods must manage
space efficiently. The original SEQUEST did not include a peptide index at all, but rather
scanned the database file repeatedly for each new peptide. This approach requires little
memory and disk space, but it runs slowly. Modern desktop computers have far more
capacious memories and disks than those from the time SEQUEST was first developed, but
memories are still typically too small to accommodate a complete peptide list for many
searches. Consequently, compression schemes such as [23] and [24] have been used to
reduce memory bloat.

Here, we introduce Tide, a much faster implementation of the SEQUEST algorithm. Various
versions of SEQUEST exist that differ in detail. Tide’s analysis of MS/MS spectra follows
that of Crux [4], an open source software package based on SEQUEST. Tide yields identical
XCorr scores to those of Crux (version of 4/14/09). However, through a combination of

Diament and Noble Page 2

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



algorithmic enhancements, improved system design, and better use of machine resources,
Tide is dramatically faster than recent versions of SEQUEST and Crux, particularly when
the database is created using fully enzymatic digestion. Tide approaches space limitations by
curtailing its use of machine memory; however, Tide is not engineered toward low disk
usage because disk is typically a far cheaper resource than memory or time. The Tide
software is freely available for academic and non-profit use as part of the Crux software
toolkit http://noble.gs.washington.edu/proj/crux.

2 Materials and methods
Tide is written in standard C++ including the standard template libraries. All code is single-
threaded; parallel execution is achievable by running multiple program instances
simultaneously. During development, timing and profiling experiments were done on a 2.4
GHz Dual Pentium processor with 4 GB of memory running Linux. Final timing
measurements were performed on 2.33GHz Dual Xeon processor with 8GB memory
running Linux, with all code compiled in 64-bit mode.

Two benchmark datasets were used for both development and final timing: a “yeast” set, and
a larger “worm” set. The yeast set was acquired on an LTQ ion trap mass spectrometer from
a tryptic digest of an unfractionated S. cerevisiae lysate and analyzed using a 4-h reverse-
phase separation, yielding 37,641 spectra [25], from which 10,000 spectra were randomly
sampled. These spectra were searched against a protein database consisting of the predicted
open reading frames from S. cerevisiae (released 2004-04-02, 6298 proteins). The worm
benchmark was derived from a 24-h MudPIT analysis of C. elegans proteins containing
207,804 spectra, from which 10,000 spectra were randomly sampled. These spectra were
searched against a protein database consisting of the predicted open reading frames from C.
elegans and common contaminants (Wormpep v160, 27,499 proteins). The spectra and
databases comprising these benchmarks are available at
http://noble.gs.washington.edu/proj/tide.

Peptide indexes were generated from each benchmark protein database for use with Tide and
Crux. The indexes contained tryptic peptides of length 6–50 amino acids and mass 200.0–
7200.0 Da. These same search parameters were applied to the SEQUEST searches. Except
where noted, a precursor mass tolerance window of ±3.0 Daltons and a fully tryptic peptide
database were used in all experiments. Tide and Crux experiments were run with full XCorr
calculation on all candidate matches. SEQUEST experiments were run with the preliminary
scoring pass Sp.

3 Results
3.1 The SEQUEST algorithm and XCorr

The goal of peptide identification by database search is to label each experimentally
observed spectrum from an MS/MS run with the peptide most likely to have generated the
spectrum. Two sources of input are examined. The first is a collection of tandem mass
spectra, each with an observed precursor mass and one or more possible charge states. The
second is a collection of protein sequences, usually called the database, regardless of the
storage mechanism. A successful identification of an observed spectrum as a match to a
candidate peptide sequence requires reasonable correspondence between features of the
observed spectrum and theoretically computed features of the candidate peptide. The
SEQUEST algorithm approaches the task of peptide identification in four steps.

First, for each input spectrum to be identified, candidate peptides are retrieved from the
database, based on the precursor mass associated with the input spectrum. The precursor

Diament and Noble Page 3

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://noble.gs.washington.edu/proj/crux
http://noble.gs.washington.edu/proj/tide


mass of the observed spectrum must match the theoretical mass of the candidate within a
user-specified tolerance, defaulting to ±3.0 Daltons. If more than one possible charge state is
given for the precursor ion, then candidate selection is repeated for each charge state. If the
database is large, then many candidate peptides will be identified for each input spectrum.
The pairing of a single input spectrum with a single candidate peptide is termed a peptide-
spectrum match (PSM).

Next, each observed spectrum is preprocessed as follows. A set of bins, each of width
1.0005079 Daltons, is laid over the full range of the m/z values reported in the input file for
the spectrum. Each input MS/MS peak is bucketed into the nearest bin, which retains only
the highest intensity peak that fell into that bin. Each bin’s intensity value is then replaced
with its square root. The range of bins from lowest m/z to highest is then divided into ten
equally spaced regions. Within each region, the intensity of each bin is normalized so that
the most intense bin in every region has a value of 50. This completes the preprocessing step
performed on each spectrum.

Separately, a theoretical spectrum is computed for each candidate peptide. The amino acid
sequence, of length ℓ, of the candidate peptide is used to compute a theoretical mass for each
of the ℓ − 1 b- and y-ions corresponding to all left and right substrings of the amino acid
sequence. The theoretical mass of each of these ions is then bucketed into bins of width
1.0005079 Daltons, just as for the observed spectrum. The intensity of each of these band y-
ions is given a value of 50. Additionally, each of the following ions is computed and
bucketed to complete the theoretical spectrum:

• the two bins flanking each of the b- and y-ions each with intensity 25,

• a peak with intensity 10 representing the neutral loss of ammonia from each b- and
y-ion,

• a peak with intensity 10 representing the neutral loss of water from each b-ion, and

• each a-ion, with intensity 10.

For spectra with precursor charge of 3 or higher, doubly-charged versions of each of the
above ions are included in the theoretical spectrum.

The last step in the SEQUEST algorithm is to compare the preprocessed observed spectrum
and candidate theoretical spectrum for each peptide-spectrum match. Preprocessing of an
observed spectrum or generating a theoretical spectrum for a candidate peptide yields a
peak-intensity vector, any pair of which may be compared. After a spectrum is processed to
obtain a length-N vector u and a candidate match’s theoretical spectrum is computed to get
another vector v, where N is the number of bins, the following function is computed to
obtain the XCorr as the score for the peptide-spectrum match:

For each spectrum, the PSM with the highest XCorr scores is output to the user.

SEQUEST mitigates the slowness of computing XCorr for every PSM by computing an
approximate preliminary score (Sp) for each peptide-spectrum match that it collects; only the
500 highest scoring candidates by Sp are fully scored by XCorr. Tide does not compute Sp
because it is able fully to compute XCorr extremely efficiently; computing Sp as a
preliminary score would not be expected to improve Tide’s speed.

Diament and Noble Page 4

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



For most applications, the database of proteins, from which candidate peptides are derived,
is considered to change infrequently. As a consequence, an arbitrary amount of
precomputation may be performed on the peptide set before input spectra are to be analyzed.
Several recently developed search tools, including TurboSEQUEST, Crux and Tide, take
advantage of this opportunity by indexing the peptide set by precursor mass ahead of time.

Crux, Tide and various versions of SEQUEST all implement the algorithm above, but there
are some differences among them. Crux’s scoring is not identical to SEQUEST, though it is
similar; see [4] for a comparison of Crux and an early version of SEQUEST.

Through successive optimizations, a consistent aim of Tide was very precise fidelity to
Crux’s results and XCorr computation, though Crux, in turn, adhered more loosely to
SEQUEST. Tide’s scoring is identical to Crux’s when Crux is compiled with double-
precision floating-point arithmetic. Figure 5 compares the XCorr scores computed by Tide
against those computed by two different versions of SEQUEST. These scoring differences
between Tide and SEQUEST are no bigger than those between the two SEQUEST versions,
which are compared at the bottom of the figure.

Tide supports searching databases with variable post-translational modifications (PTMs). At
indexing time, the user may indicate a list of possible PTMs to include in the index. The user
specifies each variable modification as a triple: a limit on the number of occurrences per
peptide, a set of amino acids that are subject to the modification, and the corresponding
mass. Multiple variable modification types may be specified. For example, the specification
“2M+16.0, 5STY+79.97” indicates that up to two occurrences of methionine may be
oxidized and up to five occurrences of any residues serine, threonine, or tyrosine may be
phosphorylated. Peptides that are subject to the indicated variable modifications will appear
in the database multiple times, reflecting the various modified forms.

In both SEQUEST and Tide, including PTMs increases the number of candidate peptides
exponentially in the number of modifiable amino acids per peptide. As with SEQUEST and
other database search engines, the user is encouraged to use variable modification search
judiciously so as not to create large numbers of false positive matches or increase search
times exponentially. Tide scores a match with a modified peptide exactly as it would the
unmodified peptide, except that it accounts for the change in mass of the modified residues.

3.2 Baseline version of Tide
An initial rewrite of the search method of Crux, called Tide-v0, was produced with the goal
of precisely matching the XCorr scores produced by Crux, but with a greatly simplified code
base, more easily amenable to human analysis, machine timing and profiling, and staged
optimizations. Tide-v0 served as a starting point for the sequential introduction of a series of
optimizations described in Section 3.3. The operation of Tide-v0 was as follows,
schematized by the data flow in Figure 1(A).

The left side shows the progression from a protein set, supplied as a FASTA file, to a set of
peptides, to a set of theoretical spectra. Each of these datasets is computed in turn from its
parent dataset in the diagram. The computational digestion of the proteins and the ordering
of the peptides are precomputed during an indexing phase that needs to be run only once for
a given protein database. During the indexing phase, each protein in the input FASTA file is
computationally digested into peptides according to user-specified parameters, which may
specify enzyme and minimum and maximum peptide sizes.

The right side of the figure shows the set of observed spectra, including precursor m/z and
possible charge states, which are input at search time. As each spectrum is considered in

Diament and Noble Page 5

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



turn, candidate peptides are identified, based on precursor mass, from the precomputed
index, and a theoretical spectrum is calculated for each candidate. The bottom of the figure
shows the observed spectra and theoretical spectra matched by precursor mass, then scored
by XCorr. For spectra with multiple possible charge states, Tide simply iterates over each
such state and considers it in turn.

3.3 A series of optimizations
We now briefly describe the successive algorithmic optimizations and techniques
incorporated in Tide, showing the course of development from Tide-v0 to the current
version of Tide. The reader interested in more detailed descriptions of the individual
optimizations should refer to the supplementary material.

• Sparse representation of theoretical peaks Each peptide’s theoretical spectrum
consists of ten peaks for each amino acid in the peptide, for each charge state,
corresponding to the major ion types and the related neutral losses. Since there are
roughly 1,000 mass/charge buckets (depending on machine settings), and since
most peptides are short (under 20 amino acids), the theoretical spectrum is typically
sparse, so Tide uses a sparse representation of the theoretical peaks. This change
enabled another technique—making theoretical peaks five-fold sparser.

• Heapify to find top matches As Crux finds candidate peptide-spectrum matches, it
adds them to an array, which it sorts to find the best five matches. In place of this
sort, Tide uses a heapify operation which requires linear time rather than the O(n
log(n)) time required by the sort to find the top matches.

• Linearizing background subtraction Tide linearizes the double loop that
calculates XCorr, as described in the supplement. At the stage it was introduced, this
speedup reduced the total running time by about 47% (see line 5 in Table 1).

• Caching multiplications The XCorr calculation requires computing a dot product
between the observed spectrum with each candidate theoretical spectrum. Tide
exploits the fact that the theoretical peaks may have one of only three possible
intensities: 10, 25 or 50. A simple caching scheme thereby allows for the
elimination of multiplications during the dot product computation.

• Join with rolling window Before any matching begins, Tide reads the observed
spectra into memory and sorts them by mass. In case a spectrum has multiple
possible charge states it appears in the sorted array once for each charge state, as
the join is performed on the neutral (uncharged) mass. After the spectra are sorted,
Tide iterates in parallel over the spectra and the presorted candidate peptides.
Iteration in this fashion creates a “rolling window,” which occupies only as much
memory as is required to store a window’s worth of theoretical spectra. This
strategy, which is illustrated in Figure 1(B), enables reuse of the computation of the
theoretical spectra so that no theoretical spectrum need ever be computed more than
once.

• Making the theoretical peaks vector five-fold sparser Theoretical spectra in the
SEQUEST algorithm occur in groups corresponding to cleavage events, with
somewhat predictable spacing among the peaks within a group. Tide takes
advantage of such peak groupings to represent the complete set of theoretical peaks
even more sparsely. This is done by adding together the peaks in a group as part of
the spectrum preprocessing step. Details are given in Section 7 of the supplement.

• Fixed point arithmetic Rather than compute the dot product in double-precision
floating-point arithmetic, Tide uses fixed-point arithmetic. To do this, Tide
multiplies each entry in the spectrum by a large constant (107) and rounds to the

Diament and Noble Page 6

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



nearest integer. The constraints imposed by the normalization procedure ensure
against underflow or overflow, and the fact that the dot product is a simple
summation assures numerical stability. We therefore achieve the same results as
Crux does to at least five or six decimal places.

• FIFO memory allocator Profiling of a larger dataset showed that significant time
was being spent in memory heap operations, many of which were tied to allocating
and deallocating space for theoretical spectra and associated data. Therefore, Tide
includes a specialized first-in-first-out (FIFO) memory allocator that performs well
on data associated with a queue.

• Compiled dot-product code Following the above speed improvements, profiling
revealed that most of the remaining time (about 60%) was spent in the dot product
computation. Although this code had already been optimized twice—using cache
lookups instead of multiplication operations, and using two such lookups rather
than three—testing still showed that unrolling the loop and hard-coding specific
values for the array of theoretical peaks was about twice as fast. To take advantage
of this opportunity, Tide performs a run-time compilation for each theoretical
spectrum to x86 machine code to execute the sum with preset values. The
appropriate code is generated in a buffer for each candidate peptide, and the
program is instructed to jump to the buffer to run this peptide-specific dot-product
code.

Table 1 shows timing results in the actual order these changes were introduced to Tide, with
later optimizations often building upon earlier ones. Each line shows the performance
change following the incorporation of perhaps a few changes at a time. Figure 2 shows the
profile of major program components at various key points along the way.

The following features of the timing table bear some further exposition. The earliest
working version of Tide shows a 45-fold improvement over the run-time of Crux. A
substantial portion of this dramatic improvement likely reflects artifactual slowness of Crux
that happened to be present at the time Tide got under way, and was since corrected in Crux.
Newer versions of Crux, such as the one used for final timing measurements, are much
faster.

Artifacts, however, do not completely account for the dramatic 45-fold speedup of Tide-v0
over Crux. The 3-Dalton mass window and full XCorr scoring for all candidates are settings
for which Crux may not have been optimized, and they are time-consuming settings. Tide’s
code was also a lot more compact at this point (about 1,200 lines, compared to Crux’s
~32,000), and perhaps mere removal of some code complexity helped this initial number.
The initial version of Tide also implemented heapify, described below; it used a compressed
peptide file that holds pointers to all the proteins in which it is found; and it managed for
these datasets to read all the compressed peptides into memory, eliminating most disk seeks.
All these changes contributed to the immediate gains over Crux, but no separate
measurements were made for each of these improvements. Versions of Tide from Table 1
line 6 onward do not require the index to fit into memory.

About midway through Tide’s development, parsing of the input file was jettisoned, and the
input spectra were represented by an uncompressed binary file. This was done because the
particular input file format is incidental to the main search algorithms, there are many input
file formats available, and optimizing the ms2 format in particular fell outside the scope of
efforts on Tide. The timing numbers in two lines of Table 1 reflect this decision: Line 3
includes the parsing for the first time (a binary file was used beforehand), and Line 7
removes it again.

Diament and Noble Page 7

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The sparse difference vector representation, shown in line 9 of Table 1, introduced a slight
time penalty, but was implemented as a prerequisite for storing the sparse vector differences
to disk (line 11 of Table 1). The two changes taken together performed very well.

Note also that running times were not always collected for both yeast and worm, as a profile
of one or the other was often enough to discern where to focus effort; but at least one or the
other time is always reported, as is the relative time improvement between versions. An
average is shown in cases where both yeast and worm times were measured.

3.4 Final timing comparisons
Figure 3 shows the results of timing experiments for two SEQUEST versions, Crux, and
Tide, performed on the benchmark datasets. For reference, timing comparisons are shown to
X!Tandem and to OMSSA, although these software packages use different scoring methods
than the SEQUEST method.

Compared to the earlier version of SEQUEST (version 2.8, 1999), Tide’s speedup is over
1,000-fold in all cases, reaching as high as 2,500-fold for the worm benchmark with fully
tryptic digestion. The increase is more modest, but still dramatic, with respect to the recent
SEQUEST version (November 2009), especially with respect to semi-tryptic digestion—as
little as 27-fold speedup for the worm set with 0.25 Da mass tolerance. The geometric
average speedup for all datasets of Tide over the recent SEQUEST build is 54-fold. The
earlier version of SEQUEST (1999) did not support semi-tryptic enzyme digestion, and
corresponding entries are blank in Figure 3.

Crux shows intermediate performance between that of SEQUEST and Tide. Tide ran at least
29-fold faster than Crux in all cases, and as high as 145-fold in the case of the yeast
benchmark with semi-tryptic digestion and a ±3.0 Dalton precursor tolerance. With respect
to the original SEQUEST version, Crux was as much as 87 times faster (worm benchmark,
full digestion, 0.25-Dalton tolerance). In comparison to the recent indexed version of
SEQUEST, Crux’s performance was mixed, with Crux performing faster on three
benchmarks and indexed SEQUEST performing faster in five. However, in no case was the
performance difference between Crux and the recent SEQUEST more than a factor of two.

Although Tide performs very well in comparison to X!Tandem and OMSSA (a geometric
average of 17 times faster than X!Tandem and 43 times faster than OMSSA over all the
benchmark datasets), marked differences in scoring methods among these systems make fair
comparisons difficult and are beyond the scope of this paper.

Four of the software packages discussed here make use of indexing to achieve fast
execution. However, the relative speeds of three of these tools—indexed SEQUEST, Crux
and X!Tandem—fall within a relatively narrow range of one another, spanning an average
(geometric mean over all benchmarks) factor of 4 from the slowest to the fastest. Thus,
Tide’s achievement of a further 17-fold over the fastest of these methods is especially
noteworthy.

Figure 4 shows the results of timing experiments comparing Tide to the same two versions
of SEQUEST when modified peptides are included in the search. The benchmark sets the
worm and yeast data sets, each with a ±3.0 Da mass tolerance window including fully-
tryptic peptides. Modified versions of each peptide were considered in this experiment, with
up to two phosphorylations (+80 Da) per peptide at occurrences of serine, threonine, or
tyrosine. In these experiments, Tide’s relative speed is an average of over 708-fold over
SEQUEST and 253-fold over the indexed version of SEQUEST.

Diament and Noble Page 8

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4 Discussion
In this work, we have described a software implementation of the SEQUEST algorithm that
searches at a rate of hundreds of spectra per second on a single CPU. This software thus
represents more than a thousandfold improvement in speed relative to a recent single-CPU
version of SEQUEST.

We have not directly compared Tide against the commercial indexed version of SEQUEST,
TurboSEQUEST [26]. This is primarily because SEQUEST was implemented and validated
on a Linux platform, whereas TurboSEQUEST is only available running under Windows.
However, we have shown comparisons to an indexed version of SEQUEST that runs under
Linux but is not widely available. Furthermore, Crux was previously compared to
TurboSEQUEST, and the two programs were demonstrated to operate at approximately the
same speed [4]. Thus, the results shown in Table 3 suggest that Tide, when ported to
Windows, will perform significantly faster than TurboSEQUEST.

Likewise, we have not compared Tide’s speed with the speed of the full gamut of competing
database search tools, except for X!Tandem and OMSSA as two illustrative examples. This
is because the focus of this work is efficiency, subject to the constraint that Tide remains
faithful to the SEQUEST method. X!Tandem, OMSSA and other database search tools do
not follow the SEQUEST scoring method. To compare different search algorithms in a
reasonable fashion would require jointly considering both efficiency and accuracy. Accurate
identification requires not just a database search tool, but also one or more post-processing
steps that integrate information across the entire mass spectrometry experiment, taking into
account information about the spectra, peptides and proteins. Therefore, the most useful
comparison of search speed and accuracy should be performed at the level of a complete
identification pipeline. Such an evaluation is beyond the scope of the current study.

The speed improvements introduced in Tide are especially effective in common input cases
but are less dramatic in some contexts. Shotgun proteomics experiments commonly require
enzymatic digestion of the sample. In searching for enzymatic peptides, Tide performs up to
thousands of times faster than SEQUEST. In the non-enzymatic case Tide is only about 7–8
times faster than the recent SEQUEST version as tested—a far more modest gain. However,
Tide was not specifically optimized for this setting, and other opportunities for improving
Tide’s algorithm might exist.

For larger peptide databases, Tide’s computation time per spectrum grows linearly in the
size of the peptide database. This is because Tide evaluates all candidate peptides against
each spectrum. Larger databases will yield proportionately larger sets of candidate peptides
and will take proportionately longer to compute, under the same settings. The worm
benchmark consists of 27,499 proteins, comparable to the number of proteins in the human
genome, although consideration of protein isoforms in human would yield more peptides.

Most of Tide’s optimizations are most effective in cases where there are many candidate
peptides per spectrum, because such cases provide opportunities to reuse the results of
earlier computations. The number of candidates per spectrum will generally increase with
the scale of the search problem: larger protein database, wider precursor tolerance,
decreased enzyme specificity, and the inclusion of post-translational modifications in the
database. With problems of greater scale, speed becomes increasingly important, and Tide’s
results are particularly encouraging in this context.

Tide’s precise fidelity to Crux’s scoring introduced constraints on the approach to
optimization that would not have existed had Tide’s output been allowed to vary slightly
from Crux’s. On the other hand, Crux’s output is less faithful to SEQUEST’s output. Minor

Diament and Noble Page 9

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



scoring differences arise even among various versions of SEQUEST (Figure 5), and were
shown [4] to have little overall effect on accuracy. An informal investigation showed that
the small differences between Crux and SEQUEST were mostly due to minor bugs in one or
the other program, and that such differences have no impact on Tide’s speed.

Perhaps the greatest operational difference between Tide and SEQUEST is that Tide does
not compute SEQUEST’s preliminary scoring function, Sp. The Sp score was introduced into
SEQUEST to speed up computation [1].

However, Tide is fast enough that it can efficiently compute the full XCorr calculation for all
PSMs and does not require (nor is it likely to benefit greatly from) a preliminary scoring
pass using Sp. Consequently, whereas SEQUEST may miss a candidate peptide with the
highest XCorr because of the Sp screen, Tide does not have this limitation.

Note that, in some contexts [25, 27, 28], the Sp value is needed for the top few PSMs as an
additional scoring signal. Though Sp, which is computationally simpler than XCorr, is not
currently included in Tide, the cost of calculating Sp for the top few PSMs is marginal.

Most of Tide’s improvements are highly optimized for XCorr only and are not likely to be
applicable to scoring methods used in other peptide identification software programs. On the
other hand, some optimizations included in Tide, such as the compact index, the rolling-
window join, and storing exceptional cases to disk, will generalize to any type of database
searching. But the specific methods for reducing the number of multiplications and memory
lookup operations, caching partial results, grouping related theoretical peaks, on-the-fly
compiling of the dot-product code, and the like, are highly specific to the XCorr method.

Because running SEQUEST is computationally intensive, Tide offers the possibility to run
analyses that heretofore have been prohibitively expensive. Thus, Tide creates the potential
for smaller laboratories to conduct more sophisticated experiments, to sidestep purchasing
and managing large computing clusters, and to keep a spectrometer running full-time when
analysis would otherwise be a bottleneck. Tide also opens the possibility of full peptide
database search in real time, as spectra are acquired by the instrument. Fast software also
creates opportunities for further improvements of the identification methods themselves. By
analyzing larger datasets, researchers can gather more data and, in turn, devise better
analytical methods.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
The authors wish to thank Charles Grant, Barbara Frewen, Larry Ruzzo, Jimmy Eng, and Mike MacCoss for useful
conversations, and Sean McIlwain for help in the design of the benchmarking scripts used to track running times of
program runs. This work was supported by NIH awards R01 EB007057 and T32 HG00035.

References
1. Eng JK, McCormack AL, Yates JR III. An approach to correlate tandem mass spectral data of

peptides with amino acid sequences in a protein database. Journal of the American Society for Mass
Spectrometry. 1994; 5:976–989.

2. Nesvizhskii AI, Vitek O, Aebersold R. Analysis and validation of proteomic data generated by
tandem mass spectrometry. Nature Methods. 2007; 4(10):787–797. [PubMed: 17901868]

3. Eng JK, Fischer B, Grossman J, MacCoss MJ. A fast SEQUEST cross correlation algorithm. Journal
of Proteome Research. 2008; 7(10):4598–4602. [PubMed: 18774840]

Diament and Noble Page 10

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4. Park CY, Klammer AA, Käll L, MacCoss MP, Noble WS. Rapid and accurate peptide identification
from tandem mass spectra. Journal of Proteome Research. 2008; 7(7):3022–3027. [PubMed:
18505281]

5. Perkins DN, Pappin DJC, Creasy DM, Cottrell JS. Probability-based protein identification by
searching sequence databases using mass spectrometry data. Electrophoresis. 1999; 20:3551–3567.
[PubMed: 10612281]

6. Clauser KR, Baker PR, Burlingame AL. Role of accurate mass measurement (+/− 10 ppm) in
protein identification strategies employing MS or MS/MS and database searching. Analytical
Chemistry. 1999; 71:2871. ProteinProspector. [PubMed: 10424174]

7. Bafna V, Edwards N. SCOPE: a probabilistic model for scoring tandem mass spectra against a
peptide database. Bioinformatics. 2001; 17:S13–S21. [PubMed: 11472988]

8. Zhang N, Aebersold R, Schwikowski B. ProbID: A probabilistic algorithm to identify peptides
through sequence database searching using tandem mass spectral data. Proteomics. 2002; 2:1406–
1412. [PubMed: 12422357]

9. Colinge J, Masselot A, Giron M, Dessingy T, Magnin J. OLAV: Towards high-throughput tandem
mass spectrometry data identification. Proteomics. 2003; 3:1454–1463. [PubMed: 12923771]

10. Tabb DL, Fernando CG, Chambers MC. Myrimatch: highly accurate tandem mass spectral peptide
identification by multivariate hypergeometric analysis. Journal of Proteome Research. 2007;
6:654–661. [PubMed: 17269722]

11. Geer, LY.; Markey, SP.; Kowalak, JA.; Wagner, L.; Xu, M.; Maynard, DM.; Yang, X.; Shi, W.;
Bryant, SH. Journal of Proteome Research. Vol. 3. OMSSA; 2004. Open mass spectrometry
search algorithm; p. 958-964.

12. Bern M, Goldberg D, Cai Y. Lookup peaks: A hybrid de novo sequencing and database search for
protein identification by tandem mass spectrometry. Analytical Chemistry. 2007; 79:1393–400.
[PubMed: 17243770]

13. Roos FF, Jacob R, Grossmann J, Fischer B, Buhmann JM, Gruissem W, Baginsky S, Widmayer P.
PepSplice: cache-efficient search algorithms for comprehensive identification of tandem mass
spectra. Bioinformatics. 2007; 23(22):3016–3023. [PubMed: 17768164]

14. Craig R, Beavis RC. Tandem: matching proteins with tandem mass spectra. Bioinformatics. 2004;
20:1466–1467. [PubMed: 14976030]

15. Tang WH, Halpern BR, Shilov IV, Seymour SL, Keating SP, Loboda A, Patel AA, Schaeffer DA,
Nuwaysir LM. Discovering known and unanticipated protein modifications using ms/ms database
searching. Analytical Chemistry. 2005; 77(13):3931–3946. [PubMed: 15987094]

16. Tabb DL, Narasimhan C, Strader MB, Hettich RL. DBDigger: reorganized proteomic database
identification that improves flexibility and speed. Analytical Chemistry. 2005; 8:2464–2474.
[PubMed: 15828782]

17. Tanner S, Shu H, Frank A, Wang Ling-Chi, Zandi E, Mumby M, Pevzner PA, Bafna V. InsPecT:
Identification of posttranslationally modified peptides from tandem mass spectra. Analytical
Chemistry. 2005; 77:4626–4639. [PubMed: 16013882]

18. Dutta D, Chen T. Speeding up tandem mass spectrometry database search: metric embeddings and
fast near neighbor search. Bioinformatics. 2007; 23(5):612–618. [PubMed: 17237061]

19. Ramakrishnan SR, Mao R, Nakorchevskiy AA, Prince JT, Willard WS, Xu W, Marcotte EM,
Miranker DP. A fast, coarse filtering method for peptide identification by mass spectrometry.
Bioinformatics. 2006; 22(12):1524–1531. [PubMed: 16585069]

20. Baumgardner LA, Shanmugam AK, Lam H, Eng JK, Martin DB. Fast parallel tandem mass
spectral library searching using GPU hardware acceleration. Journal of Proteome Research. 2011
Advance access.

21. Duncan DT, Craig R, Link AJ. Parallel tandem: a program for parallel processing of tandem mass
spectra using PVM or MPI and X!Tandem. Journal of Proteome Research. 2005:1842–1847.
[PubMed: 16212440]

22. Li Y, Chi H, Wang LH, Wang HP, Fu Y, Yuan ZF, Li SJ, Liu YS, Sun RX, Zeng R, He SM.
Speeding up tandem mass spectrometry based database searching by peptide and spectrum
indexing. Rapid Communications in Mass Spectrometry. 2010; 24(6):807–814. [PubMed:
20187083]

Diament and Noble Page 11

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



23. Edwards, N.; Lippert, R. Sequence database compression for peptide identification from tandem
mass spectra. Fourth Workshop on Algorithms in Bioinformatics; Bergen, Norway. 2004.

24. Edwards N. Novel peptide identification from tandem mass spectra using ESTs and sequence
database compression. Molecular Systems Biology. 2007; 3(102)

25. Käll L, Canterbury J, Weston J, Noble WS, MacCoss MJ. A semi-supervised machine learning
technique for peptide identification from shotgun proteomics datasets. Nature Methods. 2007;
4:923–25. [PubMed: 17952086]

26. Lundgren DH, Han DK, Eng JK. Protein identification using TurboSE- QUEST. Current Protocols
in Bioinformatics. 2005; 13(13.3)

27. Anderson DC, Li W, Payan DG, Noble WS. A new algorithm for the evaluation of shotgun peptide
sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and
SEQUEST scores. Journal of Proteome Research. 2003; 2(2):137–146. [PubMed: 12716127]

28. Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to estimate the
accuracy of peptide identification made by MS/MS and database search. Analytical Chemistry.
2002; 74:5383–5392. [PubMed: 12403597]

Diament and Noble Page 12

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Data flow in Tide before and after optimization

Diament and Noble Page 13

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Profile of various development stages of Tide for the worm benchmark (10,000 spectra).
Each profile shows how much computing time was spent in each of the major phases of
Tide’s operation at various points during development. Such profiles aided in deciding how
best to proceed with optimization efforts. Profiles shown are (a) Tide-v0; (b) before and
after linearizing background subtraction (Supplement Section 3); (c) before and after
fivefold sparser representation, and after storing d to disk (Supplement Section 7); and (d)
the current version of Tide. For each plot, the (diminishing) total execution time is indicated
via the y-axis scale.

Diament and Noble Page 14

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Performance of Tide compared to SEQUEST, Crux, OMSSA, Indexed SEQUEST
(11/2009), and X!Tandem. Performance was measured in eight settings, varying the percur-
sor mass tolerance window, the digest (fully tryptic candidate peptides or semi-tryptic), and
the dataset (C. elegans, “worm dataset” or S. cerevisiae, “yeast dataset”—see Methods). Bar
heights in log scale show spectra processed per second, with numerical results given below.
Each experiment was repeated at least 3 times with average timings shown, except for the
X!Tandem experiments. Because SEQUEST runs relatively slowly, all SEQUEST
experiments, as well as Crux experiments using semi-tryptic digestion, were performed with
100 randomly-selected spectra. The remaining experiments, including all Tide experiments,
were performed using 10,000 benchmark spectra.

Diament and Noble Page 15

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Performance of Tide compared to SEQUEST and Indexed SEQUEST (11/2009) on
benchmark datasets with variable modifications. Bar heights in log scale show the number
of spectra processed per second. The same benchmark datasets were used as in Figure 3, but
with up to two occurrences per peptide of phosphorylated residues serine, threonine, or
tyrosine. Tests were run with a ±3.0 Dalton mass window and full tryptic digestion. As in
Figure 3, SEQUEST experiments were run with 100 randomly-selected spectra, whereas
Tide experiments used 10,000 benchmark spectra.

Diament and Noble Page 16

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5. Comparison ofXCorr scores from Tide and from two versions of SEQUEST
From two different data sets (yeast and worm), 100 spectra were selected at random for
analysis by SEQUEST and by Tide. Searches were performed using a database of tryptic
peptides from the corresponding organism, allowing up to two phosphorylations per peptide
at occurrences of STY. The figure includes the top five PSMs per spectrum, as reported by
SEQUEST. For each PSM, we plot the SEQUEST XCorr versus the XCorr computed by Tide.
In the case of the bottom figures, we plot the SEQUEST 1993 XCorr scores against those
computed by SEQUEST 2009.

Diament and Noble Page 17

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Diament and Noble Page 18

Ta
bl

e 
1

W
al

l c
lo

ck
 ti

m
e 

af
te

r 
su

cc
es

si
ve

 o
pt

im
iz

at
io

ns

O
pt

im
iz

at
io

ns
 in

 th
e 

or
de

r t
he

y 
w

er
e 

in
tro

du
ce

d 
in

to
 T

id
e,

 a
nd

 th
e 

m
ea

su
re

d 
im

pr
ov

em
en

t i
nt

ro
du

ce
d 

by
 e

ac
h.

 In
 se

ve
ra

l c
as

es
, e

ar
lie

r o
pt

im
iz

at
io

ns
 w

er
e

pr
er

eq
ui

si
te

 fo
r l

at
er

 o
ne

s:
 e

.g
. l

in
e 

9 
sh

ow
ed

 a
 sl

ig
ht

 d
eg

ra
da

tio
n,

 b
ut

 w
as

 p
re

re
qu

is
ite

 fo
r t

he
 g

ai
n 

in
 li

ne
 1

1.
 W

he
re

 in
di

ca
te

d,
 th

e 
re

ad
er

 is
 re

fe
rr

ed
 to

 a
se

ct
io

n 
of

 th
e 

te
xt

 o
r s

up
pl

em
en

t (
se

ct
io

n 
nu

m
be

rs
 p

re
ce

de
d 

by
 S

) f
or

 d
et

ai
ls

. T
he

se
 m

ea
su

re
m

en
ts

, t
ak

en
 d

ur
in

g 
Ti

de
’s

 d
ev

el
op

m
en

t, 
w

er
e 

do
ne

 o
n 

a
di

ff
er

en
t m

ac
hi

ne
 th

an
 th

e 
on

e 
us

ed
 fo

r f
in

al
 ti

m
in

g 
m

ea
su

re
m

en
ts

 (s
ee

 S
ec

tio
n 

2)
.

T
ex

t
D

es
cr

ip
tio

n
W

or
m

Y
ea

st
%

 C
ha

ng
e

1
C

ru
x 

ba
se

lin
e 

(4
/1

4/
09

)
5:

47
:3

7.
9

36
:0

3.
5

2
§3

.2
, §

3.
3

R
ew

rit
e 

in
cl

ud
in

g 
de

du
pl

ic
at

io
n 

of
 p

ep
tid

es
; h

ea
pi

fy
; c

om
pr

es
se

d 
pe

pt
id

es
 fi

le
; a

nd
 e

lim
in

at
in

g 
se

ek
s.

7:
39

.0
2:

41
.6

45
.4

-f
ol

d 
re

du
ct

io
n

3
§S

1
Sp

ar
se

 re
pr

es
en

ta
tio

n 
of

 th
eo

re
tic

al
 p

ea
ks

. [
N

ot
e 

th
at

 in
pu

t f
ile

 p
ar

si
ng

 is
 in

tro
du

ce
d 

he
re

, a
nd

 re
m

ov
ed

 la
te

r.]
1:

50
.5

−
31
.6
%

4
Fi

xe
d-

ca
pa

ci
ty

 a
rr

ay
s f

or
 th

eo
re

tic
al

 p
ea

ks
; b

et
te

r m
em

or
y 

m
an

ag
em

en
t.

1:
13

.4
−
33
.3
%

5
§S

3
Li

ne
ar

iz
in

g 
th

e 
ba

ck
gr

ou
nd

 su
bt

ra
ct

io
n 

fo
r X

C
or

r c
om

pu
ta

tio
n.

0:
38

.9
−
47
.2
%

6
§S

6
A

ct
iv

e 
pe

pt
id

e 
qu

eu
e 

an
d 

so
rte

d 
sp

ec
tra

 (r
ol

lin
g 

w
in

do
w

 jo
in

).
0:

38
.8

0:
13

.8
−
64
.5
%

7
§3

.3
El

im
in

at
e 

in
pu

t f
ile

 p
ar

si
ng

. [
Se

e 
te

xt
; a

nd
 c

om
pa

re
 li

ne
 3

 a
bo

ve
.]

0:
25

.6
−
22
.2
%

8
O

m
it 

ca
lc

ul
at

io
n 

w
ith

 th
eo

re
tic

al
 io

ns
 o

ut
si

de
 sp

ec
tro

m
et

er
’s

 ra
ng

e.
0:

23
.7

−
7.
4%

9
§S

7
Sp

ar
se

 d
iff

er
en

ce
 v

ec
to

r r
ep

re
se

nt
at

io
n.

0:
24

.7
0:

09
.0

4.
2%

10
§S

5
A

rr
ay

 st
rip

in
g 

to
 e

lim
in

at
e 

on
e 

lo
ok

up
 d

ur
in

g 
do

t p
ro

du
ct

 c
al

cu
la

tio
n.

0:
20

.4
−
17
.4
%

11
§S

7
St

or
e 

th
e 

ve
ct

or
 d

iff
s t

o 
di

sk
 in

st
ea

d 
of

 c
al

cu
la

tin
g 

at
 ru

nt
im

e.
0:

15
.5

0:
05

.9
−
24
.0
%

12
§S

8
Fi

xe
d-

po
in

t a
rit

hm
et

ic
.

0:
14

.7
0:

06
.0

−
5.
2%

13
§S

9,
 §

S1
0

FI
FO

 m
em

or
y 

al
lo

ca
to

r a
nd

 ru
n-

tim
e 

co
m

pi
le

d 
do

t-p
ro

du
ct

 c
od

e.
0:

8.
6

0:
4.

4
−
34
%

J Proteome Res. Author manuscript; available in PMC 2012 September 2.


