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The activation of innate and adaptive immunity is always
balanced by inhibitory signalling mechanisms to maintain tissue
integrity. We have identified the E3 ligase c-Cbl––known for its
roles in regulating lymphocyte signalling––as a modulator of
dendritic cell activation. In c-Cbl-deficient dendritic cells,
Toll-like receptor-induced expression of proinflammatory factors,
such as interleukin-12, is increased, correlating with a greater
potency of dendritic-cell-based vaccines against established
tumours. This proinflammatory phenotype is accompanied by
an increase in nuclear factor (NF)-jB activity. In addition, c-Cbl
deficiency reduces both p50 and p105 levels, which have been
shown to modulate the stimulatory function of NF-jB. Our data
indicate that c-Cbl has a crucial, RING-domain-dependent role in
regulating dendritic cell maturation, probably by facilitating the
regulatory function of p105 and/or p50.
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INTRODUCTION
In mammalian cells, Toll-like receptor (TLR) family members
recognize both pathogen-derived molecules and endogenous
stress factors (Akira et al, 2006; Beutler, 2009). Although distinct
TLR expression patterns exist, several ligands elicit strong immune
responses—in probably all leukocyte subsets—including so-called
‘professional’ antigen-presenting cells, such as dendritic cells. To
avoid excessive cell activation with potentially harmful sequelae
such as autoimmunity or sepsis, TLR activation is modulated

(Liew et al, 2005). Accordingly, targeting individual homeostatic
regulators, such as SOCS1 or A20, has been shown to augment
dendritic cell vaccine efficacy in preclinical models (Shen et al,
2004; Song et al, 2008).

Mammalian Cbl proteins, including c-Cbl, Cbl-b and Cbl-c, are
RING-domain-containing E3 ubiquitin ligases. Among them,
c-Cbl and Cbl-b are implicated in the regulation of immune
responses in several physiological settings (Schmidt & Dikic,
2005; Dale et al, 2009). For example, c-Cbl is an important
negative regulator in T-cell receptor signalling, and blocking its
RING function results in both altered thymic selection and
heightened T-cell signalling (Thien et al, 2005; Huang & Gu,
2008). Given its broad function in immunity, we posited that c-Cbl
might also regulate dendritic cell function.

The transcription factor nuclear factor (NF)-kB typically refers
to a heterodimer comprising a Rel subfamily subunit and a
transactivation-domain-lacking p50/NF-kB1 or p52/NF-kB2 sub-
unit (Ghosh et al, 1998). Due to the lack of a transactivation
domain, p50 homodimers are generally observed as transcrip-
tional repressors (Plaksin et al, 1993; Ledebur & Parks, 1995).
It has been previously reported that p50 homodimers negatively
regulate proinflammatory responses when they are associated
with Bcl3 (Bohuslav et al, 1998; Carmody et al, 2007). By
contrast, the p50 precursor, p105, can also function as an inhibitor
of kB proteins (IkB) through its carboxy-terminal ankyrin repeats,
and the removal of its IkB-like domain results in severe
deregulation of immune responses (Ishikawa et al, 1998). There-
fore, maintenance of the protein levels of both p50 and p105 is
essential to the regulation of immunity.

Here, we show that c-Cbl stabilizes p50 and p105 proteins in
dendritic cells. Thus, c-Cbl deficiency potentiates higher levels of
TLR-stimulated proinflammatory cytokines in dendritic cells,
including interleukin (IL)-12p70 (IL-12). The upregulation of
cytokines is also accompanied by enhanced recruitment of
NF-kB, including c-Rel-p50, to NF-kB sites, suggesting a causal
relationship. By reconstituting c-Cbl-deficient dendritic cells with
different c-Cbl mutants, we observed that p105 stabilization, as
well as p50 accumulation, is dependent on the RING domain
function of c-Cbl. Importantly, ectopic expression of p50 in c-Cbl-
deficient dendritic cells selectively suppresses cytokines that are
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upregulated on c-Cbl ablation, implying that c-Cbl might inhibit
proinflammatory cytokines through p50 accumulation. Overall,
we identify c-Cbl as a crucial E3 ubiquitin ligase for TLR-induced
accumulation of p50 and show that c-Cbl might do so through
p105 stabilization.

RESULTS AND DISCUSSION
Cbl-KO dendritic cells enhance proinflammatory cytokines
High-level IL-12 secretion is considered to be a characteristic
of fully mature dendritic cells and part of the crucial ‘third
signal’ affecting the outcome of dendritic cell/T-cell interactions
(Curtsinger et al, 1999, 2003). Initial tests showed that c-Cbl-
knockout (Cbl-KO) bone-marrow-derived dendritic cells (BMDCs)
secrete more IL-12 than wild-type dendritic cells following
engagement by several TLRs, excluding TLR9 (Fig 1A). Of
note, this phenotype was limited to BMDCs derived from mature

female mice (X6 to 7 weeks), implying a possible effect of
oestrogen on p50 levels (Dai et al, 2007). Concurrent quantifica-
tion of several additional proinflammatory cytokines and chemo-
kines showed that lipopolysaccharide (LPS)-stimulated Cbl-KO
dendritic cells produced significantly higher levels of IL-1a, IL-1b
and CXCL1/KC (Fig 1B). Moreover, increased intracellular
IL-12p40 staining in Cbl-KO relative to wild-type BMDCs was
observed following ligation of several, but not all, TLRs (Fig 1C;
supplementary Fig S1A online). Interestingly, both the response
to CpG stimulation and macropinocytosis were insensitive to
c-Cbl levels (Fig 1A; supplementary Fig S1B online, respectively).
Elevated IL-12 production was detected as early as 8 h post
stimulation, regardless of the LPS concentration used, and peaked
at 16 h (supplementary Fig S1C,D online). Thus, c-Cbl deficiency
in BMDCs enhances the secretion of proinflammatory cytokines
following engagement of various TLR ligands.
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Fig 1 | Cytokine secretion patterns of c-Cbl-knockout dendritic cells. (A) Wild-type and Cbl-KO BMDCs were stimulated with the indicated TLR

agonists (Ctrl, dimethylsulphoxide; TLR1/2, Pam3CSK4; TLR2, LTA; TLR3, poly(I:C); TLR4, LPS; TLR7, R837; TLR7/8, CL075; TLR9, CpG) overnight

and the supernatants were collected for IL-12p70 measurement by ELISA. (B) Supernatants of cultured BMDCs with indicated genotypes were collected

after 24 h of LPS stimulation for quantification of the indicated cytokines and chemokines by LINCOplex assay. Data were pooled from 3–4 pairs of

WT and Cbl-KO samples (data represent average±s.e.). (C) WT and Cbl-KO BMDCs were stimulated with the indicated TLR agonists overnight and

subjected to intracellular staining of IL-12p40. Cells were treated with brefeldin A and analysed on a BD LSRII cytometer. (D) WT and c-Cbl-deficient

BMDCs were stimulated with LPS (1mg/ml) at the indicated time points before preparation of total RNA. The relative amounts of IL-12p35, p40 and

IL-10 were quantified by quantitative real-time polymerase chain reaction with predesigned primers. (E) WT BMDCs nucleofected with the indicated

siRNAs (left panel) or paired WT and Cbl-KO BMDCs (right panel) were cultured overnight. Supernatants were collected for analysis of IL-12p70

production by ELISA. All data (except in B) are representative of at least three experiments with consistent results. Cbl-KO, c-Cbl-knockout;

ELISA, enzyme-linked immunosorbent assay; G-CSF, granulocyte colony-stimulating factor; IL, interleukin; IFN, interferon; KD, knockdown;

LPS, lipopolysaccharide; ND, not determined; NS, not significant; siRNA, small-interfering RNA; TLR, Toll-like receptor; WT, wild type.
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To clarify the role of c-Cbl, we investigated cytokine changes at
the transcriptional level. Both semi-quantitative reverse-transcrip-
tion and quantitative real-time PCR was used to quantify LPS-
induced IL-12p40 (IL-12b), IL-12p35 (IL-12a) and IL-10 (IL-10)
messenger RNA (mRNA) in dendritic cells. c-Cbl deficiency was
associated with prolonged, LPS-induced upregulation of IL-12p35
mRNA, but not IL-12p40 (Fig 1D; supplementary Fig S1E online).
At the same time, both IL-10 protein and mRNA levels were
insensitive to c-Cbl ablation (Fig 1B,D, respectively). In addition,
low levels of mRNA for both IL-12p35 and IL-12p40 genes, as well
as IL-12p70 protein, were also present in c-Cbl-deficient dendritic
cells before stimulation (Fig 1D,E, respectively). Therefore, c-Cbl
deficiency not only upregulates expression of TLR-induced
proinflammatory cytokines, but also raises their basal expression
under steady-state conditions.

Phenotypic comparisons between WT and Cbl-KO DCs
One caveat to results from c-Cbl-KO dendritic cells is that
prolonged c-Cbl deficiency could have pleiotropic effects on
dendritic cell development or precursor levels (Rathinam et al,
2008). However, by day 6 of in vitro culture in granulocyte–
macrophage colony-stimulating factor/IL4-supplemented med-
ium, we consistently generated a typical level of 50 million
BMDCs per mouse, which were approximately 50% CD11cþ ,
regardless of c-Cbl expression (supplementary Fig S1F,G online).
In addition, surface expression of activation markers, CD40, major
histocompatibility complex class I/II, CD80 and CD86, were
indistinguishable between wild-type and Cbl-KO BMDCs (sup-
plementary Fig S1H online), as was their induction following LPS
stimulation (supplementary Fig S1I online). Therefore, the
phenotypic differences we detected between wild-type and Cbl-
KO dendritic cells in vitro only affected some aspects of dendritic-
cell activation, including cytokine production.

Cbl-KO BMDCs have enhanced pro-TH1 immunogenicity
The increased cytokine production by Cbl-KO dendritic cells
indicated that they might have enhanced immunogenic properties
in vivo. To test this idea, we measured the immunogenicity of
c-Cbl-KO compared with wild-type BMDCs pulsed with full-length
ovalbumin (Ova) protein. After vaccination, total CD4þ and
CD8þ splenocyte numbers were significantly higher when Cbl-KO
dendritic cells were used, compared with wild-type dendritic
cells (Fig 2A). However, when dendritic cells were stimulated
with LPS alone or LPS and CD40L, and mixed in vitro with
ovalbumin-specific TCR transgenic, OT-I (Kb-restricted) or OT-II
(I-Ab-restricted) splenocytes, proliferation rates of antigen-specific
T cells were indistinguishable between wild-type and Cbl-KO
dendritic cells (supplementary Fig S2A,B online). One possible
reason for the discrepancy between in vivo and in vitro proli-
feration assays is that in vivo-generated IL-12 might stimulate
CD8þ T-cell proliferation only indirectly, as in the presence
of primed CD4þ T helper (TH) cells, as suggested previously
(Haring et al, 2006).

We next investigated which T-cell lineages were differentially
activated in spleens following vaccination. Splenocytes from Cbl-
KO dendritic-cell-primed animals showed significantly higher
levels of peptide-specific cytotoxicity (Fig 2B), plus interferon
(IFN)-g-secreting (OT-I or OT-II) T cells, consistent with a pro-TH1
lineage bias (Fig 2C). Even 5 weeks after vaccination, Cbl-KO

dendritic-cell-vaccinated mice still harboured significant levels of
IFN-g-producing T cells, whereas control groups returned to
baseline levels (Fig 2D). By contrast, IL-4 levels (TH2) produced by
antigen-specific CD4þ splenocytes were comparable (supple-
mentary Fig S2C online). In addition, serum samples collected at
2–4 weeks post-vaccination all revealed significantly higher levels
of Ova-specific, TH1-driven IgG2a secretion from Cbl-KO
dendritic-cell-primed mice (right panel, supplementary Fig S2D
online). However, the levels of TH2-driven IgG1 secretion from
both wild-type and Cbl-KO dendritic-cell-primed mice were
comparable, consistent with the result of IL-4 secretion (left panel,
supplementary Fig S2D online). Overall, these experiments indi-
cate that Cbl-deficient dendritic cells are more potent inducers of
TH1 polarization than wild-type dendritic cells.

Cbl-KO DCs function as a potent tumour vaccine
To evaluate better the clinical relevance of Cbl-KO dendritic cells,
we tested their anti-tumour efficacy against preestablished E.G7-
Ova lymphomas. Wild-type mice were challenged with tumour
cells 3 days before vaccination (day 0). By day 10, all mice had
palpable tumours (supplementary Fig S2E online). However, 1
month after tumour inoculation, mice vaccinated with Cbl-KO
dendritic cells had significantly smaller tumours, as opposed to
control groups (Fig 2E). By day 60, the remaining survivor showed
complete resistance to secondary tumour challenge, accompanied
by further expansion of Ova-specific T cells (supplementary Fig
S2F online). Importantly, the effects of c-Cbl haploinsufficiency
could be noted in tumour-size analysis (supplementary Fig S3A
online), highlighting the dose-dependent effect of c-Cbl expres-
sion on dendritic cell function. In addition, major histocompat-
ibility complex tetramer staining further showed that the level of
circulating Ova-specific CD8þ T cells was significantly higher
following Cbl-KO vaccination, compared with wild-type DCs
(supplementary Fig S3B online). Furthermore, the level of
vaccinated dendritic cells that migrated to draining lymph nodes
remained essentially unaltered on c-Cbl ablation, reducing the
probability that elevated migration is the main cause for the
observed differences (supplementary Fig S3C online). Thus, c-Cbl
deficiency seems to improve the efficacy of dendritic-cell-based
anti-tumour vaccines.

c-Cbl deficiency reduces p105 and p50 in BMDCs
To define the molecular mechanism of c-Cbl function, we
analysed several signalling pathways associated with TLRs
(Fig 3A). As an initial screen, we examined the phosphorylation
of several key signalling molecules implicated in cytokine
induction. However, at several time points post-LPS addition,
we failed to observe significant differences in the phosphorylation
of IKKa/b, Jun N-terminal kinase, p38 and extracellular
signal-regulated kinase (ERK), or degradation of IkB protein
between wild-type and Cbl-KO dendritic cells (Fig 3A, panels 1,
2, 3, 4, and 5, respectively).

It has been shown previously that LPS-mediated ERK induction
was dependent on the p105-associated Ser/Thr kinase, Tpl2/Cot
(Dumitru et al, 2000), which, in turn, is activated on release by
IKKb-initiated degradation of p105 (Waterfield et al, 2003). We
found that LPS treatment led to protein degradation of the long
form (p58) of Tpl2, whereas the short form (p52) remained
unchanged (supplementary Fig S4A online; Waterfield et al,
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2003). However, we did not observe any effect of c-Cbl on either
Tpl2 isoform (supplementary Fig S4A online), reducing the
likelihood of a key role for Tpl2 in c-Cbl function. Interestingly,
whereas LPS-induced p105 protein degradation was consistently
observed in both wild-type and Cbl-KO dendritic cells, total p105
level was lower in Cbl-KO dendritic cells (Fig 3A, panel 6;
supplementary Fig S4B online). This finding could not explain why
we did not concurrently observe alteration of the TLR-induced
Tpl2–ERK pathway. An alternative explanation is that p105 might
exist in separate pools and c-Cbl-associated p105 molecules might
be distinct from Tpl2-bound p105. For example, Belich et al

(1999) have reported that a C-terminal region encompassing the
ankyrin repeats of p105 is crucial for Tpl2 binding, implying that
its association with Tpl2 or NF-kB dimers is mutually exclusive.
Therefore, it is possible that distinct pools of p105 might sequester
Tpl2 and NF-kB dimers independently, with c-Cbl mainly
stabilizing p105 molecules with IkB-like function.

Levels of p50 are reported to increase after TLR engagement
(Donald et al, 1995), which is consistent with our observation
in wild-type dendritic cells (Fig 3A, panel 7). However, Cbl-KO
dendritic cells failed to show LPS-induced p50 accumulation,
which remained relatively constant (Fig 3A, panel 7). We also
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found that p50 induction under these conditions depends on
proteasome function, consistent with the notion of p105 proces-
sing into p50 (supplementary Fig S4C online). Thus, c-Cbl ablation
could abrogate LPS-induced p105 processing into p50 in dendritic
cells. As c-Cbl has been shown to bind to PI3Kp85a in many
physiological settings, we also quantified Akt phosphorylation
(Meng & Lowell, 1998; Hunter et al, 1999). Indeed, Akt
phosphorylation at both Thr 308 and Ser 473 was greatly reduced
in c-Cbl-KO dendritic cells following LPS stimulation (Fig 3A,
panels 8 and 9, respectively), implying that c-Cbl might be
involved in activating the phosphatidylinositol 3-kinase (PI3K)–
Akt pathway downstream of TLRs. Thus, both Akt activation and
p105/p50 levels are greatly reduced in Cbl-KO dendritic cells
following LPS stimulation.

To rule out the possibility of developmental defects, we
suppressed endogenous c-Cbl expression in wild-type BMDCs
by using RNA interference. The efficacy of c-Cbl small-interfering
RNA knockdown was 470% by densitometry (Fig 3B, upper
panel). c-Cbl knockdown increased IL-12 production by dendritic
cells stimulated with various doses of LPS (Fig 3B, lower panel).
Compared with controls, c-Cbl-knockdown BMDCs (Cbl-KD
dendritic cells) secreted more IL-1a, IL-1b and KC, but not
MCP1 (monocyte chemotactic protein 1), MIP1a (macrophage
inflammatory protein 1a) or IL-6, similarly to the cytokine

secretion pattern of Cbl-KO dendritic cells (Fig 1A; supplementary
Fig S4D online respectively). Conversely, complementation of
Cbl-KO dendritic cells with wild-type c-Cbl suppressed IL-12
production (supplementary Fig S4E online). Finally, LPS-mediated
p50 accumulation was suppressed in Cbl-KD dendritic cells (Fig
3C). Altogether, the proinflammatory phenotype observed in Cbl-
KO dendritic cells seems to be cell autonomous and secondary to
c-Cbl deficiency.

c-Cbl inhibits stimulatory NF-jB heterodimers
The production of IL-12 by dendritic cells is tightly regulated by
NF-kB (Grumont et al, 2001). To test whether c-Cbl regulates IL-
12 secretion by NF-kB suppression, we quantified endogenous
NF-kB activity. As shown in Fig 4A, Cbl-KO dendritic cells
reflected a roughly twofold increase in endogenous NF-kB, but
not AP1 (supplementary Fig S4F online), activity in response to
different doses of LPS. Furthermore, the increased NF-kB activity
in Cbl-KO dendritic cells could be reduced by overexpressing
wild-type c-Cbl (Fig 4B). This dose-dependent c-Cbl effect on
NF-kB activity was recapitulated in 293T cells activated by a
constitutively active CD4–TLR4 fusion protein (Fig 4C; Zhang
et al, 2004). It is noteworthy that the upregulation of LPS-induced
NF-kB activity in Cbl-KO dendritic cells is not secondary to
enhanced nuclear translocation (supplementary Fig S4G,H
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online). Consistently, LPS-induced recruitment of c-Rel to the
proximal NF-kB site of the IL12p35 promoter, as quantified by a
chromatin immunoprecipitation assay, was higher on c-Cbl ablation
(Fig 4D). Moreover, electrophoretic mobility shift assay (EMSA)
suggests enhanced binding of both p50 homo- and heterodimers to
different NF-kB probes in c-Cbl-deficient dendritic cells (Fig 4E,F,
supplementary Fig S4I,J online). Thus, our data indicate that c-Cbl
negatively regulates the transcription of proinflammatory cytokines,
possibly through the regulation of various NF-kB complexes and
their recruitment to target gene promoters.

Interestingly, c-Cbl deficiency not only upregulates cytokine
secretion in response to various stimuli, but also derepresses the
resting state expression of several cytokines, including IL6 (Fig 1B).
This deregulation of proinflammatory cytokines also corresponds
to an altered state of NF-kB complexes under steady-state
conditions (Fig 4E,F). In addition, the enhanced binding of all
p50 dimers observed in Cbl-KD dendritic cells might result from
reduced levels of p105/IkBg (Ishikawa et al, 1998). Therefore, it is
possible that in c-Cbl-deficient dendritic cells, reduced p105/IkBg
level partly phenocopies NF-kB1DC macrophages, including the
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deregulation of not only c-Rel/RelA-p50 heterodimers, but also
p50 homodimers.

The RING domain of c-Cbl is required for IL-12 inhibition
To help determine the mechanism behind the regulation of IL-12
by c-Cbl, we created several c-Cbl mutants containing inactivating
mutations within the phosphotyrosine binding (PTB), RING and
proline-rich domains, plus Tyr 369, and/or Tyr 737, which is
implicated in PI3K binding. These c-Cbl mutants were over-
expressed in Cbl-KO dendritic cells before LPS stimulation, and IL-
12 protein level was assayed. As the data indicate, both the mutant
(m)RING and the mRING/Y737F double mutants were devoid of
the inhibitory effect of wild-type c-Cbl on IL-12 (Fig 5A), although
both mutants could still coimmunoprecipitate with PI3Kp85a
when phosphorylated by c-Src (supplementary Fig S5A online). It
is noteworthy that coimmunoprecipitation of c-Cbl and PI3Kp85a
correlated with c-Cbl tyrosine phosphorylation levels induced by
TRAF6-activated (Wong et al, 1999) or constitutively active c-Src
(supplementary Fig S5B online). In addition, the two Y369F-
containing c-Cbl mutants (Y369F and Y369F/Y737F double
mutant) showed a partial blockade of inhibition (Fig 5A),

consistent with its previously reported role in RING domain
function (Kassenbrock & Anderson, 2004). By contrast, the Y737F
single mutant, which does not bind to PI3Kp85a in the current
setting (supplementary Fig S5A online), retained the inhibitory
function of c-Cbl, as the observed reduction in IL-12 level was not
a by-product of increased cell death (supplementary Fig S5C
online). In conclusion, our data indicate that the RING domain
function of c-Cbl, but not its Tyr 737 residue, is required for it to
inhibit of IL-12 production in dendritic cells.

There are several descriptions of the regulatory function of p50
homodimers on proinflammatory cytokines (Bohuslav et al, 1998;
Udalova et al, 2000), which might repress gene transcription
through either competitive binding at NF-kB sites (Ledebur &
Parks, 1995) or the recruitment of histone-modifying factors such
as histone deacetylase 1 (HDAC1; Elsharkawy et al, 2010). Thus,
the effects of p50 on IL-6, tumour-necrosis factor (TNF)-a and IL-
12 protein expression following LPS stimulation were further
tested using p50 overexpression in Cbl-KO dendritic cells (Fig 5B;
supplementary Fig S5D online). We found that overexpression of
p50, but not p65, recapitulates the effect of wild-type c-Cbl on
IL-12p70 and TNF-a, but not IL-6 induction (supplementary
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Fig S5D online). Consistently, inhibition of LPS-induced TNF-a by
adding back wild-type c-Cbl in Cbl-KO dendritic cells echoes that
caused by c-Cbl ablation in wild-type dendritic cells (supplemen-
tary Fig S5D,E online, respectively). Importantly, these results
indicate that c-Cbl might inhibit cytokine expression by inducing
Akt-independent p50 accumulation (left panel, supplementary Fig
S5F online). This idea was further supported by the strong
correlation between the ability of several c-Cbl mutants to induce
p50 and their inhibitory effect on IL-12 levels (Fig 5C,D,
respectively). In addition, blockade of proteasomal function did
not increase p50 level in Cbl-KO dendritic cells following LPS
stimulation, refuting the possibility of a direct role of c-Cbl in p50
protein stability (supplementary Fig S5G online). By contrast, c-
Cbl-mediated p50 accumulation following TLR engagement does
not seem to result from enhanced p105 transcription, because
ablation of c-Cbl does not lead to downregulation of p105 mRNA
levels (supplementary Fig S5H online). In conclusion, it seems that
c-Cbl regulates p50 levels in a RING-domain-dependent manner,
by stabilizing p105 protein. Inhibition of c-Cbl can lead to
improved dendritic-cell-based vaccines.

METHODS
The supplementary experimental procedures online contain
details of BMDC preparation, western blot analysis, description
of reagents, constructions of plasmids, c-Cbl mutants, NF-kB
nuclear translocation assay, in vivo migration assay, in vitro T-cell
proliferation assay, cytotoxic T-lymphocyte assay, macropinocy-
tosis assay, IFN-g ELISpot assays, chromatin immunoprecipitation
assay, quantitative reverse transcription polymerase chain reac-
tion, semi-quantitative real-time polymerase chain reaction,
lentivirus preparation and quantification of sera antibodies.
Mice and cells. c-Cbl-deficient mice were obtained from Taconic
Farms (Hudson, NY, USA) with permission from Hua Gu
(Columbia University, NY, USA). Immature BMDCs were differ-
entiated as described previously (Inaba et al, 1992), with some
modifications (Lutz et al, 1999). Briefly, bone marrow cells were
collected from tibias and femurs of both wild-type and Cbl-KO
mice and subsequently cultured in complete RPMI 1640 (with
10% fetal bovine serum and antibiotics) supplemented with
murine granulocyte–macrophage colony-stimulating factor
(20 ng/ml, Invitrogen, Carlsbad, CA, USA) and IL-4 (10 ng/ml,
eBioscience, San Diego, CA, USA) for 6 days before collection for
experiments. Mice used for bone marrow preparations were
always female, aged between 7 and 10 weeks.
In vivo tumour study. Female 5–7-week-old C57BL/6 mice were
inoculated subcutaneously with Ova-expressing E.G7-Ova cells
(5� 105) 3 days before rear footpad vaccination with 2� 106

CD11c-enriched BMDCs. E.G7-Ova cells were maintained under
continuous G418 selection (0.4 mg/ml). Before vaccination, Cbl-
KO or wild-type BMDCs were pulsed with Ova protein (50 mg/ml;
Worthington Biochemical Corp., Lakewood, NJ, USA) and
stimulated with LPS plus CD40 ligand (R&D Systems Inc.,
Minneapolis, MN, USA) in vitro. Tumour sizes were calculated
every 3 days as w2� l� 0.52. All experimental procedures were
conducted according to protocols approved by the Baylor
Institutional Animal Care and Use Committee.
Western blots. Cells were lysed with a Brij97-based lysis
buffer containing protease inhibitor cocktail (Sigma-Aldrich Inc.,
St Louis, MO, USA) before SDS–PAGE, as described previously

(Zhang et al, 1998). For enhanced chemiluminescence, Super-
Signal western blotting substrate was used (Thermo Fisher
Scientific Inc., Huntsville, AL, USA). Images were created by
using an X-ray film or a 4,000 MM Gel Documenting System
(Kodak, Rochester, NY, USA).
Electrophoretic mobility shift assay. EMSA was conducted as
described previously (Plevy et al, 1997). Briefly, nuclear extracts
from control or Cbl-KD dendritic cells were prepared and lysates
were subjected to EMSA with the following 32P-labelled kB
oligonucleotide probes: Ig-kB, 50-CAACGGCAGGGGAATT
CCCCTCTCCTT-30 (Chang et al, 2009); IL-12-kB1, 50-GATCG
TCCTGGGAAAGTCCTGCCGGATC-30; IL-12-kB2, 50-GATCCC
ACTGGGAATCCCTTCAGCCGATC-30 (Grumont et al, 2001);
TNF-a-kB, 50-GATCCACAGGGGGCTTTCCCTCCA-30 (Baer
et al, 1998). As controls, non-labelled, mutant probes were used
(mQ: 50-GATCCACAGGTTGCTTTCCCTCCA-30). We used the 30–
50 Klenow fragment of DNA polymerase I to label the annealed
probes with pre-designed sticky ends (New England Biolabs,
Ipswich, MA, USA). For the supershift experiments, the indicated
antibodies were added to the binding mixture 15 min before
probes were included (detailed information of antibodies used for
supershift are included in the supplementary experimental
procedures online).
Quantification of secreted proteins. Enzyme-linked immunosor-
bent assays (ELISAs) were conducted according to the manufac-
turer’s instructions (BD OptEIA ELISA Kit, BD Biosciences Inc.,
San Jose, CA, USA). For simultaneous quantification of several
cytokines/chemokines, a LINCOplex Cytokine kit was used
according to the manufacturer’s protocol (Millipore, Billerica,
MA, USA).
Other assays. Secreted alkaline phosphatase (SEAP) reporter
assays were conducted as described previously (Hanks et al,
2005). For BMDCs, constructs were delivered by nucleofection as
described in the manufacturer’s manuals (Mouse DC Nucleofector
Kit, Lonza, Basel, Switzerland). The transfection efficiency was
consistently more than 50%, as validated by green fluorescent
protein expression. For flow cytometry, fluorophore-conjugated
antibodies were used according to the manufacturer’s protocols.
For intracellular cytokine staining, cells were treated with 1 mg/ml
brefeldin A (Sigma-Aldrich) for 6 h before staining. Subsequently,
staining was performed using a Fix/Permeabilization kit (BD
Biosciences). Data were collected with a BD LSRII flow cytometer
(BD Biosciences) and analysed with WinMDI software (Joe Trotter,
The Scripps Institute, CA, USA).
Statistical analysis. Statistical significance was determined by
using Student’s t-test between highlighted groups unless indicated
otherwise, and a 95% confidence was taken as Po0.05.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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