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Abstract
We report on the effectiveness of CID, HCD, and ETD for LC-FT MS/MS analysis of peptides
using a tandem linear ion trap-Orbitrap mass spectrometer. A range of software tools and analysis
parameters were employed to explore the use of CID, HCD, and ETD to identify peptides isolated
from human blood plasma without the use of specific “enzyme rules”. In the evaluation of an
FDR-controlled SEQUEST scoring method, the use of accurate masses for fragments increased
the numbers of identified peptides (by ~50%) compared to the use of conventional low accuracy
fragment mass information, and CID provided the largest contribution to the identified peptide
datasets compared to HCD and ETD. The FDR-controlled Mascot scoring method provided
significantly fewer peptide identifications than with SEQUEST (by 1.3–2.3 fold) at the same
confidence levels, and CID, HCD, and ETD provided similar contributions to identified peptides.
Evaluation of de novo sequencing and the UStags method for more intense fragment ions revealed
that HCD afforded more sequence consecutive residues (e.g., ≥7 amino acids) than either CID or
ETD. Both the FDR-controlled SEQUEST and Mascot scoring methods provided peptide datasets
that were affected by the decoy database and mass tolerances applied (e.g., the identical peptides
between the datasets could be limited to ~70%), while the UStags method provided the most
consistent peptide datasets (>90% overlap) with extremely low (near zero) numbers of false
positive identifications. The m/z ranges in which CID, HCD, and ETD contributed the largest
number of peptide identifications were substantially overlapping. This work suggests that the three
peptide ion fragmentation methods are complementary, and that maximizing the number of
peptide identifications benefits significantly from a careful match with the informatics tools and
methods applied. These results also suggest that the decoy strategy may inaccurately estimate
identification FDRs.
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INTRODUCTION
Dissociation or fragmentation of protein and polypeptide ions is central to tandem mass
spectrometry (MS/MS) analysis of intact proteins and their proteolytic peptide products.
Advances in mass spectrometry instrumentation have enabled the integration of multiple
fragmentation methods such as CID, HCD, and ETD (1–3) with high-precision mass
measurements of the resultant fragment ions using Fourier transform mass analyzers (4,5)
for improved characterization. For example, low energy CID fragmentation in ion traps,
which is widely utilized for peptide analysis, has been complemented by the use of higher
energy collision conditions (HCD).

A number of studies have investigated HCD, ETD, and CID for protein characterization (6–
19). For example, HCD facilitated iTRAQ-based peptide quantification because of its ability
for better detection of small reporter ions (6–8). ETD also has proved beneficial to iTRAQ-
based quantification in some cases (9), as well as for the analysis of post-translational
modifications, e.g., phosphorylation (10,11), glycosylation (12), ubiquitination (13),
disulfides (14,15), and protein isoforms (e.g., histone) (16). However, for broad analysis of
peptides, ETD tends to provide fewer peptide identifications than CID (17,18); alternating
use of ETD and CID can improve sequence coverage, but affords significantly smaller
improvements in the number of peptides identified (17). Similarly, HCD has been reported
to be a minor contributor to increasing the number of peptide identifications in an alternating
HCD-CID approach (7). The combined use of ETD and CID also has been reported, but is
less effective for increasing the number of peptide identifications from complex proteomic
samples compared to duplicate analyses performed using CID only (18). Although both
ETD and CID have been applied to dissociate intact protein sequences (19,20), it remains
unclear which is better in terms of number of identifications provided.

Both the effectiveness of the fragmentation methods and the data analysis tools are
important for peptide/protein identification. A data-dependent decision tree derived for
efficient acquisition of MS/MS spectra revealed that ETD is less effective for low charge
state (CS) (e.g., +2) peptides, while CID is less effective for high CS (e.g., > +5) peptides
when OMSSA was utilized (18). However, reports indicate that ETD can contribute
significant identifications for low CS peptides compared to CID (17), while CID has also
been effectively used for dissociation of CS > +10 (MW >30 kDa) protein ions (19). With
regard to search engines, Mascot and SEQUEST are considered less effective for ETD
spectra, which led to the development of an alternative low-resolution-based MS-GF
algorithm (21). Compared to Mascot, the MS-GF algorithm better utilized the
complementary information from CID and ETD and improved peptide identifications for
analyses that made use of sequence specific enzymes (e.g., trypsin and Lys-N) (21). Yet in
spite of efforts to date, the effectiveness remains uncertain of different approaches for
identification from e.g., the use of non-specific enzymes, as well as the trade-offs associated
with the use of CID, HCD, and ETD and combinations of these methods for improving
peptide identification.

In this work, we investigated CID, ETD, and HCD performance as part of our efforts to
develop approaches for more effectively studying aberrant protein degradomic activity
associated with diseases, e.g., breast cancer (22–24). Considering potential preferences/
biases of peptide identification methods, we investigated these fragmentation methods using
a large range of peptide lengths and termini, and applied different database search and
peptide validation methods with multiple parameters. Importantly, the collective results
from this joint comparison of fragmentation performance and peptide identification methods
are useful for determining which combinations can improve identification rates for
peptidomic-degradomic analyses and proteomics applications in general.
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METHODS
Samples

Approval for the study was obtained in accordance with federal regulations. A human blood
plasma sample was purchased from Equitech-Bio Inc (Kerrville, TX). The peptides were
isolated using affinity chromatography (IgY12 LC10 AC column, Agilent, Palo Alto, CA)
and size exclusion chromatography (Superdex 200 10/300 GL SEC column, GE Healthcare,
Piscataway, NJ) as described previously (22). Isolated plasma peptide samples were stored
at −80°C prior to the LC-CID/ETD/HCD FT MS/MS measurements.

A bovine serum albumin (BSA) Glu-C digest used for optimization of CID, HCD, and HCD
fragmentations of various CS peptides was prepared as follows: 100 μg BSA (Sigma, St
Louis, MI) was dissolved in 150 μL 25 mM ammonium bicarbonate (pH 8), then reduced in
5 mM dithiothreitol at 60°C for 30 min followed by alkylation with 20 mM iodoacetamide at
37°C in dark for 30 min. The resultant mixture was diluted 10-fold with 25 mM ammonium
bicarbonate, after which sequencing grade endoproteinase Glu-C (Roche Applied Science,
Indianapolis, IN) was added at an enzyme/protein ratio of 1:100. The resulting mixture was
incubated at 25°C for 3 h. Prior to MS analysis, a solvent mixture used for LC mobile phase
A was added to the digest at a ratio of 1:9 (v/v), and the resultant solution was vortexed.

High-resolution LC separations
Isolated peptides were separated using high-resolution LC as described previously (22).
Briefly, the column used with a 20 Kpsi LC system consisted of a 100 cm × 100 μm i.d.
capillary column containing C4-bonded silica particles (Sepax Technologies, Inc. Newark,
DE) (25). The sample (50 μg) was loaded onto the LC column and separated with a mobile
phase gradient from mobile phase A (acetonitrile/H2O/acetic acid, 10:90:0.2, v/v/v) to B
(acetonitrile/isopropyl alcohol/H2O/acetic acid/trifluoroacetic acid, 60:30:10:0.2:0.1, v/v/v/
v/v) performed over 600 min.

CID, HCD, and ETD FT MS/MS measurements
LTQ-Orbitrap Velos mass spectrometers (Thermo Fisher Scientific, San Jose, CA) with
CID, HCD, and ETD capability were employed for FT MS/MS analyses. The heated
capillary temperature and spray voltage were held at 290°C and 2.0 kV, respectively. FT MS
and FT MS/MS were obtained with AGC targets of 1×106 and 3×105, respectively, at 60K
resolution and with 2 micro scans. A 400≤m/z≤ 2000 survey scan was followed by FT MS/
MS of the three most intense ions from the survey scan (monoisotopic precursor selection
not enabled). Each most intense ion (precursor) was fragmented sequentially with CID,
ETD, and HCD prior to the next precursor selected. The fragmentation methods were
optimized using a direct infusion of the BSA Glu-C digest at ~500 nL/min. For HCD and
CID, a normalized collision energy from 30 to 35% was optimized with an activation time
of 0.25 ms for CID and 0.10 ms for HCD; while for ETD, the reaction time from 50 to 500
ms was optimized for the instrument default CS 2 and with the supplementary activation
enabled. The instrument default and the optimized CID, HCD, and ETD conditions (see
Results below) were applied for fragmentation of the most intense ions from the survey scan
with an isolation window of 6 m/z units and a minimal signal of 2000. Dynamic exclusion
was enabled with no repeat counts, using a 3 m/z tolerance and a duration cycle of 5 min.
Mass calibration was performed according to the method provided by the instrument
manufacturer.

FT MS/MS data analysis
Two combined protein databases were constructed for identification of peptides in this work.
Database 1 was generated by combining the IPI human protein database
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(ftp://ftp.ebi.ac.uk/pub/databases/IPI/, ipi.HUMAN.v3.39) with its reverse decoy database
that was achieved by reversing each of the IPI database protein sequences, Database 2 was
generated by combining the IPI database with its scrambled decoy database that was
obtained by scrambling each of the IPI database protein sequences such that it maintained
the same protein length and proportion of amino acid residue with a randomized sequence.
Each combined protein database contained 139,462 entries (i.e., 69,731 entries from the IPI
database plus the same number of entries from either the reversed or scrambled decoy
databases).

Multiple mass tolerances were employed to optimize the search results from the
experiments, with specific attention paid to particular scan types. The spectral parsing
program Extract_MSn (version 5.0, Thermo Fisher Scientific) was used to create input files
for the SEQUEST (version 27, revision 12, Thermo Fisher Scientific) tandem mass spectral
database search. Extract_MSn utilizes the scan header information to apply the appropriate
charge state and parent mass values for each MS/MS spectrum searched. As the species
being studied may include polypeptides up to the small protein level, an upper mass
tolerance of 25 KDa was allowed for SEQUEST input file creation. After input files were
created, they were filtered by scan mode type (e.g., CID vs. HCD vs. ETD) using MSMS
Spectra Preprocessor (http://omics.pnl.gov/software/MSMSSpectraPreprocessor.php) for the
subsequent SEQUEST database search. The SEQUEST database search was completed
using search modes of monoisotopic precursor tolerances from 5 Da to 50 ppm coupled with
monoisotopic fragment ion tolerances from 1 to 0.05 Da. CID and HCD spectra employed b-
type and y-type ions, while the ETD spectra employed c-type and z-type ions. No amino acid
modifications were considered and no enzyme was specified. The top hit output for each
spectrum was used for the next peptide validation. When peptide validation was performed
using SEQUEST scores, the top hits were filtered with a relative correlation score ΔCn > 0.1
and the filtered hits were accepted as peptide identifications when their correlation scores
(Xcorr) were higher than the thresholds that allowed generating a desired FDR value (26)
for each charge state (i.e., the FDR-controlled SEQUEST scoring method).

Mascot analysis was completed on a local Mascot server (version 2.3.01, Matrix Science
Inc., Boston, MA) configured with the combined databases described above. No enzyme
rule was applied and neither static nor dynamic modifications were assumed. Peptide mass
tolerances of 5 Da and 50 ppm and a fragment mass tolerance 0.05 Da were used for
monoisotopic masses with a 13C option set to ‘2’ (allowing for correction of de-isotoping
errors of 1 and 2 Da). CID and HCD spectra were searched using Instrument option ‘ESI-
FTICR’, and ETD spectra were searched using Instrument option ‘ETD-Trap’. The peptide
charge states were specified in the MGF input file which was created from the
corresponding DTA files using an in-house built function DtaTextToMGFConverter
(http://omics.pnl.gov/software/DtaToMGFConverter.php). The peptide-centric report was
extracted using the built-in Export function without any cutoff applied (i.e., the counts
inferred for Mascot represented its upper-limit). The database search top hit for each
spectrum was used for peptide validation (achieved when the peptide score was higher than
the threshold needed to obtain the desired FDR for each charge state; i.e., the FDR-
controlled Mascot scoring method).

When unique sequence tags (UStags) (27) were used to validate peptides, the top ten hits
output from the SEQUEST database search were considered putative peptide candidates.
Peaks in CID and HCD MS/MS spectra were assigned as b or y fragments, and peaks in
ETD MS/MS spectra as c or z fragments for each of peptide candidates, using ICR2LS
(http://ncrr.pnl.gov/software/) with a mass tolerance of 10 ppm. Assigned fragment peaks
were used to construct amino acid sequences, and the resultant sequences were searched
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against the combined databases. When the sequences were unique within the protein
database, the candidates were considered validated as the identified peptides.

A de novo sequencing method (28) was used to investigate capabilities for generating
consecutive fragments using CID, HCD, and ETD. Briefly, fragment ions in FT MS/MS
spectra were first de-isotoped (29) and then only those fragments having ≥3 isotopic peaks
(i.e., intense ions) were transformed to provide their neutral masses. Sequencing was
completed using a mass tolerance of 0.005 Da, and the sequences were searched against the
combined databases. The database hits were accepted as identified peptides when their
molecular masses agreed with the precursors agreed to within 10 ppm.

The peptide datasets obtained are provided in Supporting Tables.

RESULTS
Optimization of CID, HCD, and HCD conditions for peptide fragmentation

The performance of an LTQ Orbitrap Velos mass spectrometer equipped with CID, HCD,
and ETD was optimized using a BSA tryptic digest prior to LC-MS/MS analysis of plasma
peptides. For CID and HCD, increasing the normalized collision energy from 30% to 35% at
activation times of 0.25 ms and 0.10 ms (the instrument default values), respectively, had
little influence on the resultant spectra for CS 2–4 BSA peptides. For ETD, the reaction time
for the default CS 2 was >250 ms to achieve the effective fragmentation of CS 2–4 BSA
peptides (Supporting Figure 1), significantly longer than the instrument default of 100 ms.
We also evaluated the ETD reaction time using another LTQ-Orbitrap Velos mass
spectrometer whose filament was cleaned prior to the experiment, and again observed that
>250 ms reaction time was required for effective dissociation of CS 2–4 BSA peptides.
Furthermore, when a 100 ms reaction time was used to analyze plasma peptides, most ETD
spectra displayed poor fragmentation of precursors. Therefore, the spectral dataset acquired
with the normalized collision energy of 35% for CID and HCD and 300 ms reaction time for
ETD was used for the study of CID, HCD, and ETD performance below.

CID, HCD, and ETD FT MS/MS spectral dataset
Figure 1 shows the data acquisition mode used to evaluate CID-, HCD-, and ETD-FT MS/
MS performance for analyzing plasma peptides. In a 600-min LC-FT MS/MS experiment,
28,321 total spectra were acquired: 2836 FT MS spectra were acquired from precursor
survey scans and 8495 FT MS/MS spectra for each CID, HCD, and ETD fragmentation
methods. ETD required slightly longer acquisition time than HCD, and HCD a slightly
longer time than CID to acquire the same number of spectra, as illustrated by Figure 1. All
acquired spectra are in the public repository PRIDE (http://www.ebi.ac.uk/pride/).

CID, HCD, and ETD peptide datasets obtained with different peptide identification methods
Table 1 gives the numbers of peptides identified in all datasets for the different peptide
identification methods and parameters. Two commercial database search engines (i.e.,
SEQUEST and Mascot) and a de novo sequencing method developed in house (28) were
employed to search peptide ion fragment spectra. Peptides were validated using FDR-
controlled scoring methods (score systems built into SEQUEST and Mascot), UStags, and
sequence length. These methods are detailed in the Methods section and information for
each of identified peptides is given in Supporting Tables.
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CID, HCD, and ETD contributions for peptide identification evaluated from the FDR-
controlled SEQUEST scoring method

The contributions of CID, HCD, and ETD to peptide identifications were dependent on the
mass tolerance (or mass accuracy), as well as on the decoy database used for the SEQUEST
database search (Table 1). Based on the same FDR level, reducing the fragment mass
tolerance from 1 Da (i.e., a mass tolerance typically used for analysis of conventional ion
trap MS/MS spectra) to 0.05 Da (a mass tolerance that can be provided by FT MS/MS)
resulted in a 49% increase in the total number of peptides identified from CID, HCD, and
ETD spectra when Database 1 (i.e., forward plus reverse decoy database) was used for
peptide identification. This increase shows that use of accurate MS/MS can significantly
improve the peptide analysis coverage for a given number of spectra acquired. Depending
on the combined database applied for peptide identification, reducing the precursor mass
tolerance did not necessarily lead to an increase in the number of identified peptides. For
example, reducing the precursor mass tolerance from 5 Da to 50 ppm resulted in a 20%
increase in the number of peptides identified with Database 1, in contrast to a 7% decrease
with Database 2 (i.e., forward plus scrambled decoy database). This example highlights that
use of the same mass tolerances to search CID, HCD, and ETD spectra with different
combined databases can result in significantly different numbers of total peptide
identifications. The overlaps among peptide datasets identified with different mass
tolerances and decoy databases were limited to 68–83% (Figure 2), although all peptide
datasets were obtained at the same estimated FDR. Similar overlaps were observed for
individual peptide subsets identified with the different decoy databases (Supporting Figure
2).

Several factors affected CID, HCD, and ETD peptide datasets identified using the FDR-
controlled SEQUEST scoring method. Table 2 lists some examples that depict the influence
of database search mass tolerance on peptide identification. Peptides identified in one
dataset using a specified mass tolerance and decoy database but not in another dataset using
a different mass tolerance (e.g., 3 Da versus 50 ppm) and decoy database (e.g., forward
sequences combined with reversed versus scrambled sequences), can be due to changes in
ΔCn values (highlighted in yellow in the table), changes in the peptide CS, changes in
peptide candidates with the same or different CS (highlighted in green and brown,
respectively), and changes in the Xcorr threshold required by a specific FDR (highlighted in
blue). Changes of ΔCn values for both the IPI protein (or ‘correct’) database hits and the
decoy (or ‘incorrect’) database hits with precursor mass tolerances were predictable as these
values were assigned from comparison of candidates added for the mass tolerance allowed.
ΔCn>0.1 was specified for peptide identification in this work, and any changes to this
criteria led to different peptide identifications. Additionally, erroneous peptide molecular
mass values derived from the spectral parsing software package Extract_MSn due to
incorrect precursor CS or monoisotope identification would be expected to result in
variations among peptide candidates assigned to specific spectra. As a result detected
peptides that had been identified with high scores (e.g., Xcorr>8) may be missed. The
influence of this factor may potentially be reduced by de-isotoping the high-resolution FT
MS/MS spectra prior to database searching (e.g., with tools such as Decon_MSn available at
http://omics.pnl.gov/software/). Note that changes to the Xcorr threshold were required to
identify peptides with a specific FDR. (All Xcorr thresholds required for 2% FDR are
provided in Supporting Tables). This factor was inherent in the FDR-controlled scoring
method and by selecting the same Xcorr threshold to filter database search hits output using
different mass tolerances, which resulted in peptide datasets having different FDR values.
For example, use of Xcorr>2.3 (ΔCn>0.1) to filter CID CS 2 peptides resulted in FDR
values of 0% and 1.3% for searches against databases 1 and 2, respectively, with mass
tolerances of 5 Da for precursors and 0.05 Da for fragments. The influence of the decoy
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database on peptide identification stemmed from comparing ‘correct’ and ‘incorrect’
database hits (e.g., the order of the hits and ΔCn scores) that were the basis for the FDR-
controlled SEQUEST scoring method to validate peptides.

In general, CID provided the largest contribution to the FDR-controlled SEQUEST-
identified peptide datasets, and ETD, the smallest (Table 1). However, mass tolerance and
decoy database also influenced relative contributions of CID, HCD, and ETD to identified
peptides. For example, HCD and ETD provided ~25% and ~13% additional (extra)
identifications, respectively, compared to CID peptide subsets when 1 Da was used as the
database search fragment mass tolerance, and ~20% and ~22% additional identifications,
respectively, when 0.05 Da fragment mass tolerance was used for peptide identification. The
estimated ETD relative contributions increased by >60% when the database search fragment
mass tolerance of 1 Da, which typically has been applied for analysis of low-resolution ion
trap MS/MS spectra, was reduced to 0.05 Da. The improvement in ETD performance was
again observed when combined database 2 was used for peptide identification.

The CID, HCD and ETD contributions to the identification of various CS peptides using the
FDR-controlled SEQUEST scoring method are shown in Figure 3. CID contributed more CS
2 and CS 4–5 peptides than HCD, and more CS 2–5 peptides than ETD (Figure 3A). The
complementary role of HCD to CID was primarily for CS 3 peptides where additional
identifications resulted, while ETD mainly provided additional CS 3 and 4 peptide
identifications to the CID peptide subsets (Figure 3B). CID peptides were identified in an m/
z range of 400–1200 (Figure 3C), which included the small m/z ranges where HCD and ETD
contributions were most significant (e.g., 400–950 and 400–880). The m/z range for ETD
contributions narrowed with increased peptide CS (e.g., 400–880 for CS 2 peptides and
450–750 for CS 3 peptides).

CID, HCD, and ETD contributions for peptide identification evaluated from the FDR-
controlled Mascot scoring method

Mascot was examined for identification of peptides carrying multiple charges (see data
shown in Figure 3) and having multiple terminal specificities (shown below) from CID,
HCD, and ETD spectra with different mass tolerances and decoy databases (Table 1). The
ratio of CID, HCD, and ETD peptide contributions obtained using the FDR-controlled
Mascot scoring method changed from 1.0:1.3:1.0 to 1.0:0.9:0.8 when different mass
tolerances and decoy databases were used for peptide identification. Note that any of the
three fragmentation methods alone can contribute >10% identifications to the datasets.
Reducing the database search precursor mass tolerance from 5 Da to 50 ppm led to an
increase of 10–20% in peptide dataset size and the contents of the peptide datasets obtained
were observed to vary with the use of different decoy databases (Figure 4A). Most
significantly, the number of peptides identified with Mascot was only ~60% of that obtained
with SEQUEST (Figure 4B) even though all of the peptide datasets were identified using the
same low FDR (estimated from the decoy strategy).

Contrary to SEQUEST, Mascot favored HCD for identification of CS 2 peptides and ETD
for identification of CS 4 peptides (Figure 5). However, Mascot identified only a few CS ≥5
peptides from CID, HCD, and ETD spectra. For CS 3 peptides, CID, HCD, and ETD
provided comparable numbers of identifications. Similar to the SEQUEST evaluation above,
m/z ranges where CID, HCD, and ETD contributed CS 2–4 peptides were highly overlapped
when using Mascot.
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CID, HCD, and ETD contributions for peptide identification evaluated from the UStags
method

The UStags method identifies peptides based on analysis of long (typically ≥7 amino acids)
peptide sequences (24). Table 3 gives the decoy database peptide (i.e., false) hits that match
the most fragments and longest sequences observed during sequence analysis to search for
UStags. The 6-residue sequences were the longest sequences that matched to the decoy
databases, and these sequences were contributed by either CID or HCD, but not ETD. In
total, only one 6-residue sequence from the reverse decoy database and two 6-residue
sequences from the scrambled decoy database were matched. The 6-residue decoy sequence
matched to the reverse database was the subsequence of a 7-residue decoy peptide
A.LALDLFK.C. By using a 2.3 ppm mass measurement error for the precursor, all 7
residues in this decoy peptide could be determined. Because this decoy peptide has the same
mass sequence as the IPI database peptide R.IAIDLFK.H (with the exchange of Ile for Leu),
it was excluded based on its lack of uniqueness in the database, an important UStags
requirement (27). The same situation was observed for the two decoy peptides from the
scrambled database. The rest of the listed sequences contained ≤5 residues and were
automatically excluded as UStags. Thus, the UStags approach rejected all false hits from the
decoy databases, i.e., effectively validating peptides with 0% false positives. Table 3 also
shows that use of a limited number (e.g., 3–5) of fragments or short sequences (e.g., ≤5
residues) in combination with molecular mass measurements for peptide identification, as
suggested previously for the ‘peptide sequence tags’ concept (30,31), unavoidably incurs in
matching either CID, or HCD, or ETD FT MS/MS spectra to decoy database peptides and
results in false peptide identifications. This situation becomes more problematic with
reduced fragment mass measurement accuracies.

Given that results shown in Table 1 reveal SEQUEST could provide more potentially correct
peptides than Mascot, peptide candidates output from the SEQUEST database search were
used to search for UStags. Figure 6 compares the three methods with regard to identification
of CID, HCD, and ETD peptides. The two scoring methods were controlled to produce 0%
FDR so that the comparison was performed at the same peptide identification confidence
levels. For the UStags method, precursor and fragment mass tolerances of [5Da, 0.05Da]
consistently provided slightly (e.g., 2–5%) larger peptide datasets than [50ppm, 0.05Da],
regardless of the decoy database applied for peptide identification (Figure 6A). This finding
differs from the peptide datasets identified using the SEQUEST and Mascot scoring
methods whereby dataset size varied based on changes to the database search precursor mass
tolerance and the type of decoy database (Figures 6B and 6C).

Overall, the UStags-identified peptide datasets were 3–4% smaller than the SEQUEST
identified peptide datasets, but >55% larger than the Mascot identified peptide datasets. The
ratio of CID, HCD, and ETD contributions to the UStags-derived peptide datasets was
approximately 1.0:1.2:0.4, regardless of the mass tolerance and the decoy database used.
HCD was the largest single contributor to peptide identifications, although both CID and
HCD contributed significant numbers of additional peptides to each other’s dataset (e.g., by
25–45%). This observation suggests that the combination of these two fragmentation
methods should prove beneficial in maximizing the number of UStag peptide identifications.
On the other hand, ETD had only a minor role in improving the number of peptides
identified with the UStags method, with contributions of ~10% additional peptides to either
CID or HCD peptide subsets. In contrast to the consistency of CID, HCD, and ETD
contributions using the UStags method, their contributions varied for both SEQUEST and
Mascot evaluations. For example, CID was the major contributor for SEQUEST-derived
peptide datasets, and HCD and ETD could contribute additional 10–40% peptides to the
CID subsets, whereas CID and HCD were the two major contributors to the Mascot peptide
datasets, with ETD providing additional 10–20% peptides to either CID or HCD subsets.
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These results show significantly different CID, HCD, and ETD effectiveness resulting when
different peptide identification approaches are used.

An analysis of peptide overlaps (Figure 7) reveals that the UStags method can provide
practically identical peptide datasets (e.g., with 91% peptide overlaps) regardless of decoy
database and database search mass tolerance applied during the search for initial putative
peptide candidates (Figure 7A). The SEQUEST and Mascot scoring methods provided more
variable or less stable peptide datasets (e.g., with ~70% peptide overlaps) that were sensitive
to changes of the decoy database and database search mass tolerance (Figures 7B and 7C).
In addition, the UStags and SEQUEST methods identified ~80% identical peptides and
provided peptide datasets covering ~85% of the peptides obtained from the Mascot method
compared to the Mascot method, which covered only ~40% of the peptides identified with
either the UStags or SEQUEST methods (Figures 7D–7F).

CID, HCD and ETD contributions towards identification of various CS peptides with the
UStags method are shown in Figure 8. The advantage of HCD over CID is apparent for
identification of CS 2 and 3 peptides. CID and HCD provided 25–50% additional
identifications to each other’s CS ≥3 peptide subsets, revealing the significantly
complementary role of these two fragmentation methods for identification of these peptides.
ETD provided only a limited number of extra peptides. Similar to observations in Figures 3
and 5, m/z ranges where HCD and ETD made additional contributions towards peptide
identifications were covered by ranges where CID performed well for the UStags peptide
identification.

CID, HCD, and ETD contributions for de novo sequencing peptide identification
CID, HCD, and ETD spectral datasets were de novo sequenced using intense ions in the FT
MS/MS spectra, and peptides were identified using sequences that had ≥7 consecutive
residues sequenced and the molecular masses agreed with the precursors (i.e., <10 ppm mass
tolerance; see Methods section). As shown in Table 3, use of ≥7-residue sequences for
peptide identification greatly limits the number of false positives. Figure 9 shows CID,
HCD, and ETD contributions to identified peptides. The ratio of CID, HCD, and ETD
contributions was 1.0:1.5:0.2, indicating that HCD was better than CID, and that CID was
significantly better than ETD for the de novo sequencing peptide identification (Figure 9A).
HCD and CID contributed significant numbers of additional peptides to each other’s peptide
subsets; however, ETD played only a minor role in contributing extra peptides to the CID
and HCD subsets as it provided only a few ≥7-residue sequences. Most (91%) of de novo
sequencing-identified peptides were covered by the UStags-identified peptide dataset, and a
small fraction of the de novo sequencing-identified peptides were excluded from the UStags-
identified dataset due to the lack of unique sequences required by the UStag method for
unambiguous identification of peptides (27), even though the lengths of these sequences
were ≥7 residues. The de novo sequencing method provided comparable numbers of peptide
identifications to the Mascot method shown in Figure 6C, but the peptide overlap between
the two methods was only ~60%.

On average, HCD provided ~1 more residue than CID for sequences (Figure 9B). HCD
performed best in an m/z range of 500–950, and HCD and CID became equivalently
effective in the m/z range of 950–1000 (Figure 9C).

The physicochemical properties of peptides examined in this work
We further examined the GRAVY and pI values for the blood plasma peptidome peptides
identified in this work using SEQUEST scoring, Mascot scoring, and UStags methods
(Supporting Figure 3). These three different peptide identification methods provided no
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significant biases for peptide GRAVY and pI values, and the peptidome peptides identified
herein had GRAVY and pI distributions similar to those observed for tryptic peptides in
bottom-up proteomics analysis (32).

The MWs of identified peptidome peptides were distributed across 700–5500 Da
(Supporting Figure 4A), which is broader than that for proteome tryptic peptides (32), and
this distribution of peptidome peptides accounts for an overwhelming number of existing
CS≥3 peptides (Figures 3, 5, and 8). Both SEQUEST and UStags methods were more
effective than Mascot for identification of MW>2500 Da peptides. The identified peptides
had multiple terminal cleavage specificities (Supporting Figure 4B), which excluded
application of “enzyme rules” for spectral database searching and peptide validation.
Nonetheless, a subset of the peptides identified in this study match typical tryptic cleavage
patterns (e.g., Lys and/or Arg at peptide P1 position). Results (Supporting Figure 5) show an
increased overlap between SEQUEST and Mascot identifications, while the ratios of CID,
HCD, and ETD contributions to the peptide datasets remained similar to the overall
observations described above.

DISCUSSION
Implementation of CID, HCD, and ETD fragmentation methods in combination with
accurate FT MS/MS measurements in a single mass spectrometer provides opportunities for
more confident and effective identification of peptides and will be increasingly applied for
proteomics, peptidomics and other applications. In this work, we evaluated CID, HCD, and
ETD FT MS/MS performance in conjunction with different identification approaches,
including FDR-controlled SEQUEST and Mascot scoring methods, the UStags method, and
a de novo sequencing method. Moreover, the peptides in this work stemmed from samples in
which intracellular/intercellular proteases can generate peptides having multiple cleavage
specificities. All of the methods examined are capable of identifying such peptides at low
(e.g., 0–2%) FDR levels with no specific enzyme rules applied, however the size of resulting
peptide datasets can be significantly different. For example, the number of peptides
identified using Mascot was only 40–60% of that obtained using SEQUEST, an observation
we attribute to a significant number of false negative identifications in the Mascot peptide
datasets. Many peptides rejected by the Mascot method had molecular masses in agreement
with the measured precursors (e.g., within 10 ppm mass errors) and had unique sequence
tags, typically with ≥7 residues, similar to the criteria we apply with the USTags method.
Mascot may be more effective for well defined small peptides, e.g., tryptic peptides that
have specific cleavages and mostly carry two charges.

The overall effectiveness of CID, HCD, and ETD capabilities are by necessity intertwined
with the methods and parameters used in their evaluation. Results obtained using the FDR-
controlled SEQUEST scoring method indicated conventional CID fragmentation best as it
provided 30–70 % more peptide identifications than HCD and ETD. However, results from
the FDR-controlled Mascot scoring method indicated CID, ETD, and HCD were
comparable, identifying similar numbers of peptides. Using the UStags method for peptide
identification, HCD provided more peptide identifications than CID and ETD. Overall, these
results suggest that CID generates more total fragment ions and provides higher SEQUEST
scores (33), and thus more SEQUEST-identified peptides. In contrast, HCD was typically
observed to produce more intense fragment ions that favor constructing fragment ladders
that would provide more UStags-identified peptides, as well as better matches using our de
novo sequencing method. Additionally, results show ETD as a relatively minor contributor
to broad peptide identification when using FDR-controlled SEQUEST scoring, UStags, and
de novo sequencing methods, while Mascot showed a slight improvement with ETD data.
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Thus, the use of only one specific peptide identification tool and parameter set provide
biased conclusions regarding CID, HCD, and ETD fragmentation performance.

To some extent CID, HCD, and ETD each contributed unique peptides, varying with the
peptide identification methods used. The use of all fragmentation methods undoubtedly
resulted in improvements in coverage (Table 1); however, such improvements required ~3-
fold increased analysis time (Figure 1). Alternating the selection of different fragmentation
methods to acquire MS/MS data according to the precursor m/z values (e.g., the decision tree
approach (18)), can reduce analysis time, but to some extent will miss peptides provided
solely by a single fragmentation method, as the m/z ranges where CID, HCD and ETD made
individual peptide contributions highly overlapped (Figures 3, 5, and 8). Thus to maximize
peptide identifications, all three fragmentation methods should be applied if sufficient
analysis time is available to also minimize “under-sampling” during MS/MS (e.g., 600 min
used to identify ~1000 plasma peptidome peptides in this work). Selecting complementary
fragmentation methods, e.g., CID and HCD for all precursors and then ETD for CS≥3, m/z <
650 precursors, can increase peptide identifications with only a modest decrease in analysis
throughput. High-throughput FT MS/MS analysis can be achieved by selecting one or two
alternating fragmentation methods that match well to the peptide identification method
applied. We note that for the three fragmentation methods currently available, challenges
still remain as we found a number of intense precursors which were not identified due to
limited numbers of fragments observed under any fragmentation method. Additionally, we
point out that the utility of CID, HCD, and ETD may vary for different applications; their
effectiveness for modified peptides will be the subject of a future report.

The use of different peptide identification methods (including different database search
tools, mass tolerances, and decoy databases) to evaluate CID, HCD, and ETD performances
revealed significant variation for peptide datasets identified by controlling FDR to attain a
specific confidence level (see results Figures 2, 4 and 7). This finding highlights a concern
for using an FDR decoy search strategy for peptide identification; i.e., different sets of
peptides will be identified at the same low FDR level from the same set of spectra. Such
inconsistency among peptide datasets raises questions concerning the accuracy of the FDR
evaluation approach for degradomic-peptidomic analysis. Examination of the peptide
datasets identified in this study using SEQUEST and 2% FDR provided ~9% incorrect
peptides (i.e., molecular mass errors of ≫10 ppm; details will be reported elsewhere). This
issue is of practical importance for both proteomic and peptidomic analyses, and especially
for degradomic studies (24). The present work shows peptide identifications obtained from
UStags through sequencing of individual residues results in more consistent peptide datasets
when different mass tolerances or decoy databases are employed. This is as opposed to the
iterative and cumbersome FDR-controlled SEQUEST and Mascot scoring methods, which
result in larger variations in peptide dataset contents given similar search conditions. Here,
FDR is an outcome of UStag peptide identification, rather than a variable used to control
peptide identification. These characteristics of the UStags method make it much more
tolerant to variables, including peptide identification cutoffs, database search comparison
(relative) scores, and any decoy database used for peptide identification. The peptides
advanced by UStags contained unique sequences that can unambiguously exclude other
peptides (27), essential for degradomic-peptidomic analysis so as to confidently identify
individual peptides.

We also note that the mass measurement accuracy achievable with Orbitrap mass analyzers
(i.e., <10 ppm mass errors) was not fully utilized for this work. We are now exploring better
utilization of such quality mass accuracy with de-convoluting of the high-resolution FT
spectra, which is not feasible using the commercially available Extract_MSn program
applied in this work. Initial results obtained using a software tool developed in house to
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deconvolute the high-resolution FT spectra for application of high-precision measurements
(e.g., 2.5–10 ppm mass errors) and validate peptides have shown some improvements in
peptide analysis coverage and dataset consistency (details will be reported elsewhere). In
addition to mass measurement accuracy, spectral database search tools play an important
role in improving both coverage and dataset consistency by providing better (more complete
and correct) initial putative candidates for peptide identifications with either scoring or
sequence analysis (e.g., UStags) methods. The peptide probability-based MSGF-DB (21)
algorithm may have significant potential for this purpose but requires modifications to
address datasets without application of enzyme rules.

Finally, we note the utility of applying multiple dissociation methods in conjunction with
extended LC separations to establish optimal sets of highly confident peptide identifications
without bias stemming from the use of a specific peptide fragmentation method. These
confident peptide identifications are the key to obtaining high quality identifications in high
throughput LC-MS-based measurement approaches, such as using AMT tags.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Utilization of CID, HCD, and ETD fragmentation methods for FT MS/MS analysis of
peptides. Each precursor from the survey scan was successively fragmented by CID, HCD,
and ETD prior to analysis of the next precursor. Acquisition time distributions are given for
a 600-min high-resolution reverse-phased LC separation with CID-, HCD-, and ETD-FT
MS/MS analysis. An Orbitrap Velos mass spectrometer was used for this analysis under the
conditions described in the text.
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Figure 2.
The overlaps of peptide datasets identified from the SEQUEST method. (A)–(C)
respectively present overlaps of peptide datasets obtained with use of 1 Da fragment mass
tolerance for searching against combined database 1 (forward plus reverse database), with
use of 0.05 Da fragment mass tolerance for searching against combined database 1, and with
use of 0.05 Da fragment mass tolerance for searching against combined database 2 (forward
plus scrambled database); (D)–(E) present overlaps between peptide datasets obtained with
searching against combined database 1 (‘reverse’ labeled) and combined database 2
(‘scrambled’ labeled) using specific mass tolerances; subscripts F,r and F,s of mass
tolerance respectively represent the peptide datasets identified from the FDR-controlled
scoring method with searching against combined databases 1 and 2; all peptide
identifications were achieved on a 2% FDR level. The significances of other symbols are the
same as for Table 1.
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Figure 3.
The CID, HCD, and ETD contributions for identification of various charge state SEQUEST
peptides. The peptide dataset [5Da, 0.05Da]F,r shown in Table 1 was used for this
examination. (A) The numbers of various CS SEQUEST peptides identified from CID,
HCD, and ETD spectra, (B) the overlaps of CS 2–4 peptides identified from CID, HCD, and
ETD spectra, and (C) the m/z distributions of CS 2–8 peptides identified from CID spectra
and extra peptides contributed from different fragmentation methods (peptides are plotted as
a function of charge state and m/z).

Shen et al. Page 17

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
The overlaps of peptide datasets identified from the Mascot method. (A) The overlaps of
Mascot peptide datasets identified with searching against different combined databases and
(B) the overlaps of Mascot and SEQUEST peptide datasets identified with specific mass
tolerances. The significances of symbols are the same as for Figure 2.
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Figure 5.
The CID, HCD, and ETD contributions for identification of various charge state Mascot
peptides. The peptide dataset [5Da, 0.05Da]F,r shown in Table 1 was used for this
examination. (A) The numbers of various CS Mascot peptides identified from CID, HCD,
and ETD spectra, (B) the overlaps of CS 2–4 peptides identified from CID, HCD, and ETD
spectra, and (C) the m/z distributions of CS 2–7 peptides identified from CID spectra and
extra peptides contributed from different fragmentation methods (peptides are plotted as a
function of charge state and m/z).
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Figure 6.
The CID, HCD, and ETD peptide datasets identified from the UStags method and
comparisons with peptide datasets obtained from the SEQUEST and Mascot methods. (A)–
(C) respectively represent the UStags peptide datasets, the SEQUEST peptide datasets (with
0% FDR), and the Mascot peptide datasets (with 0% FDR). Subscripts U,r and U,s of mass
tolerances respectively represent the peptide datasets identified from the UStags method
with searching against combined databases 1 and 2; the significances of other symbols are
the same as for Figure 2.

Shen et al. Page 20

J Proteome Res. Author manuscript; available in PMC 2012 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
The overlaps of peptide datasets identified with the UStags, SEQUEST, and Mascot
methods. (A)–(C) respectively represent overlaps of UStags peptide datasets, SEQUEST
peptide datasets, and Mascot peptide datasets; (D)–(E) represent overlaps among UStags,
SEQUEST, and Mascot peptide datasets identified with specific mass tolerances. The
peptide datasets shown in Figure 6 are used for this examination.
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Figure 8.
The CID, HCD, and ETD contributions for identification of various charge state UStags
peptides. The peptide dataset [5Da, 0.05Da]U,r shown in Figure 6A was used for this
examination. (A) The numbers of various CS UStags peptides identified from CID, HCD,
and ETD spectra, (B) the overlaps of CS 2–4 peptides identified from CID, HCD, and ETD
spectra, and (C) the m/z distributions of CS 2–7 peptides identified from CID spectra and
extra peptides contributed from different fragmentation methods (peptides are plotted as a
function of charge state and m/z).
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Figure 9.
The CID, HCD, and ETD contributions for identification of various charge state peptides
from the de novo sequencing method. (A) The CID, HCD, and ETD contributions to the de
novo sequencing-identified peptide dataset, (B) the CID, HCD, and ETD capabilities to
produce various lengths of sequences, and (C) the m/z distributions of CS 2–4 peptides
identified from CID, HCD, and ETD spectra.
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Table 1

The number of peptides identified from CID, HCD, and ETD spectral datasets with various fragmentation and
peptide identification methods.*

Methods Number of peptides

SEQUEST

[5Da, 1Da]_r

CID 494

HCD 438

ETD 186

CID+HCD 631

CID+ETD 560

HCD+ETD 516

CID+HCD+ETD 678

[3Da, 1Da] _r

CID 473

HCD 386

ETD 194

CID+HCD 579

CID+ETD 561

HCD+ETD 494

CID+HCD+ETD 656

[1Da, 1Da] _r

CID 551

HCD 479

ETD 214

CID+HCD 673

CID+ETD 631

HCD+ETD 564

CID+HCD+ETD 733

[5Da, 0.05Da] _r

CID 749

HCD 665

ETD 439

CID+HCD 916

CID+ETD 895

HCD+ETD 809

CID+HCD+ETD 1012

[3Da, 0.05Da] _r

CID 715

HCD 631

ETD 447

CID+HCD 869
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Methods Number of peptides

CID+ETD 861

HCD+ETD 779

CID+HCD+ETD 961

[50ppm, 0.05Da]_r

CID 639

HCD 529

ETD 416

CID+HCD 725

CID+ETD 763

HCD+ETD 676

CID+HCD+ETD 813

[5Da, 05Da]_s

CID 725

HCD 618

ETD 428

CID+HCD 858

CID+ETD 849

HCD+ETD 755

CID+HCD+ETD 948

[3Da, 05Da]_s

CID 703

HCD 621

ETD 422

CID+HCD 843

CID+ETD 825

HCD+ETD 753

CID+HCD+ETD 929

[50ppm, 05Da]_s

CID 797

HCD 617

ETD 562

CID+HCD 896

CID+ETD 947

HCD+ETD 814

CID+HCD+ETD 1014

Mascot

[5Da, 0.05Da]_r

CID 324

HCD 329

ETD 276

CID+HCD 450

CID+ETD 449
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Methods Number of peptides

HCD+ETD 441

CID+HCD+ETD 536

[50ppm, 0.05Da]_r

CID 355

HCD 445

ETD 362

CID+HCD 538

CID+ETD 514

HCD+ETD 569

CID+HCD+ETD 635

[5Da, 0.05Da]_s

CID 351

HCD 330

ETD 277

CID+HCD 451

CID+ETD 478

HCD+ETD 452

CID+HCD+ETD 550

[50ppm, 0.05Da]_s

CID 404

HCD 413

ETD 319

CID+HCD 536

CID+ETD 519

HCD+ETD 524

CID+HCD+ETD 611

UStags

[5Da, 0.05Da]_r

CID 531

HCD 605

ETD 180

CID+HCD 765

CID+ETD 602

HCD+ETD 651

CID+HCD+ETD 797

[50ppm, 0.05Da]_r

CID 455

HCD 555

ETD 176

CID+HCD 659

CID+ETD 518

HCD+ETD 596
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Methods Number of peptides

CID+HCD+ETD 685

[5Da, 0.05Da]_s

CID 518

HCD 600

ETD 187

CID+HCD 751

CID+ETD 585

HCD+ETD 647

CID+HCD+ETD 782

[50ppm, 0.05Da]_s

CID 510

HCD 590

ETD 180

CID+HCD 733

CID+ETD 575

HCD+ETD 635

CID+HCD+ETD 762

De novo sequencing

CID 206

HCD 314

ETD 39

CID+HCD 395

CID+ETD 233

HCD+ETD 332

CID+HCD+ETD 410

*
All SEQUEST and Mascot peptides were identified at 2 % FDR; UStags and de novo sequencing-identified peptides had 0 false positives

estimated from decoy strategy; [xxx, yyy]_r (or s) represent that the precursor mass tolerance xxx and fragment mass tolerance yyy were used for
searching against the reverse (r) or the scrambled (s) decoy database-combined protein database for peptide identification.
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