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Abstract

We report the development of radiative transport model based fluorescence optical tomography
from frequency domain boundary measurements. The coupled radiative transport model for
describing NIR fluorescence propagation in tissue is solved by a novel software based on the
established Attila™ particle transport simulation platform. The proposed scheme enables the
prediction of fluorescence measurements with non-contact sources and detectors at minimal
computational cost. An adjoint transport solution based fluorescence tomography algorithm is
implemented on dual grids to efficiently assemble the measurement sensitivity Jacobian matrix.
Finally, we demonstrate fluorescence tomography on a realistic computational mouse model to
locate nM to M fluorophore concentration distributions in simulated mouse organs.

1. Introduction

Small animal imaging can play an integral role in elucidating the biomolecular aspects of
disease and health, as well as in confirming the in vivo molecular action of therapeutic drug
candidates. While nuclear medicine with gamma and beta emitters will continue to offer the
“gold standards” of molecular imaging owing to the exquisite sensitivities and the ability to
isotopically label drugs, the convenience associated with fluorescence labels suggests a
prominent role of optical imaging in drug discovery. The objective of fluorescence optical
tomography is to recover interior maps of fluorescence yield and/or fluorophore lifetime
distribution from boundary fluorescence measurements. A variety of fluorescence
tomography systems and approaches have been proposed in the recent years, which utilize
both steady state [1, 2] and time varying NIR excitation sources [3—7]. While steady state
measurements of fluorescence light intensity on the tissue boundary can be used to recover
only the fluorophore yield distributions, time varying measurements with pulsed or intensity
modulated excitation enables the additional recovery of fluorophore lifetime distribution and
maybe less susceptible to changes in endogenous tissue properties [8, 9]. Since light
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multiply scatters in tissue, standard backprojection based image reconstruction algorithms
may not be applicable for accurate image reconstruction. Hence, model based tomography
schemes which account for scattering and attenuation of light in biological tissue by solving
a photon transport model are typically employed in optical tomography. [10] In the model
based tomography framework, the forward problem step consists of solving a light transport
model to predict boundary fluorescence measurements for a given interior fluorophore
distribution, and the known excitation source placement on the tissue boundary. The
predicted measurements are compared with the experimentally observed boundary
measurements, and the interior image map is then iteratively updated to minimize the
difference between the predicted and observed measurements. The diffusion approximation
to the equation of radiative transfer is the predominant forward model used in optical
tomography because of its ease of implementation, and wide availability of numerical
solvers for solving diffusion equations in arbitrary domains. The limitations of diffusion
approximation for predicting boundary measurements in optically thin media (i.e. when
absorption is comparable or dominates scattering), small distances between illumination and
collection points, and the presence of void or strongly forward scattering tissue regions, all
have been explored by both theoreticians and experimentalists [11-18]. These limitations of
diffusion approximation are particularly concerning for small animal imaging, primarily
because of the limited volumes of the 20-25 gram mice typically used in drug discovery and
molecular medicine studies. To adequately apply diffusion approximation for model based
image reconstruction in small animal tomography, Culver et. al. [4] and Ntziachristos et. al.
[19] suspended the imaged animals in matching scattering media such as Intralipid solution,
resulting in signal loss due to additional light scattering and attenuation in the matching
media.

1.1. Radiative Transport Equation for the Forward Problem

To address the shortcomings of diffusion model based optical tomography, other
investigators use the more general radiative transport equation (RTE) to model photon
propagation in biological tissue. Since, analytical solutions of the RTEs are not applicable to
conditions of heterogeneous backgrounds and physiological geometries pertinent to
biomedical imaging, most of the prior published work has focused on the development of
numerical techniques. RTE models the angular distribution of light flux at every point in the
domain of interest. Numerical schemes for solving RTE need to discretize the solution in
both angle and space. Discrete ordinates angular discretization schemes (called Sy methods)
are widely used for solving RTE. In Sy methods, RTE is allowed to hold only over a discrete
set of angles belonging to a user specified quadrature set. Dorn [20] and Hielscher et al. [21]
pioneered radiative transport model based optical tomography by numerically solving RTE
with a Sy method coupled with an upwind step differencing based spatial discretization of
light flux on a regular grid [12,22,23]. In later work, they extended the method to continuous
wave fluorescence optical tomography. [24] Step differencing methods are limited to slab
like geometries, and the convergence of RTE solution with upwind step differencing is
strongly dependent on the grid spacing. Ren et. al. [25] proposed a discrete ordinates finite
volume discretization based method for solving the frequency domain radiative transport
equation. Finite volume methods can handle arbitrary geometries discretized with
unstructured tetrahedral meshes, but they suffer from the same numerical inefficiencies as
the step differencing schemes especially with respect to the convergence rates and the mesh
resolution needed for accurate solutions. To obtain accurate solutions, the grid spacing
should be on the order of mean transport length, which is approximately 1mm in biological
tissue, thus increasing the computational burden of RTE model based optical tomography.

In this contribution, we demonstrate for the first time model based frequency domain
fluorescence optical tomography with a proven RTE solver which couples the Sy scheme to
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a discontinuous Galerkin finite element method (DGFEM) based spatial differencing
scheme. Our approach allows the use of unstructured tetrahedral meshes to describe
arbitrary geometries like the finite volume methods do, however, unlike the finite volume
methods, the accuracy of RTE solution with DGFEM differencing schemes is mesh
independent, hence allowing the use of coarser meshes.

1.2. Inverse Problem Considerations for RTE

Model based optical tomography requires the computation of sensitivity function of each
measurement to the unknown image voxels. The computation of sensitivity or Jacobian
matrix is a major bottleneck governing the efficiency of RTE model based tomography. In
related methods, where the tomography problem is posed as an optimization problem, the
computation of the gradient vector of the optimization cost function is required. The
optimization cost function describes the difference between the model predicted and the
actual observed measurements in an L, norm sense and the gradient vector represents the
sensitivity of the cost function to unknown image voxels. In the literature, Klose et al. [26]
have proposed a reverse automated differentiation (RAD) based strategy for the cost
function gradient computation in RTE based tomography. RAD was initially advocated by
Christianson et al. [27] for optical tomography, and later utilized by Roy and Sevick [28] for
diffuse fluorescence tomography. RAD requires the storage of all steps involved in the
forward RTE computation, and to compute the sensitivity or derivative of a given function
of measurements, chain rule of differentiation is used to step backward through the stored
forward computation steps. While fast, RAD is limited to forward RTE computation with
the straightforward source iteration techniques. In highly scattering media like biological
tissue, source iterations for solving the discretized RTE system converge slowly. Diffusion
Synthetic Acceleration schemes which have been proposed in the nuclear engineering
community to speed up the convergence of source iterations significantly, add up a number
of intermediate steps to the forward RTE computation and makes the application of storage
based schemes like RAD difficult. As a result, RAD based sensitivity computations have not
been shown to incorporate the powerful diffusion synthetic acceleration based source
iteration. In an alternative RTE model based optical tomography application, Dorn [29, 30]
has shown the use of adjoint RTE solution for computing the sensitivity of measurement
functions to the unknown image map. Dorn used the discrete ordinates upwind step
differencing scheme to solve the forward and adjoint radiative transport equations and
solved the diffuse optical tomography problem on a two dimensional model problem. In this
contribution, we demonstrate an efficient tomography scheme which utilizes adjoint RTE
solution on unstructured tetrahedral meshes for computing the measurement sensitivity
functions. As a diffusion synthetic acceleration scheme is implemented, the forward and
adjoint RTE computations are fast compared to plain source iterations.

1.3. Non-Contact Fluorescence Optical Tomography

The development of a noncontact tomography system that does not require the immersion of
an animal in a scattering solution and enables lossless propagation of photons from
excitation sources to the tissue boundary, and from tissue boundary to the detectors, should
improve sensitivity and light budget considerations. Non-contact imaging with both the
excitation sources and detectors delivering and collecting light through nonscattering media,
requires modeling of highly directional photon transport. The approach requires a high order
of Sy discretization to avoid ray effect anomalies [31]. On the other hand, only a moderate
Sy order is needed within the animal itself, where photon scattering is forward and
approaches isotropic scattering within a few mean transport paths. In this work, we
implemented a hybrid strategy, which breaks up RTE solution into uncollided and collided
photon fluxes. The uncollided component from the excitation source is computed semi-
analytically to produce a distributed source inside the animal body, wherein a moderate Sy
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order is used for computing the collided flux RTE solution. The scalar light flux at the non-
contact detectors is computed semi-analytically by using a high order Sy quadrature set and
integrating through the detector field of view along the rays passing through animal body.
This hybrid RTE scheme using the first scattered distributed source (FSDS) and the last
collided integrated detection allows highly accurate yet fast solution in non-contact imaging
conditions.

The paper is organized into the following sections: in section-2 we briefly describe (i) the
DGFEM based Sy computations with the implementation of (ii) FSDS and (iii) last collided
integration based non-contact fluorescence imaging, followed by (iv) the derivation of
adjoint RTE solution based fluorescence tomography. In section-3 we describe the
generation of a synthetic MRI derived mouse phantom and outline the computational
experiments to validate RTE model based fluorescence tomography. In section-4 we report
the results on efficiency and accuracy gains for FSDS/last collided integration method, the
sensitivity matrix computations, and the simulated image reconstructions on the
computational mouse phantom. In section-5, we conclude by summarizing the innovations
and describing ongoing work to implement RTE based tomography.

2. Methods

The coupled radiative transport equations describing the generation and propagation of
fluorescence in frequency domain are written as:

Q-VO.(r,Q, w)+

>+ 2] o1, Q,0) — 01 =S (1, . Q)
T Cy (1)

Q- -V, (r,Q, w)+

Zm(r)‘*' Z_ai] d),,,(l‘, Q w)- Q:"Zm:S (T, W, Q)
T m

Q=" () [, p(Q- Q)P (r. Q' w)dQ

. v(r)pu‘ (r) ~
- Swr 0, Q)=7 J iy Tt B (r, Q. 0)dQ ’
2= )+ (04, (1), p()=v(r)u; (r) 3)

Herein, @ denotes the angle dependent fluence, with subscripts x and m denoting excitation

x,m
and emission wavelengths respectively; ¢y n is the velocity of light in the medium, ZT (r)
is the spatially varying attenuation coefficient (cm™1); w is the modulation frequency;

15"(r) is the scattering coefficient (cm™1); x5 (r) is the absorption due to chromophores
(cm™1); #Z}”(ﬂ is the absorption due to fluorophores; v(r) is quantum efficiency of the
fluorophore and z(r) denotes the lifetime of the fluorophore; Sy (r, w, ) is the boundary

excitation source; Q7" denotes the scattering source, wherein p(Q - Q') is the phase function

scat
identifying the probability of a photon scattering from the direction Q' to Q. Herein, we treat
the spatially varying fluorescence yield #(r) denoted by the product V(l')#:f(r) as the
unknown parameter. A model based tomography approach for determining the fluorescence
yield map in the tissue from boundary measurements requires the solution of multiple
forward and adjoint transport problems corresponding to the source-detector locations. In
the following, we describe the discrete ordinate based angular and discontinuous finite

Phys Med Biol. Author manuscript; available in PMC 2011 September 3.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 5

element based spatial differencing scheme for solving the coupled transport equation system
(1)-(2). Equations (1)—(2) are coupled only in the forward direction with the solution dy(r,
Q, w) for Equation (1) determining the external source for Equation (2). For sake of brevity,
we will present the solution steps for Equation (1) only, as an analogous procedure applies
for Equation (2).

2.1. RTE solver

The transport equation solver for optical fluorescence modelling was developed on top of a
pre-existing general purpose radiation transport analysis system Attila" (Transpire Inc. Gig
Harbor, WA, USA). Attila™ was initially developed at the Los Alamos National Laboratory
[32], Los Alamos, NM, USA. In Attila™ numerical solution of transport equation involves
two steps: (i) angular discretization by discrete ordinates method, (ii) spatial discretization
by discontinuous finite element based differencing and the solution of the resulting linear
systems with source iteration method coupled with diffusion synthetic acceleration(DSA).

2.1.1. Discrete Ordinates Angular Discretization—As a first step before applying
discrete ordinates angular discretization, the scattering phase function p(Q - ©') is expanded
in terms of Legendre polynomials P|(Q - Q'):

I 2041
PQ-Q)=) = —bPi(Q-Q)
= )

Here b) are the Legendre expansion coefficients. For by = g', where g is the tissue anisotropy
or mean cosine of the scattering angle (< Q - Q'>), Equation (4) is reduced to the well
known Henyey-Greenstein phase function [33].

Next the angular fluence cﬁx(r, Q, o) is expanded in terms of spherical harmonic functions
Y/"(©) and associated moments ¢/ (r)

oo m=l
S (rQw=y Y Q). ¢m=[, Q)b r.Q . w)dQ
=0 m=—1 (5)

Typically only a finite number of spherical harmonic moments L are used to limit
computation time. After substituting equations (4) and (5) into (3), the scattering source can
be written as:

SEES
I e WA A

1=0 m=—I (6)

Within the discrete ordinate approximation, the transport equation is satisfied exactly only
for a finite set of angles Qp, n =1, 2...N, which is chosen to form a quadrature set that
solves the angular integral involved in the scattering source (5). Applying the discrete
ordinates approximation, we obtain a coupled system of N equations:

Q VI m+ Y ®BLE) - 01, R)=S (. Q) By 1)=0"(r, Q)
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The coupling term for system (7) results from quadrature based evaluation of the spherical
harmonic moments }"(r):

y
D= ¥ @)y Qw,,  w,>0, Y =l o
n=1 n 8

The accuracy of solution increases with the number of discrete ordinate directions chosen,
with the corresponding increase in computation time. Weakly scattering regions require a
higher angular quadrature order to reduce ray effect anomalies.

2.1.2. LLD spatial discretization and solution with DSA—The discrete ordinates
system of equations (7) is solved by discretizing the domain into an unstructured tetrahedral
mesh which enables the modeling of physiological geometries encountered in biomedical
imaging. Attila™ employs a lumped linear discontinuous (LLD) differencing scheme. The
LLD based spatial discretization enables higher solution accuracy at coarser mesh
resolutions compared to the more prevalent first order continuous spatial differencing
schemes. Each tetrahedral element is treated as a discontinuous finite element (DFEM) with
4 unknowns at the corner points. Each corner point is unique to a tetrahedron, hence the
angular fluence is discontinuous across element faces. DFEM based differencing equations
are detailed in References [34, 35] and are not repeated here. Fully discretized discrete
ordinates system with 4 X Ngrginates X Nelements iS S0lved by the source-iteration(SI) method.
S| methods converge slowly for problems with significant within energy-group scattering
which is the case with optical imaging. Attila™ implements a diffusion synthetic
acceleration (DSA) scheme to improve the convergence rate of the SI method. Restricting
the scattering source expansion (6) to the first term, a typical Sl iteration coupled with the
acceleration step for nth ordinate direction can be written as:

Q, - v, P Y 0d =i 4 Q) ©

-V _ V6¢().k+] +ﬂ,\'6‘p(),k+|=#x ¢().k+l/2 _ (,DUJ\.
snrm o s = (e ) (10
0k+1_ 0k+1/2 0,k+1
(p() —900 +(S(f0 (1 1)

where k is the iteration index. The diffusion calculation (10) is performed to estimate the

error in scalar fluence 6¢2’k*'. Attila™ implements a DSA scheme developed by Wareing,

Larson and Adams [36,37], wherein the diffusion equation is discretized to a continuous
finite element form on the same grid as used for the DFEM discretization of discrete
ordinates equations as described in Reference [36]. To conduct an Sl sweep, that is to solve
equations (9) to (11) over all discrete ordinate directions and for each tetrahedron, the
angular flux unknowns need to be arranged into a block lower triangular form. On an
unstructured mesh, this involves ordering the elements in such a way that for traversal
through a given ordinate direction, the ordered element list results in a block lower
triangular form. The sweeping order is established once and reused for subsequent iterations.
[36]

Phys Med Biol. Author manuscript; available in PMC 2011 September 3.
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2.2. First scattered distributed source computation

A high order angular quadrature set is needed to avoid ray effects in transport equation
solutions for weakly scattering media. Most biological tissues are strongly scattering and a
low order angular approximation provides sufficient accuracy. However, for imaging
applications in which the animal is surrounded by non-scattering media and a non-contact
illumination is used, a higher order quadrature is necessary to resolve the transport of
excitation photons to the animal boundary. As depicted in Figure 1(a), these computations
can be carried out efficiently by breaking the transport calculation in two stages: (i)
computing an analytical ray trace of unscattered photons through out the imaged domain,
followed by (ii) a low angular quadrature based numerical transport solution with the
uncollided photons acting as external sources of photons. Consider a unit strength isotropic
source located at rg, then the excitation transport equation can be written as:
S
T Cy

- - : 1
Q-VO.(r,Q,w)+ O(r,Q, w) — Qs‘.(.u,zaé‘(r -ry)

(12)

Splitting the angular excitation fluence into unscattered (superscript “unsc”) and scattered
(superscript “sc™) components, we have:

x,unsc

D, (r,Q, w)=d r,Q, w)+d"(r,Q, w) (13)

The excitation transport equation (12) for the unscattered and scattered components can now
be written as:

Q- VO™ (r, Q, w)+ [Z"(r)+ E] & (r,Q, w):lo‘(r -ry)
T Cy 4r (1‘})

Q- V(i)“u.(l‘, Q, O))+ &)"‘x('(r’ 07 w) _ Q;'(,‘.th':Q,\:unsc

scat

x iw
Z)‘ (l‘)+:

X

(15)

In (15), the term Q;;* is the additional scattering source due to the uncollided photon

scat
distribution and is evaluated by substituting the solution ®*U"S¢(r, Q, w) of (14) into (6).
The analytical solution of (14) is given by:

~ X,Unsc — Ly 1 —d(rrs)
(I),,ML (r’g,w):é(97 r—r )_e

Ir—ryl) 47 |r — ¢, (16)

Here, d(r, rg) is the optical path between r and rg. [31] Optical path d is the line integral of
the total cross section along the line of photon travel. For the frequency domain excitation
transport equation, it can be expressed as:

[r—rs| x ;T —Ty iw ’
der=lo [Z = m)T] " (17)

The spherical harmonic moments of the unscattered photon flux can be computed by
substituting (16) into (5):
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—d(r,rs
m,unsc_Ym( r—r ) 1 g~dnrs)

o -l A e — vy 2 (18)

Equations (16) and (17) define the volume distributed source Qqcat for the transport equation
corresponding to the scatter component (15).

2.3. Last Collided integration method

For imaging small animals surrounded by non-scattering media, wherein the light collectors
are located away from the animal body, a high angular quadrature order is needed to obtain
accurate numerical RTE solution at the collector locations. To avoid the ensuing
computational burden, Attila™ implements a last collided integration approach, that can be
used to rapidly obtain accurate scalar photon flux at distant collectors without inflating the
discrete ordinates quadrature set. With the last collided integration approach, the scattered
flux is computed precisely only in the animal volume and not in the clear region surrounding
the animal. The concept of last collided integration at the detectors is illustrated in Figure-1b
for a hypothetical photon collector positioned at rq. A moderate angular discretization,
which is enough for approximating the nearly diffusive NIR photon propagation in tissue is
used in the entire domain surrounding the animal and collector locations. The scalar flux at
the collector is not computed directly from the numerical transport solution, but is obtained
via postprocessing on the numerical transport solution by the application of integral
transport theory. The last collided approach implemented in Attila™ follows from the
integral form of the transport equation described in reference [31]. We will present the
outline of the method for the excitation transport equation. Equation (1) can be transformed
into the following integral equation for obtaining the angular flux at the collector location ry:

B4, @, )= [ dR Qlrg — R Qe 5K D)1 (1 — RQ, Q, w)edrsri-K D

Oty — RQ)=0},,,(rs — R Q)+S (r; ~ RQ), Q) (19)

Where, R is the distance along the direction  looking backward towards the imaged
volume from the detector position rg; d is the optical path between rq and rq — R'Q as
defined earlier in (17). If R is extended to the boundary of the computation domain, then the
second term represents the contribution due to boundary conditions. Upon extending R to
infinity and under vacuum boundary conditions, the scalar or angle integrated flux at the
collector position reduces to:

D (ry, (u)=fdQﬁde, O(ry — R'Q)e(fd(ru‘/—R'm) 20)

The collected flux can be computed after the numerical solution of the transport equation, by
utilizing (20) directly. After the Sy iterations have converged, the scattering source Q(r) is
known everywhere in the domain. The infinite integral in (20) is computed only in the
problem domain as Q(r) vanishes outside of it. Most importantly as the scattering cross-
section us is zero in the clear region surrounding the imaged animal, it doesn’t contribute to
detected scalar flux. Hence, the inaccuracies in the numerical transport solution in the clear
region due to inadequate spatial and/or angular discretization do not propagate to the
computation of detected scalar photon flux. Even high angular quadrature orders such as Sgg
or S1gp can be used to solve (20) as these computations are semi-analytic and fast compared
to the transport Sy iterations. As a special case, detector specific quadrature sets as needed
for fiber optic based NIR measurements can also be generated. [18] In the results section, we
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demonstrate the accuracy and efficiency gains of the last collided integration approach for
the forward RTE model.

2.4. Solution of the RTE based inverse imaging problem

For brevity, we write the coupled frequency domain excitation and emission transport
equations as a block linear system:

ERAELE
_B,\'m Hm (Dm 0 (21)

~ xm 1w .
H. = -VOD.,, ) _ p5m
o o [27 w0+ C.r.r;z] Ort (22)
B & V(r)ﬂ;'f(r)d) 0L
xm AA_E“{“‘”WT(I') (1, Q, w)e 23

The general fluorescence tomography problem involves the determination of discretized
fluorescence absorption coefficient Har={ }, i = 1, 2...N from a set of discrete boundary
measurements of scalar emission fluence z = {z}, j = 1, 2...M, where z; is defined as:

i
Z/‘:fajq’m. 0j is the angular aperture of the j™" photon collector. The measurements z depend
nonlinearly on the unknown fluorescence absorption .. The tomography problem can be

linearized if a first order Taylor series expansion about a initial fluorescence map u;‘fo is used
to describe the boundary fluorescence measurements:

2 20=J - (13 — 13,) Jz[ o ]
u

Ottye

X X

ity (24)

Where J is the jacobian sensitivity matrix with dimensions of MxN, where M is the number
of measurements and N is the number of unknowns. Calculation of the Jacobian matrix
dominates the computational cost of typical optical tomography algorithms. A member of
the matrix J corresponding to the sensitivity of j" measurement with respect to the ki
unknown image voxel can be expressed as:

& J -
0z _f(),aq)m_< 00,,
X CE LY
aﬂ“.f 3 ou afy 6ﬂ“f 3 (25)

Jj=

Where Dj(r, ) = é(r - rdj) for Q in 6, 0 otherwise and

D, , D,y
s |, DjadQ

o

<D ™
Hafy Hag,

J»
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Here, rq; is the spatial position of the jt collector and Dj(r, ) is a modified Dirac delta
function which characterizes its spatial and angular response. J can be efficiently computed
by employing the adjoint transport equation. We define the adjoint system for j" detector
with response Dj as:

[ HT _B;:'m ] ql{ _[ 0 ]
0 H, || ¥, D; (26)

Here, H..,, are the adjoint transport operators. For vacuum boundary conditions, H” is
defined as:

H,=—Q-Vd,,+ [Z:"’m - } - o

x,m (27)
The adjoint operator B*_ is obtained by taking the complex transpose of Byy,
. 1 v(r),u(‘,f(r) ~
B e e Tty o)

It can be observed that the adjoint transport operator for photon propagation in frequency
domain is reversed in direction and time(phase) with respect to the forward operators. Figure
2 illustrates the adjoint source positioned at the collector location.

The particle flow from the adjoint source is directed outwards from the animal body, as
against the inwards particle flow used for forward RTE simulations. The jkth element of the
Jacobian matrix (25) can then be expressed in terms of the adjoint solutions ¥y n, by
exploiting the definition of the adjoint operator:

g OH:
X >_<lP\" x x

Jx=<Dj,
af, Haf, Haf, (29)

&) = = j 68\) =
" (IJi\.>+<‘}’;’,,,(3 2 H >

The first term on the R.H.S of (29) can be dropped upon invoking the Born approximation,
wherein the excitation field is assumed not to be perturbed by the presence of fluorescent

target. The adjoint solution ‘i’;iz does not depend on the particular image voxel index k, hence

in a linearized tomography algorithm, the adjoint solutions \P{;, can be precomputed and
stored for all M collector locations. The Jacobian matrix can then be assembled on demand
provided the forward solutions @y corresponding to all excitation sources are available. The

computation of the terms 63_\-,;1/5#;‘,'“ depends upon the discretization scheme employed, but

it is straightforward as the operator By, depends linearly on qu. In fact, J doesn’t even need
to be explicitly constructed. Iterative solution methods such as algebraic reconstruction
technique or conjugate gradient least squares, only require matrix-vector products involving
J, and they can be implemented directly with (29) once the respective forward and adjoint
RTE solutions are available. As J is illposed, stable Born linearization based image
reconstruction in a single iteration requires J to be overdetermined (M > N). Frequency
domain measurements produce two measurements per source-collector pair in the form of
amplitude and phase, hence allowing the use of a lesser number of source-detectors
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compared to steady state measurements. In the results section, we present RTE model based
fluorescence reconstructions from synthetic data based upon the solution of (24).

3. Synthetic Mouse Phantom and Computational Experiments

We tested the developed RTE solution scheme and conducted simulated tomography
experiments on the MOBY mouse dataset made available by the Johns Hopkins University.
[38] MOBY phantom is a collection of NURBS (Non-uniform Rational B-Splines) curves
and surfaces defining the various mouse organs and it has been employed by other
researchers. [39] We converted the NURBS based mouse organ descriptions into a standard
CAD (computer aided design) format STEP, and the geometries were simplified in a solid
modelling software SolidWorks™. The major organs in the mouse torso were modelled along
with the skull, ribs, and the spinal structure. The modelled organs along with the optical
properties obtained from literature [40, 41] in the wavelength range of 600 — 850nm are
listed in Table-1 and for the purposes of this feasibility study, assumed to be wavelength
independent. As shown in Figure 3, a highly refined tetrahedral mesh 127466 elements was
generated with the mesh generator incorporated within the Attila™ platform, and used to
generated simulated measurement datasets. The mouse was simulated as being positioned in
a 2.9 cm diameter cylinder surrounded by water, for the purposes of investigating delivery
and collection of light through a non-scattering media, while avoiding the complications
arising out of partial refraction and reflection effects at the animal boundary.

Two sets of computational experiments were performed to illustrate RTE model based
fluorescence tomography. In the first synthetic experiment, we validated the computational
efficiency and accuracy gains obtained by implementing the FSDS/last collided integration
approach for solving the RTE based forward problem. Measurements were generated by
simulating uptake of 1uM Indocyanine Green dye in the kidneys of the MOBY phantom. As
shown in Figure 4 a source placed at the circumferential ring near the kidney locations was
switched on, with measurements computed at all the collection sites on the same ring. The
sensitivity of the solution to angular discretization was evaluated by first using a high order
S12 angular discretization, and Pg level Legendre polynomial expansion for the scattering
source in the entire domain which includes both the animal and the surrounding media with
sources and detectors. With the triangular tchebychev quadrature set employed, Sy
discretization results in Nangles = 12 * 12 + 12 = 156 discrete angles in the unit sphere. Pg
expansion was used to account for the highly forward directed excitation source. Other
measurements were generated with a lower order S, angular quadrature (4 * 4 + 4 = 20
discrete angles) and P3 level Legendre expansion for the scattering source, while using
different last collided integration schemes for obtaining the simulated measurements.

The second set of computational experiments were conducted to demonstrate RTE model
based tomographic determination of single and multiple fluorescent targets in small animal
volumes. Synthetic measurements corresponding the uptake of 10nM ICG dye in the
bladder, and the uptake of 1uM ICG in both the kidneys were generated. The sources and
collectors were modelled as points with a 20 degree numerical aperture, creating a cone
shape equivalent to the effective collimation in the fiber optic cable. Rings of sources and
collectors were simulated to be at axial intervals of 0.5 cm, with 20 circumferentially spaced
sources and collectors at each axial location as shown in Figure 5. 2% white noise was
added to the simulated measurements. Five source-detector rings placed 0.5cm apart around
the mouse torso between kidneys and bladder were used. While all the 100 detectors on the
five rings were employed, only the data from 60 sources on the middle 3 rings were used for
reconstruction. Frequency domain measurement data was simulated on the refined mesh
illustrated in figure 3 with the endogenous optical properties of different organs listed in
Table-1. A linearized Born type tomography algorithm described in section 2.4 was used to
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obtain the 3-D images of reconstructed fluorescence absorption on a different mesh than that
used for generating synthetic data or for computing forward/adjoint solutions.

Computations were carried out on a 16 node Beowulf cluster, with dual opteron 2.2 GhZ
processors and 8 GB of system memory per node. Typically one processor was allocated to
handle one forward/adjoint computation.

4.1. Effect of FSDS and last collided integration schemes

Figures 6(a) and 6(c) depict the excitation and fluorescence emission amplitudes at the
detectors positions shown in Figure 4 for the high order Pg-S1, approximation based
numerical solution and the low order P3-S4 simulation. As expected, the P3-S4 solution
oscillated around the high order solution, because S4 quadrature order was not enough to
simulate the highly directional photon transport in water surrounding the mouse phantom.
Figures 6b and 6d depict the two solutions again, but with the detector flux from P3-S4
solution calculated by an Ssq order last collided integration on the primary numerical
solution according to (20). An Ssg quadrature order fills in the unit sphere with 2550 angles,
which is sufficient to integrate the scatter solution in animal body, while the last collided
approach rejects the ray effect analogies in the non-scattering media surrounding the
phantom. In Table-2, the computational times and the mean squared error with the Pg-S12
solution is reported for the P3-S4 solution and the last collided integrations with orders Sy,
S50, and Sy1gg. The Pg-S15 solution at over 12000 seconds is the most expensive, while the
P3-S4 solution at about 700 seconds is fast but most inaccurate. The computational times
required by increasing orders of last collided integrations differ only marginally from the
cost of stand alone P3-S4 solution. The accuracy increases with quadrature level up until Sg.

4.2. Fluorescence reconstructions

To reconstruct the fluorescence absorption images from the synthetic measurement datasets
corresponding to ICG uptake in kidneys and bladder as described in the previous section, we
first need to generate the Jacobian sensitivity matrix of measurements with respect to the
unknown image voxels. The forward and adjoint computations needed to compute the
Jacobian matrix (29) were carried out on a separate mesh from the synthetic data generation
mesh depicted in Figure 3. This was done to prevent the possibility of any inadvertent
inverse crime, as well as to mimic the real small animal imaging, wherein the endogenous
optical property distribution of the small animals will not be precisely known. The forward/
adjoint solution mesh used for image reconstruction studies is depicted in Figure 7. The only
prior knowledge used in the construction of the tetrahedral mesh was the knowledge of the
phantom boundary which can be obtained by a variety of methods including Xray CT,
micro-MRI, or PET transmission scans, or by the newly reported optical projection
techniques [42]. For carrying out the forward/adjoint calculations, we assumed the
endogenous absorption and scattering in the entire phantom to be uniform and equal to the
optical properties of the muscle tissue listed in Table-1. Since the muscle comprises the
largest component of the synthetic mouse phantom, the assumption of a single bulk optical
property of an intact animal is most practical for applications. The unknown fluorescence
absorption map was discretized on a separate voxelized grid with 2mm cells to limit the
number of unknowns as depicted in Figure 7. Figure 8 illustrates the measurement
sensitivity plot for a typical source-detector pair. These profiles are similar to but less broad
than that obtained in diffusion model based tomography schemes. The image reconstructions
were carried out by solving the Equation (24) with the least squares algorithm LSQR
implemented in MATLAB (Mathworks, Inc., Natwick, MA). No explicit regularization was
used, however the LSQR iterations were truncated at 300.
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The true and reconstructed fluorescence images are depicted in Figure 9. The true
magnitudes of fluorescence absorption in 0.598cm~1 in kidneys, and 0.00598cm ™1 in the
bladder. The recovered magnitudes of approximately 0.15cm™1 in the kidneys and
0.0005cm ™1 in the bladder, demonstrate the sensitivity of RTE model based tomography to
relative variations in fluorophore concentration. Absolute determination of fluorescence
absorption is not feasible with only one linearized tomography iteration for this highly
illposed problem. The computational time for the solution of the linear system defined in
Equation (24) was under 2 minutes. As only one linearization about the initial fluorescence

map of ,u;‘,"f(r)=0 was carried out, the forward and adjoint solutions corresponding the 60
sources and 100 detectors were precomputed on the Beowulf cluster. Each forward/adjoint
computation took approximately 10 minutes and calculations for different sources and
detectors were carried out in parallel to the extent possible.

5. Conclusions

In this contribution, we have demonstrated a RTE model based fluorescence tomography
algorithm for frequency domain optical tomography in small animal geometries. To the best
of our knowledge, this is the first demonstration of a frequency domain fluorescence
tomography algorithm utilizing the coupled RTE equations. Further, we have shown the
application of a robust RTE solver based on the established Attila™ nuclear engineering
particle transport simulation platform. The high computational expense of RTE model based
tomography has been minimized by a combination of advances which include: (i) the
discontinuous finite element differencing on unstructured tetrahedral meshes for mesh
independent convergence of solution on arbitrary geometries, (ii) application of diffusion
synthetic acceleration for rapidly solving source iterations. (iii) first scattered distributed
source and last collided integration at detectors for rapidly and accurately predicting RTE
solutions, when sources and detectors are separated from the animal volume with clear
media, and (iv) utilization of adjoint RTE solution to efficiently assemble the measurement
sensitivity Jacobian matrix. The dual mesh based image reconstruction scheme reported in
this manuscript will be extended to employ adaptive meshes [43,44] in our future work,
resulting in image resolution and further speedup as demonstrated in our prior work on large
volume diffuse fluorescence optical tomography. The image reconstructions have been
carried out with the prior knowledge limited to the animal geometry, and this contribution
marks our first step towards hybrid structural-molecular small animal tomography systems,
which utilize animal structure information from established modalities like Xray CT, and
seek to determine the distribution of molecularly targeting fluorescence probes without a
priori information of interior endogenous optical properties. The robust and rapid
deterministic transport solution schemes on animal geometries will also impact
bioluminescence tomography applications. [45,46]
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

(a) FSDS source illustration: Rays are traced from the source position rg to every position in
the meshed volume r for describing the uncollided photon distribution, which sets up the
volume source for scattered photons. (b) Last collided integration at the detector: once the
source iterations for solving the angular flux in the domain have converged, the detected
flux is calculated by integrating along the rays from the detector position ry towards the
points r in the domain which are in the FOV of the detector.
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Figure 2.

Detectors are modelled as adjoint sources with photon directions directed outwards and the

propagation is backwards in time(phase). Computation is carried out by the two step FSDS

method, wherein, in step-1 the unscattered flux is calculated through analytical ray tracing,

and in step-2, the unscattered flux distribution acts as the volumetric source for Sy transport
iterations for determining the scattered adjoint flux.
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Figure 3.
Finite element model of the synthetic mouse derived from the MOBY phantom. Major
organs listed in Table-1 were modeled. The mesh consisted of 127466 tetrahedral elements.
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Figure 4.

Simulation setup for validating the last collided detector flux integration approach. The
kidneys shown in green shade were simulated to have the uptake of 1 uM ICG. 6g: the
source aperture was 20 degrees. Detectors were placed 18 degrees apart.
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Figure 5.

Source-Collector locations for fluorescence tomography simulations: top figure depicts the
source and collector rings for generating synthetic data corresponding to 10nM uptake of
ICG in mouse bladder, bottom figure depicts the source/collector rings for generating
synthetic data corresponding to 1uM uptake of ICG in both the kidneys. Middle three rings
contain both the sources and collectors. Each ring was simulated to contain 20 sources and
20 collectors.
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Demonstration of the accuracy improvements with last collided post processing
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Figure 7.

Meshes used for parameter description and forward/adjoint simulations involved in RTE
model based tomography: (a) a uniform tetrahedral mesh was used to solve for forward and
adjoint RTE solutions needed to generate the Jacobian sensitivity matrix. (b) the unknown
parameter was discretized on a separate piecewise discontinuous voxelized grid.
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Illustration of RTE based Jacobian sensitivity matrix for fluorescence tomography for a

typical source-detector pair: (a) real component, (b) imaginary component
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Figure 9.

Inverse image reconstruction results: (a,c) The true fluorescence probe locations were in the
kidneys and the bladder, (b,d) the reconstructed images for the fluorophore absorption in the
bladder and kidneys. Slices drawn through the voxelized parameter grid are shown. There
were no significant artifacts(see attached movies.)
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Optical properties used for synthetic mouse phantom organs [40,41]

Table 1

Organ/Tissue | Absorption gy(cm™) | Scattering us(cm™) | Ratio e
Lungs 8.4 35.9 0.2137
Heart 0.35 167 8.114

Stomach 1.2 200 16.67
Gut 1.2 200 16.67
Kidneys 0.01 73.3 1100
Spleen 2.8 13 1.024
Bladder 1.25 50.8 2.03
Liver 6.5 143.7 111

Body (muscle) 1 40 1.2
Water 0.011 0 0
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Table 2

Computation speed and accuracy gains obtained with the last collided method: for the P,,Sy, entries in the first
column, m stands for the spherical harmonic expansion order of the scattering source, and n indicates the
angular discretization order. LCy indicates that last collided integration with angular discretization of order k
was performed to get the scalar flux at the collector locations. Column 3 and 4 list the mean squared error
(MSE) in the scalar flux solutions with respect to the PgSq, solution.

Angular Discretization | Compute Time(s) | MSE:Excitation | MSE:Emission
P3S4 710.22 0.2651 0.2257
P3S4:LCyo 710.24 0.1498 0.0839
P3S4: LCso 710.26 0.0809 0.0612
P3S4 : LCago 710.25 0.0788 0.0613
PgS12 12490.02 0 0
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