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Abstract
This paper models the behavior of the longitudinal relaxation rate of the protons of tissue water R1
(R1 = 1/T1), measured in a Look-Locker (LL) experiment at 7 Tesla after administration of a
paramagnetic contrast agent (CA). It solves the Bloch-McConnell equations for the longitudinal
magnetization of the protons of water in a three-site two-exchange (3S2X) model with boundary
conditions appropriate to repeated sampling of magnetization. The extent to which equilibrium
intercompartmental water exchange kinetics affect monoexponential estimates of R1 after
administration of a CA in dynamic contrast enhanced (DCE) experiment is described.

The relation between R1 and tissue CA concentration was calculated for CA restricted to the
intravascular, or to the intravascular and extracellular compartments, by varying model parameters
to mimic experimental data acquired in a rat model of cerebral tumor. The model described a
nearly linear relationship between R1 and tissue concentration of CA, but demonstrated that the
apparent longitudinal relaxivity of CA depends upon tissue type. The practical consequence of this
finding is that the extended Patlak plot linearizes the ΔR1 data in tissue with leaky microvessels,
accurately determines the influx rate of the CA across these microvessels, but underestimates the
volume of intravascular blood water.
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Introduction
Dynamic contrast enhanced MRI (DCE-MRI) often utilizes the assumption that a change in
the tissue water protons’ longitudinal relaxation rate (ΔR1, where ΔR1 = Δ1/T1) induced by
a paramagnetic MR contrast agent (CA) such as Gd-DTPA is proportional to the tissue
concentration of CA and can therefore serve as a measure of CA tissue concentration as it
varies with time. This concentration-time curve is then used to estimate vascular kinetic
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parameters in cerebral diseases such as stroke and tumors using a pharmacokinetic theory
that is decades old (1–5). We, along with others, call this model “the standard model”
(abbreviated as SM). The linear relationship between ΔR1 and tissue concentration has been
thought to depend on the rapid exchange (relative to the ensemble’s longitudinal relaxation
rate) of water protons between the different tissue compartments.

Contrariwise, it has been proposed that estimates of the relaxation rate of tissue water
protons produced by using a single exponential as a model for the recovery of longitudinal
magnetization may yield an estimate of tissue CA concentration that is significantly biased
due to the finite rates of exchange of water protons between the tissue compartments (6,7).
This latter work was conducted first in a 2-compartment model (2SX) that studied proton
exchange across parenchymal cell membranes and essentially ignored the vascular
contribution (7–11); later this was extended to a 3-compartment model (3SX) that included
intravascular (blood), interstitial, and intracellular spaces (12–14). Because, in both the 2SX
and 3SX models, the apparent longitudinal relaxivity of the tissue depends on the rate
constants of intercompartmental water exchange, the model has been named by its authors
the “shutter-speed model” (SSM). In a recent application, a 2-compartment (2SX) SSM that
ignores the vascular compartment has shown promise in discriminating malignant lesions in
breast cancer (13,14).

The SSM has recently been challenged (15). The basis of this challenge was twofold: 1) the
SSM as implemented was held to be an incomplete representation of the actual experimental
condition in typical DCE experiments, and 2) experimental fitting results for the standard
model versus the SSM showed no advantage for the SSM. This latter result does not
necessarily disprove the SSM; rather, it may point to the complexity of the SSM (5 free
variables) in contrast to the standard model (1, 2, or 3 free variables) (5) and the consequent
requirement of data with much higher signal-to-noise for the SSM.

The question as to how the change in an estimate of a single longitudinal rate constant
relates to the tissue concentration of CA retains a great deal of practical significance in
current clinical considerations. This paper proposes to particularize this question to Look-
Locker (LL) studies in a rat model of cerebral tumor at 7 Tesla, and thus examine the
operating characteristics of this approach to estimates of vascular permeability Ktrans. We
emphasize that it is not the purpose of this paper to compare models – that is a much more
complex task – but rather to examine in theory the response of tissue magnetization under a
particular experimental condition. This paper addresses the theory of equilibrium
intercompartmental water exchange in its complete form (12) with correct boundary
conditions and both theory and modeling of a three-site two-exchange model (3S2X model)
as applied to LL data at 7 Tesla, but does not account for blood inflow effects (16). The
modeling results are used to examine the relation between a monoexponential estimate of
tissue R1 and tissue CA concentration. The findings are that the apparent relaxivity of a CA
in a given tissue does not vary appreciably over the course of a typical experiment. On the
other hand, it is demonstrated that the apparent relaxivity of CA does vary between tissues,
and thus lends a note of caution to a naïve interpretation of experimental results in a DCE
estimate of vascular permeability.

Theory
Three-Site Two-Exchange Model

While there are many biological compartments in tissue, it is usually assumed that the
protons associated with tissue water can be characterized as residing in one of three
compartments: intravascular, extracellular, or intracellular with equilibrium water exchange
kinetics taking place between these compartments (7,8,11,12). The water in red blood cells
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and in the plasma of the intravascular compartment is assumed to form a single
compartment, since the protons of water exchange rapidly between the two moieties (mixing
time ~10 ms (8), which is much shorter than the ensemble’s longitudinal relaxation time).
On the other hand, water exchange between the intracellular and interstitial spaces (i.e.,
across parenchymal cellular membranes) and between the intravascular and the interstitial
spaces (i.e., across the microvascular endothelium) are at least an order of magnitude slower
than across the red blood cell membrane. It is generally assumed that there is little or no
direct exchange of water between the intravascular space and the intracellular space via the
intercellular tight junctions of the endothelium. For modeling longitudinal relaxation rate of
tissue water protons, the intercompartmental equilibrium water exchange kinetics can thus
be described by a linear three-site two-exchange [3S2X] model (12). A schematic diagram
of a 3S2X model and its characteristic parameters is given in Figure 1.

Under equilibrium exchange, the Bloch–McConnell equations describe the longitudinal
magnetization of water protons in each pool of a 3S2X system (17):

[1]

where Mb, Me and Mi are the time-dependent longitudinal magnetizations of the water
protons in the blood, interstitial, and parenchymal intracellular spaces, respectively. M0b,
M0e, and M0i denote their equilibrium magnetization in the main magnetic field. R1b, R1e,
and R1i are the longitudinal relaxation rate constants of the water protons in the absence of
exchange within the blood, interstitium, and intracellular spaces, respectively. The process
of equilibrium water exchange from the index site ‘μ’ to ‘ν’ and ‘ν’ to ‘μ’ is parameterized
by the exchange rates kμν and kνμ, (μ, ν = b, e, i), and the mean pre-exchange lifetime, an
inverse of the exchange rate constant in a given compartment or pool, is denoted by τμ (e.g.,
μ = b, e, i).

Equation [1] can be written in a matrix form (18):

[2]

where M is a column vector

[3]

A is the relaxation rate exchange matrix.

[4]

and C is a column vector
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[5]

Equation [2] can be solved using standard methods for differential equations. The
characteristic equation that solves the exchange matrix A of an Equation [4] leads to a cubic
equation. Its solution at the particular boundary conditions gives three distinct real
eigenvalues which are characterized as the short (R1S), intermediate (R1I), and long (R1L)
longitudinal relaxation rate constants, respectively. These rate constants can be calculated by
the kernels detailed in the Appendix. As in Equation [A1], the relaxation rate constants are
functions of the compartmental relaxation rates, intercompartmental water exchange rates,
fractional water content of each pool, and CA concentration.

A mass balance condition relates the exchange rate constant to the fractional water content
of the compartment in a 3S2X model:

[6]

In addition, the total equilibrium longitudinal magnetization of a 3S2X system is M0= M0b +
M0e + M0i, which leads to ub + ue + ui = 1, where ub, ue and ui denote the fractional water
content in the intravascular, interstial, and parenchymal intracellular spaces, respectively.

The rate of exchange across the plasma membrane, kie, is a function of membrane water
permeability, P, and the ratio of surface area, A, to the volume, vi, of the intracellular space
is given by (8):

[7]

When CA is introduced to the blood, it may or may not extravasate. If it extravasates, the
CA distributes in the extracellular space but does not cross intact cell membranes in the
parenchyma. The administration of CA may therefore significantly increase the longitudinal
relaxation rate of the water protons within the intravascular space, R1b (R1b =1/T1b), and the
extracellular space, R1e (R1e = 1/T1e), but not within the intracellular space, R1i (R1i = 1/
T1i).

Under the well-justified assumption that all the water protons in blood undergo longitudinal
relaxation as one ensemble, the effective longitudinal relaxation rate of these protons after
the administration of CA is given by (19):

[8]

where R10b and R1b are pre- and post-contrast relaxation rates [s−1] of water protons in
blood, Hct is the microvascular hematocrit, [CAp] is the arterial plasma concentration of the
CA [mM], and ℜp [mM−1s−1] is the longitudinal relaxivity of the CAp, respectively.

In an in vivo MRI study, if CA diffuses from blood to the interstitial compartment through
leaky endothelium, then the relaxation rate of the protons in interstitial water, R1e, is
assumed to be linearly correlated to tissue concentration of CA as (19):
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[9]

where R10e and R1e are the pre- and post-contrast relaxation rates [s−1], [CAe] is CA
concentration [mM] in interstitial water, and ℜe [mM−1s−1] is the relaxivity of the CAe,
respectively.

Paramagnetic chelates rely on short-range (~nm) interactions with water protons to increase
R1, and this change that serves as a “marker” or “surrogate” of CA distribution. Unlike the
other two compartments, a change in the R1i (about 80% of total tissue water) after the
administration of a CA is effected mainly, if not exclusively, via the transfer of water
molecules across the cell membrane. Accordingly, both the interstitial CA concentration and
the biophysical properties of parenchymal cell membranes influence R1i.

Equilibrium intercompartmental water exchange kinetics can be characterized (fast,
intermediate, and slow) by comparing the rate of intercompartmental water exchange with
the relaxographic “shutter speed” (i.e., the absolute difference in relaxation rates between
the tissue compartments). In the fast exchange limit (FXL), ensembles of water protons relax
with a single rate constant that is equal to the population-weighted average of the relaxation
rates of the system. Such a physical condition is defined as kt ≫|R1b − R1e| and kc ≫ |R1e −
R1i|. The terms kt = kbe + keb and kt = kie + kei refer to the rate of proton (mainly water)
exchange across the microvascular endothelium and the parenchymal cellular membranes,
respectively, and |R1b − R1e| and |R1e − R1i| denote their corresponding shutter speeds. In
the slow exchange limit (SXL), water protons’ magnetization relaxes with multiple time
constants. For the microvascular endothelium and the parenchymal cellular membranes, this
condition is set as kt ≪ |R1b − R1e| and kc ≪ |R1e − R1i|, respectively. Intermediate to these
limits is the fast exchange regime (FXR), where distinct multiexponential relaxation rates
may or may not be evident, depending on such variables as compartment sizes, exchange
rates, CA concentration, and MRI procedures. Of note, in DCE-MRI studies, the kinetics of
water exchange is invariant; only the shutter speeds vary with a passage of CA.

The set of differential equations of the longitudinal magnetization of each pool in Equation
[1] was solved analytically using standard methods. The resulting solutions to Equation [1]
under an initial condition: M0 = Mz (t) describe a triexponential behavior of the
magnetization of the protons of water within the blood, interstitium, and intracellular space.
The general form can be written as (20):

[10]

where Ej = e−R1λt; j=1,2,3; λ = S,I, L, Y11 to Y33 are eigenvectors associated with the
eigenvalues of ‘A’ of Equation [4], and the set of constants {cj} is chosen to satisfy the
initial conditions (20). The coefficients {cj} and Y11 to Y33 are functions of the CA
concentration, relaxation rate constants, exchange rates, and the fractional size of each pool.
The coefficients {cj} in Equation [10] can be determined by considering the initial values of
the magnetization vector M, which are dependent on initial conditions (20).

In a 3S2X model, the temporal evolution of the total longitudinal magnetization consists of
magnetization of the water protons within the blood, interstitial, and intracellular
compartments. The rearranged Equation [10] leads to:
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[11]

where Y1 to Y3 are the weighting factors associated with the short, intermediate, and long
relaxing components, given by:

[12]

This model assumes that an RF pulse equally perturbs the magnetization of the water proton
populations distributed in the intravascular, interstitial, and intracellular spaces of a 3S2X
model. These water protons prior to the RF inversion pulse are in thermal equilibrium. After
the initial inversion of magnetization, the longitudinal magnetization is set as:

[13]

A general expression for the temporal evolution of the longitudinal magnetization following
an inversion time of Δt can be derived by simplifying Equations [10] to [13] and with their
supplementary equations for each pool in a 3S2X model. Then, Equation [11] can be re-
written as:

[14]

where Ej = e−R1λΔt and p1, p2, and p3 denote the fractional populations that are associated
with the longitudinal magnetization of short, intermediate, and long relaxing components in
a 3S2X model, in which p1 + p2 + p3 = 1. These quantities depend on the intrinsic relaxation
rates of the water protons within the blood, interstitial and intracellular spaces,
intercompartmental exchange rates of water protons, fractional size of each of these pools,
and CA concentration.

Let mn− and mn+ denote the longitudinal magnetization just before and after the nth RF pulse
of a tip angle θ in the T one by Multiple Read Out Pulses (TOMROP) sequence (21),
TOMROP being an imaging variant of the LL pulse sequence (22). The analytical solutions
formulated in Equation [10] can be used to derive the longitudinal magnetization that
evolves from a 3S2X model, particularized to the LL experiment, with the following initial
condition.

[15]

Utilizing the preceding Equations [10] to [15], the solution with the correct initial boundary
conditions and proper accounting of intercompartmental water exchange yields the
following expression for the MRI signal in a TOMROP experiment:

[16]
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where , t = n τ, in which n and τ are the number of sampling points and the
excitation time interval between equally spaced sampling pulses of angle θ, respectively.
M(0) is the magnetization between the first inversion RF pulse and next RF inversion pulse
(23).

The relationship between , R1λ, θ, and τ is expressed as

[17]

The steady-state magnetization of a 3S2X model – that is, the magnetization of tissue water
protons as n becomes large is given by:

[18]

where M0 is the equilibrium magnetization, Mss1, Mss2, and Mss3 are the components of the
slow, intermediate, and fast steady state magnetization, and the total steady-state

magnetization, Mss, is a linear sum of these components: .

An analytical MR signal particularized for a TOMROP sequence of Equation [16] observed
in typical DCE studies exhibits multiexponential behavior in a 3S2X system. As noted in the
Introduction, in DCE studies, the relaxation rate constant of tissue water protons, R1, is
generally extracted from an acquired signal via the assumption of a monoexponential
recovery of magnetization (5, 23). Likewise, our use of TOMROP (5,24) has been centered
on the assumption that magnetization recovers in an essentially monoexponential manner.
We will now examine through modeling how the end-result of a monoexponential
TOMROP estimate of R1 varies with tissue concentration for the finite rate of water
exchange in a 3S2X model.

The following is the monoexponential model for T1 relaxation in a TOMROP experiment
(23,25):

[19]

where

[20]

With the steady-state condition

[21]
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We will examine via modeling in a 3S2X model how, and to what extent, R1 varies in
relation to total tissue concentration of CA after a bolus injection of CA.

The values for the relaxation rates constant, rates of exchange, relaxivity, and other model
parameters used in this study are given in Table 1.

Patlak Theoretical Model of Blood-Tissue Contrast Agent Exchange
When a CA, e.g., Gd-DTPA, is administered into venous blood, it initially distributes in the
plasma water of the circulating blood and increases R1 there. Using first-order kinetics, the
concentration of the CA in interstitial fluid after intravenous administration is a function of
time, CAe (t), and can be calculated using a model formulated by Kety and modified for
MRI DCE studies (26).

[22]

where the Ktrans is the transfer rate constant of CA from the plasma to the interstitium, kb is

the rate constant from tissue back to plasma, which is assigned as  if transport is
bidirectionally passive across the microvascular wall or endothelium, and [CAp] is the
plasma concentration of the CA.

The quantity most closely related to the observable change in the MRI signal, the
concentration of the CA in the tissue, is then simply the sum of the interstitial and vascular
plasma components (5):

[23]

where [CAt] is the tissue concentration of the CA, vD is the fractional volume of the rapidly
reversible space. If the tissue CA concentration can be inferred from a change in the MRI
signal (e.g., a change in R1), then the parameters of the model can be estimated by a number
of methods (1–5) including the Patlak Graphical Method and its variations (5,24).

If the increase in R1 (i.e., the difference between the post-injection and pre-injection R1 or
ΔR1) in a particular tissue is proportional to its CA concentration, Equation [23] can be used
to form an observation equation:

[24]

where ΔR1b and ΔR1t are the change in longitudinal relaxation rate of all the protons of

water in arterial blood and tissue, respectively. Herein, the terms  and

 will be called the Patlak ordinate and the efflux-corrected ‘stretch time’
(abscissa), respectively. If ΔR1 is linearly proportional to CA concentration in both blood
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and tissue, the plot of the Patlak ordinate and ‘stretch time’ will yield a straight line with a
slope of Ktrans and an intercept of vD. We note that this is not the original Patlak model, in
which it is assumed that no backflux of CA from the interstitium to the microvasculature
occurs, but rather the extended Patlak model, identical to the SM, in which backflux is
accounted for.

Materials and Methods
Simulation of water exchange kinetics and CA concentration in vascular and interstitium

We emphasize that it was our intention to simulate the response of a monoexponential
estimate of tissue R1 under conditions of a real experiment conducted at 7T with repeated
sampling of tissue magnetization. Using an analytical 3S2X model, simulations were
performed to examine the effects of equilibrium intercompartmental water exchange kinetics
on the relationship between R1 of the protons of tissue water and the tissue CA
concentration in typical dynamic MRI experiments. In one simulation, CA was restricted to
the plasma space and [Gd-DTPA] varied from 0 to 20.0 mM. In the other condition, the
interstitial CA concentration [CAe] was allowed to vary to about 5.0 mM as it leaked into
the interstitial space. Then R1 versus [CAt] curves were analyzed for a range of exchange
rates of water protons across endothelial and cellular membranes. The estimated R1 values
are reported as a function of voxel Gd concentration up to 1.0 mM. These simulations were
also performed using an experimentally measured plasma concentration-time curve or
arterial input function (AIF) obtained after a bolus injection of contrast agent in a rat 9L
cerebral tumor model (27).

In these simulations, the relaxation rates of water protons in blood (R1b) and extracellular
fluid (R1e) were allowed to vary over ranges typical of dynamic MRI experiments. The R1b
(t) and R1e (t) were also modeled using the compartmental CA concentrations: [CAp(t)] and
[CAe(t)] in a typical experimental condition. The intrinsic relaxation rate constants of blood
and extracellular fluid were set to 0.5 s−1, whereas the intracellular relaxation rate R1i was
assumed to be 0.56 s−1 (29). The rate of water proton exchange across the endothelium, kbe,
for a normal brain (ub~ 2%) was set to 2.0 s−1, and for brain with highly permeable
microvessels (ub ~ 5%) (19) to 5.0 s−1 (30), respectively. Then kbe and kie were modeled
from slow to fast water exchange [0.5–10.0 s−1] to assess their influence on a
monoexponential estimate of R1. The rate of water protons’ exchange across parenchymal
cell membranes previously estimated in brain tissue was set to kie = 1.81 s−1, and the
intracellular water content fraction, to ui = 0.8 (29). The CA relaxivity of Gd-DTPA (ℜ) was
set to 4.2 [mM−1s−1] (27) and was assumed to be equal for the water protons of
microvascular blood and extracellular fluid. The model parameters values chosen for
simulation were thus fairly representative of a typical experiment at 7 Tesla.

We used Equation [16] and associated expressions, with appropriate boundary conditions, to
simulate the recovery of longitudinal magnetization in tissue after non selective adiabatic
inversion, with readouts performed via a series of small tip-angle pulses and gradient-echo
imaging, and including the effects of equilibrium intercompartmental water exchange. We
then fitted the simulated signal train generated with Equation [16] to produce a single
monoexponential recovery according to Equation [19] (23). In this study, by varying the
relaxation rates in the vascular and interstitial compartments, the response of the system to
the administration of CA, and the relation of R1 to changes in overall tissue concentration
and R1 time courses with Ktrans, ub, kbe, and kie were simulated. The model parameters
(timing and tip angles) were those typical of our post-inversion 24-echo experimental
technique for estimating vascular permeability in the rat 9L cerebral tumor model at 7T (5).
The tip angles (θ) and inter-excitation times (τ) were set to 18° and 50 ms, respectively for
the LL pulse sequence. The transverse attenuation component was taken to be constant and

Paudyal et al. Page 9

Magn Reson Med. Author manuscript; available in PMC 2012 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



small across the time of the study, . The time interval, Δt, after inversion and just
before the first RF pulse was set to 12 ms. The other model parameters for cerebral tissue of
rat brain utilized in the simulations are listed in Table 1.

Simulations were performed using programs written in ANSI C implemented in a UNIX
system (Solaris 8.0–Sun Microsystems, Santa Clara CA). Pseudo-random Gaussian noise
was generated via the Box-Muller algorithm (31). Noise was added to the simulated
TOMROP signals to achieve desired signal to noise ratio (SNR), but SNR in the model
experiment was kept very high – about 300:1 – because our main focus was on the relation
between R1 and CA tissue concentration. Monoexponential fits were performed on the
simulated inversion recovery curves to construct the R1 of tissue water protons using
standard methods (21,22). The central element of this investigation was characterizing the
variation of a monoexponential fit of R1 over a range of tissue concentrations of Gd- labeled
compound in a 3S2X model.

Results
The curves for the three longitudinal relaxation rate constants R1S, I, L, (see Appendix)
associated with in Equation [14] were generated using typical values of the intravascular and
intracellular water fractions and their rate of transfer constants (ub = 0.02 and kbe = 2.0 s−1,
ui = 0.8 and kie = 1.81 s−1) and the other model parameters given in Table 1. In Figure 2A,
the variation of the three components of the relaxation rate constants (e.g., R1S, I, L) as a
function of interstitial CA concentration ([CA e] ) (mM) is illustrated. Herein, we assumed
CA has equilibrated between intravascular and extracellular compartments and note that
R1S, I, L are dependent on the spin-lattice relaxation rate constants, rate of exchange
constants, water proton distribution spaces, and CA concentration. The shorter relaxation
rate constant R1S gradually increases initially and saturates with increasing [CAe] while the
other two rates R1I and R1L keep increasing as [CAe] increases. Because the intrinsic
relaxation rate constants of the intra- and extracellular space are similar, the mean rate of
exchange across the cellular membranes, kc ~ 10.0 s−1 (ui = 0.8 and kie = 1.81 s−1) (29) is
much greater than the intracellular shutter speed |R1e − R1i| without CA. As CA
extravasates, |R1e − R1i| increases, and this can vary the exchange regimes, FXL, FXR and
SXL, from the extreme left end to the right along the abscissa [CAe], because the sum of the
rate of exchange kc remains invariant. The cellular shutter speed exceeds kc at about 2.40
mM of interstitial CA concentration and thus becomes strongly effective in upper half of
[CAe] in Figure 2A.

Figure 2B shows the time course of a simulated signal constructed for FXL (Equation [19]),
full 3S2X model (Equation [16]) and a phenomenological curve, labeled SSM, which
considers only the R1s component of Equation [16], a component that evolves from the
3S2X model but does not, as the graph shows, accurately reflect the true signal evolution in
a typical LL experiment conducted in our laboratory at 7T. These curves were constructed
using the LL imaging sequence employed here: number of sampling points (N) = 24,
interexcitation time (τ) = 50 ms, tip angle (θ) = 18° at 0.95 mM of interstitial CA
concentration with model parameters as in Figure 2A. The contribution of the R1I and R1L
components can be seen on the full exchange model in comparison to the phenomenological
model, SSM. While Figure 2B was generated from a 3S2X model, it bears a strong
resemblance in signal behavior to that of Buckley’s Figure 6 (15), although that figure was
generated using a 2SX model.

Figure 3 displays the response of R1 to changes in tissue concentration under a range of
conditions typical of those experienced in DCE studies. The temporal evolution of a LL
signal was calculated using all the kernels of the relaxation rates (short, intermediate, and
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long) and their associated fractional populations in a 3S2X model. As before, the model was
particularized to our LL experiment (N = 24, τ = 50 ms, and θ = 18°) with model parameters
listed in Table 1.

Figure 3A shows, for an entirely intravascular CA, the relationship between LL estimates of
the R1 of tissue water protons versus [CAt]. In this setting, R1 curves were constructed using
a large volume fraction for blood water (ub = 0.05), kbe = 5.0 s−1, and cellular parameters: ui
= 0.8 and kie = 1.81 s−1 with other model parameters as given in Table 1. The CA
concentration in plasma [CAp] was varied up to 20.0 mM. Initially, R1 increases a nearly
linear manner with [CAt] but curves concave at higher concentrations. Across the range
plotted, the model data deviate about 15% (R1e = 0.5 s−1), 6.0% (R1e =10.0 s−1), and 10.0%
(R1e = 20.0 s−1) from a linear relationship. As the R1 curve passes from its minimum to
maximum, the exchange regimes across the abscissa [CAt] move from FXL to SXL. The
relaxographic transvascular shutter speed |R1b − R1e| rapidly increases and exceeds the sum
of the equilibrium rates of blood-tissue exchange, kt, ~ 6.67 s−1 around 3.20 mM of [CAp]
and becomes effective in the upper half of [CAt]. It must be mentioned here that the range of
this plot runs far beyond the usual experimental conditions. The asterisk on the plot points to
the maximum value of CA concentration in plasma water that might be expected in most
DCE studies; it should be concluded that the relationship between [CAt] and R1 is linear
under most experimental conditions.

Figure 3B shows the LL estimates of R1 of tissue water protons versus [CAt] acquired with
model data of Figure 3A when interstitial concentration was varied up to 5 mM. The model
is constructed as if equilibration of the CA had take place between the blood and interstitial
space. With increasing interstitial CA concentration, cellular exchange regimes vary from
FXL to SXL. The difference in the longitudinal relaxation rates, |R1e − R1i|, exceeds kc at
2.75 mM of [CAe] and becomes effective in the upper half of the [CAt] range. The best
fitted line to model data of R1 versus [CAt] yielded deviation about 15%, 7%, and 13%,
respectively, at the lower (R1e = 0.5 s−1 ), middle (R1e =10.0 s−1), and upper (R1e = 20.0
s−1) points. Accordingly, the LL experiment predicted a nearly linear response between the
R1 of tissue water protons and [CAt] in a 3S2X model.

In Figure 3C and 3D, the effects of varying the rates of exchange across the microvascular
endothelium, kbe, (3C), and the membranes of parenchymal cells, kie (3D), on R1 are
illustrated as a function of total tissue concentration. The rates of water exchange for kbe and
kie (e.g., 10, 2.0 and 0.5 s−1: top to bottom) span the range for most tissue types. Figure 3C
(ub = 0.05, ui = 0.8, and kie = 1.81 s−1) and D (ub = 0.05, kbe= 5.0 s−1, and ui = 0.8) were
constructed with the model parameters used in Figs. 3A and B. The R1 curves under varying
rates of water transfer become distinct in the upper region compared to the lower region of
[CAt]. Across this rather wide range of tissue concentrations, the variation of kbe, again
across a wide range of values (kbe = 2.0 s−1 (19) and kie = 1.81 s−1 (29) for normal brains)
changes the slopes of line by 13%, and that of kie by 16%, respectively. This degree of
variation would probably not be detectable under most experimental conditions.

Continuing our focus on the relation between tissue concentration and R1, we constructed a
model of CA concentration in tissue in a moderately leaky vascular bed. Figure 4 shows the
CA plasma concentration time-course of an experimentally measured [CAp(t)] (left
ordinates) and the total CA tissue concentration [CAt(t)] (right ordinates) curves. The AIF is
that of an intravenous (i.v.) bolus injection standard dose of 0.08 mmol/kg (body weight) of
Gd-DTPA (27). The [CAt] time course was generated using the AIF and a CA transfer rate
constant Ktrans = 0.002 min−1 and Equation [23] and associated expressions for ub = 0.02.
These model concentrations were then used to investigate the relationship between R1 and
tissue [CAt] with Look-Locker measurements of R1 as estimates of the latter.
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Given the concentration-time behavior of Figure 4, what can be expected of changes in R1?
The R1b(t) and R1e(t) (e.g., Equations [8] and [9]) time-course curves were generated using
an AIF and Equation [22], respectively, with ℜ = 4.2 mM−1s−1. The arterial hematocrit
(Hct) was set to 0.5. Under this condition, the MR signal of the LL experiment (e.g. = 24, τ
= 50 ms, and θ = 18°) was generated from the components of the longitudinal relaxation rate
constants R1S, I, L, and the fractional populations in a 3S2X model. Then R1 was estimated
as described in the preceding paragraphs according to Equation [19] from a signal obtained
from Equation [16]. When the data is normalized so that the peak concentrations are plotted
at the same ordinate distance, there clearly is a visual difference between tissue
concentration and estimates of tissue concentration by ΔR1.

In Figure 5A, the normalized values of ΔR1 (open circles) predicted by the LL experiment
conducted at 7T and the voxel CA concentration (filled circles) as a function of time are
plotted for the case of an entirely intravascular CA in a 3S2X model. The two traces were
normalized by setting the 20 min time point on the ordinate at the same graphical distance
from zero for both. N.B.: the time scales of the two curves are offset, as indicated on the top
and bottom abscissa labeling. It should be clear that the peak amplitude of the MRI estimate
of tissue concentration when there is no CA leakage is smaller than the true peak, thus
demonstrating the effect of restricted water exchange at the highest concentrations of CA.

In Fig 5B, the left and right ordinates demonstrate the change in the relaxation rate ΔR1 of
the protons of tissue water (open circles) and tissue concentration [CAt] (filled circles),
constructed from Equation [22], with Ktrans = 4.0 × 10−3 min−1 in a 2SX model. Here, it can
be seen that the two estimates of concentration track each other very well. Certainly, any
differences would be lost if MRI experimental SNR were in the range (e.g., 25:1) of what is
usually achievable. Thus, despite figure 4, there appears to be a fairly good linearity in
signal response when the blood and tissue components are considered separately.

Figure 5C plots ΔR1 (open circles, left ordinates) and [CAt] (filled circles, right ordinates),
demonstrates the time behavior in a model of CA with leaky microvessels and includes both
the blood and extracellular compartments gathered from Equation [23], when Ktrans = 4.0 ×
10−3 min−1. Other model parameters were: ub = 0.02, kbe = 2.0 s−1, ui = 0.8 and kie = 1.81
s−1. In general, R1 as a function of time, when it is considered that CA resides only in the
blood compartment or is equilibrated between the latter and the interstitial compartments, is
well correlated with tissue concentration except at very high blood concentrations. Of note,
the apparent relaxivity (the proportionality constant), however, differs among the
compartments. Additionally, the apparent relaxivity for a given compartment will vary with
water exchange rates and compartment size. This point has been repeatedly underscored in
the development of the SSM (7,9,11–14), but the underlying linearity of the R1 response has
not been as well represented using the appropriate boundary conditions for MR pulse
sequences.

What then is the consequence of both the underlying linearity in concentration and the
differences in apparent relaxivities? One of the better ways to examine this question is to
utilize a method that is inherently linear, since it allows the examination of the model-
generated response for nonlinearities. We chose the extended Patlak graphical method (2,5),
which linearizes the concentration-time curve when there is appreciable brain-to-blood
backflux of the CA (nonzero kb). Figure 6 shows a number of plots of concentration-time
curves in tissue using the extended Patlak Graphical method (model 3 of Ewing et al (5))
constructed from Equation [24]. Using a 3S2X model, the influences of the vascular
parameters Ktrans, ub, and the rates of water proton exchange kbe and kie on the Patlak plots

are illustrated. As in the extended Patlak method, the quantity  is the Patlak

Paudyal et al. Page 12

Magn Reson Med. Author manuscript; available in PMC 2012 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ordinate and efflux-corrected arterial time integral  forms the abscissa.
The quantity Ktrans is estimated from the slope of the plot, while fractional vascular volume
is estimated from its intercept at x = 0.

In Figure 6A, the extended Patlak plot is produced for a range of blood-to-tissue transfer rate
constants Ktrans (e.g., 0.01, 0.005, and 0.00125 min−1: top to bottom), to examine the
systematic errors in estimates of Ktrans in a 3S2X model. In this setting, ub = 0.02 and kbe =
2.0 s−1, ui = 0.8 and kie = 1.81 s−1, and other model parameters given in Table 1 were used.
The range of Ktrans spans the range for Gd-DTPA in most tissue types. For this range of
Ktrans, the slopes vary by 87%, high to low, whereas the estimates of Ktrans vary about 4%
from the true values; systematic errors in Ktrans are, thus, negligible. Contrariwise, the
volume of intravascular water (i.e., the blood water space) is underestimated by as much as
56% compared to the true value.

Figure 6B shows how the Patlak plot behaves under a variation in the blood water fractions
ub (e.g., 0.06, 0.04, and 0.01: top to bottom) in a 3S2X model. In this setting, the influx rate
of protons linked to water (kbe = 2.0 s−1), intracellular parameters (ui = 0.8 and kie = 1.81
s−1), and model parameter listed in Table 1 were used. This range of ub is valid for many
tissue types. To illustrate the effects of leakage, Ktrans was set to 4 × 10−3 min−1. The curves
are distinct, differing in ub and with virtually identical slopes that vary by less than 3%. The
volume of intravascular water is again underestimated by as much as 60% compared to the
true value.

Figure 6C shows the influence of different rates of the transendothelial influx of water
protons on the extended Patlak plot. The values of kbe (e.g., 10, 2, and 0.5 s−1: top to
bottom) span values that model a highly permeable vasculature to that of a moderately
restricted one. In this setting, Ktrans = 5.0 × 10−3, ub = 0.05, intracellular parameters (ui =
0.8 and kie = 1.81 s−1), and the model parameter listed in Table 1 were used. It can be seen
that the curves are indistinguishable and slopes of the curves are nearly identical, varying by
less than 1%. The estimated Ktrans differs by about 2% from the true value while ub varies
by 58%. This result suggests that in the LL experiment the effect of intermediate
transendothelial water exchange will have a negligible effect on the estimate of Ktrans and
possibly a strong effect on vb, depending upon the tissue type.

Figure 6D illustrates how the rates of water proton exchange across parenchymal cell
membranes, with kie varying from highly permeable to slightly restricted, in the 3S2X
model influence Patlak plots of the data. In this setting, ub = 0.03 and kbe = 2.0 s−1,
intracellular parameters (ui = 0.8 and kie = 1.81 s−1), and the model parameter listed in Table
1 and Ktrans = 3.0 × 10−3 min−1 were used. Under these conditions, the slopes of the curves
and the estimates of Ktrans varied less than 1%. This result demonstrates the very small
effect of a variation in water exchange cellular membranes has on the Patlak plot estimation
of Ktrans.

Discussion
An analytical equation describing the evolution of magnetization for tissue water protons
was formulated for the LL experiment via the Bloch–McConnell formalism using a 3S2X
model, incorporating all three components of the longitudinal relaxation rates (e.g., short,
intermediate, and long) and their associated fractional populations. A wide range of plasma
and extracellular fluid concentrations of CA was considered, and signal associated with a LL
experiment (N = 24 points, τ = 50 ms, θ = 18°) was generated. We were most interested in
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the relationship between the longitudinal relaxation rate of tissue water protons and tissue
CA concentration, especially how a monoexponential summary of longitudinal signal
recovery, R1, would be affected by the finite rate of equilibrium intercompartmental water
exchange under the conditions of a typical DCE study. Thus, we have not considered the
blood inflow effects in this study (16).

The results of Figure 3 illustrate a very important point: under a wide range of typical
experimental conditions, a monoexponential estimate of R1 scales nearly linearly with
[CAt]. It should be understood, however, that R1 as a measure of the CA concentration in the
microvasculature is less linear (Figure 3A) than as a measure of the interstitial CA
concentration (Figure 3B), although not strongly so. This is because a standard dose of 0.08
mmol/kg Gd-DTPA will result in a peak plasma concentration of about 3.7 mM (Figure 4:
top), and the corresponding peak R1 can reach about 16.0 s−1. On the other hand, at the peak
value of 0.77 mM of [CAe], the corresponding R1 is about 4.0 [sec−1] when Ktrans = 0.02
min−1. At very high concentrations of CA, the slope of the relationship between R1 and
[CAt], i.e. the CA’s longitudinal relaxivity, varies with the rates of exchange across the
endothelium and cellular membranes over the range of highly to moderately restricted
microvascular permeability (e.g., top to bottom) in Figure 3C and D, respectively.
Qualifying this, the deviations are relatively small even at very high concentrations and
might easily be missed under typical experimental conditions with lower signal-to-noise.

The plots of data using the extended Patlak Graphical method are most revealing of the
systematic behavior of the recovery of the longitudinal magnetization of tissue water protons
when CA is limited to one or two compartments. Under typical experimental conditions, the
cellular exchange regime moves from FXL to FXR to SXL. If the boundary conditions are
properly modeled and all three components of recovery are taken into account, it is clear that
water exchange across parenchymal cell membranes does not strongly influence the
estimation of the influx transfer constant of the CA. On the other hand, if water exchange
across the microvascular wall is moderately restricted as in normal brain, the blood water
volume will be underestimated.

To investigate the effects of equilibrium intercompartmental water exchange kinetics on R1,
this study mainly focused on the LL experiment. Water exchange times at the boundaries of
the blood and intracellular compartments are about 500 ms and 550 ms, respectively,
whereas the LL inter-echo sampling time scale, τ, is much smaller. On the other hand, the
total acquisition time (e.g., 1200 ms) is much longer than the residence time of water
molecules in either blood or intercellular fluid. It appears that, if the selected experimental
time is long enough in comparison to the pre-exchange lifetime, a multipoint technique with
an extended and repeated sampling may average the intercompartmental exchange of water
protons under many conditions.

In all normal cerebral tissue as well as brain tumors, contrast materials are confined to the
blood and extracellular space, whereas about 75% of the tissue water is intracellular. In the
cerebral tumors, the change in the tumor volume affects on the water diffusion (32). Often
the tissue studied by MRI and used for comparison in this study is a cerebral tumor, which
has a highly permeable microvascular wall in contrast to normal brain. It appears highly
probable that the exchange of water across tumor microvessels is more rapid than that across
the surrounding normal vasculature. If this is the case, one can expect a general
underestimation of blood water volume in normal brain parenchyma, and possibly in the
‘normalized’ vasculature of the tumor but a correct estimate of blood volume in the part of
the tumor with highly permeable microvessels.
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This study is not without limitations because several assumptions were made in the
simulation. Probably the most restrictive set of assumptions involve the particularization to a
24-echo LL inversion-recovery experiment with 50 ms echo spacing and 18° tip-angle.
However, we have investigated other experimental conditions, namely a 100 ms echo
spacing, and/or a doubling of number of points. Generally, these variations in experimental
condition do not change the results reported here by more than 1% in estimates of the
transfer constant where as intercept vary within 5%, when Ktrans = 5.0 × 10−3 min−1 and ub
= 0.03. Another restriction is the specification of 7 Tesla with its longer tissue T1’s, and
lower CA relaxivities. Blood inflow effects were not considered, the pre-contrast blood and
extracellular R1’s were set equal, and the CA relaxivities in the two compartments were set
equal and assumed constant, although CA relaxivity may vary with macromolecular content
(27) by as much as 30%. However, this latter variation simply changes the apparent
relaxivity of the CA, and since the modeling covers a wide range of transcellular water
exchange rates, which also changes the apparent relaxivity of the CA, variations in CA
relaxivity with macromolecular content are probably covered by the modeling. We assumed
that T*2 effects were negligible at these echo times. Notwithstanding these limitations, a
clear picture evolves from this modeling: the systematic errors of the SM are likely to appear
first in the underestimation of blood water volume. Only in tissue with extremely leaky
microvessels and consequent high interstitial concentrations of CA will a serious
underestimation of Ktrans begin to appear. Since the microvessels in this case will need to be
extremely leaky, the practical consequences of an underestimation of Ktrans may not be
important.

This kind of modeling with a full 3S2X treatment and correct boundary conditions needs to
be extended to other, more clinically relevant field strengths and to more the widely
employed short-TR gradient-echo sequences commonly used in clinical DCE
determinations. An important first step toward this goal has been made and recently
presented in abstract by those investigators who have pioneered the SSM (33).

Conclusion
We conclude that the analytic results of this study in a 3S2X model establish a nearly linear
relationship between tissue CA concentration for a monoexponential estimate of R1
measured by a LL technique. Therefore, under many conditions, LL estimates of Ktrans will
yield approximately unbiased estimates (within 4%) of that parameter in most tissues. On
the other hand, it is likely that the volume of blood water in the field of observation can be
significantly underestimated (as much as 60%), especially in normal brain tissue.
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Symbols and Abbreviations

R10b Longitudinal relaxation rate of the intravascular space without CA

R10e Longitudinal relaxation rate of the extracellular space without CA

R1b Longitudinal relaxation rate of the intravascular space

R1e Longitudinal relaxation rate of the extracellular space

R1i Longitudinal relaxation rate of the intracellular space
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R*
2 Effective transverse relaxation rate

R1S Shorter longitudinal relaxation rate of water protons’

R1I Intermediate longitudinal relaxation rate of water protons’

R1L Longer longitudinal relaxation rate of water protons’

R*
1 Effective Longitudinal relaxation rate of tissue water protons’

R1 Longitudinal relaxation rate of tissue water protons’

□ Longitudinal relaxivity of water protons’

kbe Rate of exchange of water protons’ from intravascular to extracellular space

kie Rate of exchange of water protons’ from intra- to extracellular space

keb Rate of exchange of water protons’ from extra- to intravascular space

kei Rate of exchange of water protons’ from extra- to intracellular space

p1 Population fraction associated with longitudinal relaxation rate R1S

p2 Population fraction associated with longitudinal relaxation rate R1I

p3 Population fraction associated with longitudinal relaxation rate R1L

ub Intravascular water content fraction

ue Extracellular water content fraction

ui Intracellular water content fraction

θ Flip angle

τ Sampling interval time

CAp Plasma CA concentration

CAe Extracellular CA concentration

CAt Tissue CA concentration

Ktrans Blood to tissue CA transfer constant

kb Tissue to blood CA transfer constant

3S2X Three site two exchange

AIF Arterial input function

FXL Fast exchange limit

FXR Fast exchange regime

SXL Slow exchange limit
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Appendix
The following are the short, intermediate, and long longitudinal relaxation rate constants of a
3S2X model defined in the text:

[A1]

The relaxation rates are computed through the following relation:

[A2]

The following condition: R2 < Q3, is for the three different real roots of eigenvalues.

where
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[A3]

[A4]

with

[A5]
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Figure 1.
The three-site two-exchange (3S2X) model. R1b, R1e, and R1i are the longitudinal relaxation
rates of the protons of water in the blood, interstitial, and intracellular spaces, respectively.
Mob, Moe, and M0i are equilibrium magnetizations of the protons in these three spaces,
respectively; their corresponding fractional water protons sizes are ub, ue, and ui. The rate of
the water protons exchange from the blood to extracellular space is kbe and from the
extracellular space back to blood is keb. The rate of water protons exchange from intra- to
extracellular space is kie and from extra- to intracellular space is kei. In general,
paramagnetically labeled contrast agents (e.g., Gd-DTPA) can exchange between plasma
and the extracellular space across a leaky endothelium but will not enter the intracellular
space (vi). The bidirectional exchange of Gd-DTPA between the intravascular space and
extracellular is described by the transvascular transfer rate constants Ktrans and kb,
respectively.
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Figure 2.
2A: Graph of simulated results of the analytical longitudinal relaxation rate constant R1
(e.g., R1S, I, L) as a function of the interstitial CA concentration [CAe] in a 3S2X model.
Equation [A1] given in the Appendix was used to construct these curves. 2B. Simulated
signal intensity time course curves at 0.95 mM Gd-DTPA in interstitial CA concentration
for the LL imaging sequence and with tissue parameters ub= 0.02 and kbe = 2.0 s−1. The
lower curve, labeled SSM, demonstrates the recovery of the longest component of
longitudinal magnetization, sometimes used in previous studies (10,11) as the only
component. The contribution of the components R1I and R1L on a signal that evolved 3S2X
model, which were ignored in the SSM, can be seen. Model parameters values are listed in
Table 1.
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Figure 3.
Simulated relaxation rate of tissue water protons (R1) versus tissue concentration of the
contrast agent ([CAt]) in a 3S2X model. The curves were constructed with model parameters
as follows: ub = 0.05, kbe = 5.0 s−1 and ui = 0.8, kie = 1.81 s−1. 3A: Simulated with the CA
distributed only in the plasma compartment. The asterisk corresponds to the peak tissue CA
concentration in the experimental condition. 3B: Simulated with the CA distributed in the
blood and interstitial spaces. 3C: Families of simulated R1 curves for different values of kbe
(10, 2, and 0.5 s−1; top to bottom). 3D: Families of simulated R1 curves for different values
of kie (10, 2, and 0.5 s−1; top to bottom). The other parameters used in the modeling are
given in Table 1.
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Figure 4.
The time-course of plasma CA concentration ([CAp]; open circles) and total tissue CA
concentration ([CAt]; filled circles). The latter, [CAt], was calculated using Equation [23]
with Ktrans = 2 × 10−3 min−1 and ub = 0.02. The other model parameters are listed in the
Table 1. This [CAp] concentration-time curve was used to generate Figures 5 and 6.
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Figure 5.
5A: Concentration-time plot of the change in the relaxation rate of tissue water protons
(ΔR1; open circles) and tissue CA concentration (filled circles) for the case of all of the CA
in blood. ub = 0.02. 5B: Concentration-time plot of ΔR1 (open circles) and tissue CA
concentration (filled circles) for an entirely extracellular CA; this was modeled with
Equation [22], Ktrans = 4.0 × 10−3 min−1 and ub = 0.02. 5C: Concentration-time plot of ΔR1
(open circles) and tissue CA concentration (filled circles) for the combined plots of 3A and
3B. The other model parameters values are listed in the Table 1. In 5C, the effect of the
different apparent relaxivities of CA between blood and interstitium should be noted. While
the component ΔR1’s track very closely with tissue concentration in their respective
compartments, the combination does not.
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Figure 6.
Families of the plots obtained with the multi-time, graphical method of Patlak in a 3S2X

model with the ordinate equal to  and the abscissa equal to the efflux-corrected

term , which is often referred to as ‘stretch time’ when the CA is injected
as a bolus. 6A: With Ktrans = 0.01, 0.005, and 0.00125 min−1; top to bottom) and ub = 0.02.
6B: With blood water fractions, ub, set as 0.06, 0.04, and 0.01 (top to bottom) and Ktrans = 4
× 10−3 min−1. 6C: With the transendothelial rate of influx, kbe, varied from 10 to 2 to 0.5
s−1(top to bottom), Ktrans = 5 × 10−3 min−1, and ub = 0.05. 6D: Rate of exchange across
parenchymal cell membrane set at either 10, 2, or 0.5 s−1 (top to bottom), Ktrans = 3 × 10−3

min−1, and ub = 0.03. The other parameters of this modeling are listed in Table 1.
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Table 1

Simulation parameters of a 3S2X model

Parameters description Value Units

Range of relaxation rate for protons’ of water in blood (R1b) 0.5 – 40 s−1

Range of relaxation rate for protons’ of water in extracellular space (R1e) 0.5 – 20 s−1

Range of relaxation rate for protons’ of water in intracellular space (R1i) 0.56 s−1

Range of rate of exchange for protons’ of water from blood to extracellular space (kbe) 0.5 – 10 s−1

Range of rate of exchange for protons’ of water from intra- to extracellular space (kie) 0.5 – 10 s−1

Blood water protons’ content fraction (ub) 0.02 – 0.05

Intracellular water protons’ content fraction (ui) 0.8

Range of blood to tissue CA transfer constant (Ktrans ) 0.01 – 0.0125 min−1

Sampling interexcitation times (τ) 50 ms

Tip angle used in LL experiment (θ) 18°

Longitudinal relaxivity of protons’ of water (ℜ ) 4.2 mM −1s−1
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