
Abdominal surgery activates nesfatin-1 immunoreactive brain
nuclei in rats

Andreas Stengel*, Miriam Goebel*, Lixin Wang, and Yvette Taché
CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive
Diseases Division, Department of Medicine, David Geffen School of Medicine, University of
California Los Angeles & Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles,
California, USA

Abstract
Abdominal surgery-induced postoperative gastric ileus is well established to induce Fos
expression in specific brain nuclei in rats within 2-h after surgery. However, the phenotype of
activated neurons has not been thoroughly characterized. Nesfatin-1 was recently discovered in the
rat hypothalamus as a new anorexigenic peptide that also inhibits gastric emptying and is widely
distributed in rat brain autonomic nuclei suggesting an involvement in stress responses. Therefore,
we investigated whether abdominal surgery activates nesfatin-1-immunoreactive (ir) neurons in
the rat brain. Two hours after abdominal surgery with cecal palpation under short isoflurane
anesthesia or anesthesia alone, rats were transcardially perfused and brains processed for double
immunohistochemical labeling of Fos and nesfatin-1. Abdominal surgery, compared to anesthesia
alone, induced Fos expression in neurons of the supraoptic nucleus (SON), paraventricular nucleus
(PVN), locus coeruleus (LC), Edinger-Westphal nucleus (EW), rostral raphe pallidus (rRPa),
nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM). Double Fos/nesfatin-1
labeling showed that of the activated cells, 99% were nesfatin-1-immunoreactive in the SON, 91%
in the LC, 82% in the rRPa, 74% in the EW and VLM, 71% in the anterior parvicellular PVN,
47% in the lateral magnocellular PVN, 41% in the medial magnocellular PVN, 14 % in the NTS
and 9% in the medial parvicellular PVN. These data established nesfatin-1 immunoreactive
neurons in specific hypothalamic and pontine nuclei as part of the neuronal response to abdominal
surgery and suggest a possible implication of nesfatin-1 in the alterations of food intake and
gastric transit associated with such a stressor.
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1. Introduction
Abdominal surgery in animals is a model to study postoperative ileus (POI), a condition
which occurs after gastrointestinal tract surgery in the clinical setting and characterized by

Address for correspondence and reprint requests: Yvette Taché, Ph.D. Center for Neurobiology of Stress CURE: Center for Ulcer
Research Education Building 115, Room 117, VA Greater Los Angeles Healthcare System 11301 Wilshire Blvd, Los Angeles, CA,
90073, USA Tel : + 1 310 312 9275 Fax: +1 310 268 4963 ytache@mednet.ucla.edu.
*Authors contributed equally to this work
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Peptides. Author manuscript; available in PMC 2011 September 4.

Published in final edited form as:
Peptides. 2010 February ; 31(2): 263–270. doi:10.1016/j.peptides.2009.11.015.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the suppression of effective transit of bowel contents including delayed gastric emptying
[66]. Abdominal surgery consisting of laparotomy with manipulation of the bowel [6, 62]
activates endocrine markers of the stress response in experimental animals and humans [11,
40, 42]. We have previously reported that brains of rats which have undergone abdominal
surgery display neuronal activation in specific nuclei known to be responsive to various
stressors including the hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei as
well as catecholaminergic areas of the hindbrain such as the locus coeruleus (LC), nucleus
of the solitary tract (NTS) and ventrolateral medulla (VLM) [6, 7].

Nesfatin-1, the 82-amino acid cleavage product of its precursor nucleobindin2 protein
(NUCB2) has recently been identified in the rat hypothalamus and shown to reduce food
intake in rodents upon brain ventricle or peripheral injection [43, 53, 57]. Nesfatin-1 mRNA
and immunoreactivity have been localized in various brain nuclei [9, 21, 27, 36, 43]
including prominent expression in autonomic nuclei of the hypothalamus and brainstem
[27]. Moreover, we recently observed that injection of nesfatin-1 into the lateral brain
ventricle in addition to curtailing the feeding response during the dark phase, delays gastric
emptying in rats [59]. Since postoperative gastric ileus is a well established phenomenon
associated with abdominal surgery in experimental animals and humans [40, 49] this points
towards a possible recruitment of nesfatin-1 neurons in response to and mediation of POI.

Therefore, in the present study, we investigated whether nesfatin-1-immunoreactive (ir)
neurons in autonomic brain [27] regions are activated by abdominal surgery with cecal
palpation performed in rats under short anesthesia as in our previous studies [6, 7].

2. Methods
2.1 Animals

Adult male Sprague-Dawley rats (Harlan, San Diego, CA, USA, body weight: 280–350 g)
were housed 4 animals/cage under conditions of controlled illumination (12:12 h light/dark
cycle, lights on/off: 6.00 h/18.00 h) and temperature (22 ± 2 °C). Animals were fed with a
standard rodent diet (Prolab RMH 2500; LabDiet, PMI Nutrition, Brentwood, MO, USA)
and tap water ad libitum. Animal care and experimental procedures followed institutional
ethic guidelines and conformed to the requirements of the federal authority for animal
research conduct. All procedures were approved by the Animal Research Committees at
Veterans Affairs Greater Los Angeles Healthcare System (animal protocol # 05058-02).

2.2 Procedures
2.2.1 Abdominal surgery—Rats (n=6) were separated in single cages and fasted for 20 h
with free access to tap water prior to the experiment. Between 9.00 h and 11.00 h, rats were
exposed to isoflurane (4.5% vapor concentration in oxygen; VSS, Rockmart, GA, USA) and
abdominal surgery was performed as described before [6, 7]. After a median laparotomy (2–
3 cm), the cecum was exteriorized, placed in saline-soaked gauze and gently manipulated
between two fingers for 1 min. Thereafter, the cecum was replaced into the abdominal
cavity and the peritoneum, muscle and skin were sutured. Anesthesia and surgery lasted for
approximately 10 min and animals woke up within 2–3 min after removal of isoflurane. The
control group (n=6) consisted of rats undergoing exposure to anesthesia alone for 10 min.
After anesthesia, animals were placed singly in cages without access to food or water until
euthanasia.

2.2.2 Fos and nesfatin-1 double immunohistochemistry—Two hours after the end
of isoflurane anesthesia, surgically manipulated rats and their controls (anesthesia alone)
were deeply anesthetized with sodium pentobarbital (70 mg/kg, intraperitoneally, Nembutal,
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Abbott Lab., Chicago, IL, USA) and transcardially perfused as described before [35]. After
thoracotomy a cannula was inserted into the ascending aorta via the left heart ventricle.
Perfusion consisted of a one minute flush with sodium chloride (0.9% NaCl) and 500 ml of
fixative (4% paraformaldehyde, 14% saturated picric acid in 0.1 M phosphate buffer).
Brains were removed and post-fixed overnight, then cryoprotected in 10% sucrose for 24 h
and snap-frozen in dry ice-cooled 2-methylbutane. Coronal sections (25 μm) of the whole
brain were cut by cryostat (Microm International GmbH, Walldorf, Germany). Every third
brain section was incubated using the free floating technique. Each incubation step was
followed by a 3×15 min washing step in PBS (Sigma-Aldrich, San Louis, MO). The first
primary antibody was rabbit anti-c-Fos serum (1:10,000, Oncogene, Cat. No. PC#38;
Cambridge, MA) overnight at 4 °C followed by the secondary biotinylated goat anti-rabbit
IgG Fab fragment (1:1,000, Jackson ImmunoResearch Laboratories Inc, Cat. No.
111-067-003; West Grove, PA) for 2 h and avidin-biotin-peroxidase complex (ABC, Vector,
Vermont, CA, USA) method as previously described [64]. Fos staining was visualized with
3,3′-diaminobenzidine tetrachloride (DAB) and nickel ammonium sulfate. The sections were
thereafter incubated in rabbit anti-rat nesfatin-1 antibody (1:10,000, Phoenix
Pharmaceuticals, Cat. No. H-003-22; Burlingame, CA, USA) at 4 °C overnight followed by
2 h incubation with biotinylated goat anti-rabbit IgG (1:1,000 Jackson ImmunoResearch,
Cat. No. 111-065-144), ABC and visualization by DAB. Sections were mounted on Fisher
Super Frost Plus slides, air-dried for 24 h and completely dehydrated through a gradient of
ethanol and xylene before coverslipping. Cells with dark blue nuclear staining were Fos-ir
and cells with strong brown cytoplasmic staining were nesfatin-1-ir.

The anti-nesfatin-1 antibody was raised in rabbit against rat nesfatin-1 corresponding to rat
NUCB2 amino acid residues 1-82 (Phoenix Pharmaceuticals). To assess the specificity of
nesfatin-1 immunostaining, anti-rat nesfatin-1 antibody (1ml, 1:10,000) was preabsorbed
with rat nesfatin-1 peptide (10 μg, Phoenix Pharmaceuticals) as described before [58] and
immunostaining performed as described above.

2.2.3 Cell counting and statistical analysis—Fos and nesfatin-1-ir cells were
observed by light microscopy (Axioscop II, Carl Zeiss, Jena, Germany). For quantitative
assessment, the number of immunoreactive cells was counted unilaterally in several sections
of selected brain nuclei identified with the Paxinos and Watson’s atlas [46] using the
following coordinates (in mm from bregma): SON (−0.6 to −1.56, 12 sections), anterior
parvicellular (ap)PVN (−1.08 to −1.32, 4 sections), medial parvicellular (mp)PVN, (−1.72
to −1.92, 3 sections), medial magnocellular (mm)PVN (−1.44 to −1.72, 3 sections), lateral
magnocellular (lm)PVN (−1.72 to −1.92, 3 sections), LC (−9.48 to −10.08, 7 sections),
Edinger-Westphal nucleus (EW) (−6.12 to −6.84, 10 sections), rostral raphe pallidus (rRPa)
(−13.8 to −13.2; 8 sections), VLM, also named A1/C1 (−13.38 to −14.28, 12 sections) and
NTS at the level of the area postrema (−13.68 to −14.28, 8 sections). Images were acquired
by a digital camera (Hamamatsu, Bridgewater, NJ) using the image acquisition system
SimplePCI (Hamamatsu Corporation, Sewickley, PA, USA).

The average number of singly or doubly labeled Fos-ir and nesfatin-1-ir cells/section
derived from the total number of sections analyzed for each nucleus was determined for
each animal and used to calculate the mean value/group. In dual-immunolabeling, positive
cells were identified as those expressing both brown cytoplasmic reaction products and
black nuclear staining. The investigator was blinded to the treatment. Data were analyzed by
analysis of variance (ANOVA) followed by all pair wise multiple comparison procedures
(Tukey post hoc test). Differences were considered significant when p < 0.05. Data are
expressed as mean ± SEM.
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3. Results
3.1 Abdominal surgery activates nesfatin-1-immunoreactive neurons in the forebrain

Nesfatin-1 immunoreactivity was detected in the rat supraoptic nucleus (SON, Fig. 1) and
paraventricular nucleus (PVN, Fig. 2) of the hypothalamus among forebrain nuclei as
previously reported [9, 21, 27, 43]. Quantitative assessment showed that the number of
nesfatin-1 immunoreactive cells did not differ between control and surgically manipulated
rats as monitored 2 h later (p > 0.05; Figs. 1C and 3). With regard to the induction of Fos
protein expression, control rats exposed to brief anesthesia alone, displayed a low number of
Fos-positive cells (<8 cells/nucleus) in the SON (Fig. 1C) and PVN except for the medial
parvicellular subnucleus of the PVN (<17) as assessed 2 h after the end of anesthesia (Fig.
3). Abdominal surgery increased the number of Fos-ir neurons compared to control animals
in the mpPVN (104.8 ± 11.7 vs. 16.8 ± 4.5; p < 0.001; Figs. 2E-F and 3B), mmPVN (77.4 ±
6.3 vs. 7.1 ± 2.2; p < 0.001; Figs. 2C-D and 3C), SON (62.2 ± 12.8 vs. 2.1 ± 0.7; p < 0.001;
Fig. 1A-C) and to a smaller extent in the lmPVN (36.8 ± 3.3 vs. 7.3 ± 1.7; p < 0.001; Fig.
2E-F and 3D) and apPVN (20.2 ± 1.8 vs. 2.4 ± 0.8; p < 0.001; Figs. 2A-B and 3A).
Abdominal surgery significantly increased the number of double labeled cells in the SON
(61.7 ± 12.8 vs. 1.7 ± 0.6, p < 0.001; Fig. 1C), apPVN (14.3 ± 0.5 vs. 0.4 ± 0.3, p < 0.001;
Fig. 3A), lmPVN (17.3 ± 2.0 vs. 1.7 ± 0.5, p < 0.001; Fig. 3D), mmPVN (31.9 ± 5.1 vs. 1.8
± 0.8, p < 0.001; Fig. 3C) and in the mpPVN (9.7 ± 1.5 vs. 1.2 ± 0.8, p < 0.001; Fig. 3B)
compared to controls. Of the activated neurons, 99% were nesfatin-1-ir in the SON (Fig.
1C), 71% in the apPVN (Fig. 3A), 47% in the lmPVN (Fig. 3D), 41% in the mmPVN (Fig.
3C) and 9% in the mpPVN (Fig. 3B).

2.2 Abdominal surgery activates nesfatin-1-immunoreactive neurons in the midbrain and
hindbrain

Besides the hypothalamic and limbic brain nuclei specified above, nesfatin-1
immunoreactivity was also observed in nuclei of the midbrain and hindbrain, namely the
EW, LC, NTS, VLM and rRPa in control rats consistent with earlier reports [9, 21, 27, 43].
The number of nesfatin-1-positive neurons did not vary 2 h after abdominal surgery (p >
0.05; Figs. 4C, 4F, 5C, 5F, 5I).

In fasted control rats exposed to brief isoflurane anesthesia alone the number of Fos-positive
neurons was low (<6 cells/nucleus) in most hindbrain nuclei (LC, VLM, rRPa) except in the
EW (Figs. 4D, 4F) and NTS (Figs. 5D, 5F) which displayed 15 Fos-positive cells/nucleus.
Abdominal surgery increased the number of Fos-ir neurons in the NTS at the level of the
area postrema (40.8 ± 5.6 vs. 14.9 ± 3.0; p = 0.002; Fig. 5D-F), EW (26.7 ± 2.3 vs. 15.0 ±
1.2; p = 0.001; Fig. 4D-F), LC (15.6 ± 4.4 vs. 2.8 ± 0.6; p < 0.05; Figs. 4A-C), VLM/A1/C1
(15.1 ± 1.4 vs. 5.2 ± 0.9; p < 0.001; Fig. 5G-I) and rRPa (6.1 ± 1.0 vs. 2.4 ± 0.7; p < 0.05;
Fig. 5A-C) compared to controls. Abdominal surgery significantly increased the number of
double labeled cells in the LC (14.2 ± 4.1 vs. 2.2 ± 0.5, p < 0.05; Fig. 4C), rRPa (5.0 ± 1.1
vs. 1.6 ± 0.4, p < 0.05; Fig. 5C), EW (19.8 ± 2.1 vs. 9.2 ± 1.2, p < 0.01; Fig. 4F), VLM (11.1
± 2.1 vs. 4.0 ± 0.7, p < 0.01; Fig. 5I) and NTS (5.6 ± 1.0 vs. 1.0 ± 0.4, p < 0.01; Fig. 5F)
compared to controls. Of these Fos-positive neurons, 91% were nesfatin-1-immunoreactive
in the LC (Fig. 4C), 82% in the rRPa (Fig. 5C), 74% in the EW (Fig. 4F) and VLM (Fig. 5I)
and 14 % in the NTS (Fig. 5F).

Following pre-absorption of the anti-nesfatin-1 antibody as we described before [58], no
immunostaining could be detected (data not shown).
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4. Discussion
Abdominal surgery consisting of laparotomy and 1-min cecal palpation performed under
short isoflurane anesthesia in rats induced a distinct pattern of Fos expression in
hypothalamic and brainstem nuclei as monitored in conscious rats 2 h after the end of
abdominal surgery compared with controls exposed to anesthesia alone. Fos expression
occurred namely in the PVN, SON, LC, VLM, and NTS as previously reported [2, 6, 67] as
well in other nuclei such as EW and rRPa not previously investigated. In addition, we
showed that of the activated neurons 99% in the SON, 91% in the LC, 82% in the rRPa,
74% in the EW and VLM, 71% in the apPVN, 47% in the lmPVN, 41% in the mmPVN,
14% in the NTS and 9% in the mpPVN are also nesfatin-1-ir. These data identify a novel
phenotype of neurons activated by abdominal surgery and also establish nesfatin-1-
immunoreactive neurons in specific brain nuclei as part of the neuroanatomical substrata
activated by a visceral stressor. The specificity of the nesfatin-1 antibody was shown by the
lack of nesfatin-1 immunolabeling in these brain nuclei when the antibody was pre-absorbed
with synthetic nesfatin-1 peptide. It is to note, however, that the antibody also recognizes the
full length NUCB2, but does not cross-react with nesfatin-2 and nesfatin-3 [9, 21]. In our
previous studies, this antibody stained a 10 kDa band by Western Blot representing
nesfatin-1 and also a ~50 kDa band corresponding to NUCB2, which contains the epitope of
nesfatin-1 [58]. Therefore, the activated neurons are likely to reflect nesfatin-1/NUCB2
immunoreactivity consistent with the expression of the gene encoding NUCB2 that mirrors
the distribution of cell bodies exhibiting nesfatin-1 immunolabeling in various brain nuclei
[21, 27, 43]. We previously reported that restraint also activates nesftain-1 neurons in the rat
brain [26]. Both, abdominal surgery lasting 5-10 min and 30 min restraint bear similarity in
the pattern of Fos/nesfatin-1double labeled neurons and the percentage of nesfatin-1
activated neurons in specific nuclei such as the SON, mpPVN, LC and VLM. However,
there are also divergences as only abdominal surgery results in a prominent activation of
nesfatin-1-ir neurons in the EW, and in other nuclei (rRPa, mmPVN, apPVN and lmPVN)
the percentage of nesfatin-1/Fos positive neurons was 1.7 to 2.7-fold higher after abdominal
surgery than restraint [26] (present study). As in both studies brains were processed 2 hours
after the initiation of the stress, the variation in percentage of Fos expression within
nesfatin-1 neurons is likely to reflect a stressor-related difference and not the time at which
Fos expression was monitored.

Numerous nesfatin-1-ir neurons can be found in magnocellular neurons of the hypothalamus
including the magnocellular division of the PVN and SON consistent with previous reports
[9, 21, 27, 36]. Abdominal surgery increased the number of Fos-positive neurons in the
SON, lmPVN and mmPVN as previously established [6] and of those 99% were nesfatin-1-
immunoreactive in the SON, 47% in the lmPVN and 41% in the mmPVN. Hypothalamic
magnocellular neurons activated by abdominal surgery were found previously to encompass
a population of arginine vasopressin neurons in the SON and in the PVN both, arginine
vasopressin and more prominently oxytocin neurons [6]. Convergent reports showed a
robust expression of nesfatin-1 in arginine vasopressin- and more so in oxytocin-containing
neurons in the magnocellular neurons of the hypothalamus [9, 21, 36]. Taken together, these
data suggest that subpopulations of nesfatin-1 neurons in the SON as well as in the lmPVN
and mmPVN activated by abdominal surgery also co-express oxytocin and/or arginine
vasopressin. These activated magnocellular hypothalamic nesfatin-1-oxytocin neurons may
play a role to induce gastric ileus through separate or common pathways in the acute post-
operative period. We showed that nesfatin-1 injected into the lateral brain ventricle delays
gastric emptying in rats [57]. In addition, nesfatin-1 modulates the activity of PVN oxytocin
neurons [48]. Anatomical and functional studies established that oxytocinergic neurons of
the PVN project to gastric subregions of the medial part of the NTS [50] and activation of
PVN neurons releases oxytocin in the dorsal vagal complex [39] leading to delayed gastric

Stengel et al. Page 5

Peptides. Author manuscript; available in PMC 2011 September 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



emptying [20, 51]. Moreover, the major projections of oxytocinergic and vasopressinergic
magnocellular hypothalamic neurons are to the posterior pituitary where the neuronal
hormones are released into the systemic circulation during stress [33]. Nesfatin-1 was
detected in the systemic circulation [57], but whether activation of nesfatin-1 neurons in the
magnocellular nuclei of the hypothalamus by abdominal surgery translates into changes in
circulating levels will require further investigations.

In the present study we found a similar number (~40) of nesfatin-1-labeled neurons in the
anterior and medial parvicellular subnucleus of the PVN, which did not change after
abdominal surgery. However, the number of activated neurons as assessed by Fos
immunohistochemistry was 5-fold higher in the mpPVN compared to the apPVN. This could
be, at least in part, attributed to the larger area of the mpPVN compared to the apPVN.
However, a high proportion of nesfatin-1-ir neurons in the apPVN (71%) was activated by
abdominal surgery whereas in the mpPVN only 9% of nesfatin-1-immunopositive neurons
were Fos-ir. This divergence could be explained by the more heterogeneous pattern of
neurons in the mpPVN that besides corticotropin-releasing factor (CRF) and nesfatin-1
contains neurons synthesizing thyrotropin-releasing hormone, growth hormone-releasing
factor or proenkephalin which have all been shown to be activated after a stressor [63]
whereas in the apPVN many neurons contain CRF [52]. Previous functional studies indicate
that the PVN, in particular CRF-producing neurons in the parvicellular part [52], play a
pivotal role in the induction of delayed gastric emptying occurring within 2-h post surgery
[2-4, 6, 7, 40]. Recently abdominal surgery was reported to induce strong Fos activation in
CRF-containing neurons of the parvicellular PVN as shown by double labeling of Fos and
CRF mRNA expression in rats [28]. In addition, gastric electrical stimulation, known to
improve ileus-related symptoms in patients [55], is associated with decreased activity of
CRF neurons in the PVN in rats [28]. We could recently show that the food intake-reducing
effect after intracerebroventricular (icv) injection of nesfatin-1 is mediated by a CRF2
receptor-dependent pathway as shown by the complete blockade of nesfatin-1’s action using
the selective CRF2 receptor antagonist astressin2-B [59]. Therefore, the activation of
nesfatin-1-ir neurons in the parvicellular part of the PVN may contribute to the postoperative
delayed gastric emptying with CRF being involved in the downstream signaling.

The CRF system in the PVN and the hindbrain sympathetic nervous system are anatomically
and functionally interrelated and regulate each other’s activity. This is exemplified by the
connections between the CRF-containing neurons in the PVN and catecholaminergic and
serotonergic neurons in the VLM, raphe nuclei and NTS that project to the PVN and
contribute excitatory input to CRF neurons [14]. We and others demonstrated the inhibitory
role of splanchnic afferent C-fibers on gastric motility after abdominal surgery by the use of
capsaicin injected peripherally or locally applied on the celiac and mesenteric ganglia in rats
[7, 30, 47]. Previous reports pointed to the efferent limb of the reflex involving sympathetic
hyperactivity to the intestine [23] and evidence suggests a role of sympathetic activity in the
inhibition of bowel movement since intestinal catecholamine stores are depleted more
rapidly after laparotomy [17, 34]. In the present study neuronal activation was detected in
the NTS, VLM and rRPa which underlines the somatovisceral input to catecholaminergic
and serotonergic regions arising from the spinosolitary tract and originating from dorsal
horn neurons and the caudal trigeminal nucleus after abdominal surgery [7, 41] (Fig. 6). Of
these neurons 14% in the NTS, 74% in the VLM and 82% in the rRPa showed also double
labeling with nesfatin-1 suggesting an interrelation of nesfatin-1 with the catecholaminergic
and serotoninergic systems.

The A1 region (VLM) has been shown to project to the LC (A6) [14, 22] and there is a
smaller projection from the LC to the PVN (Fig. 6) [31]. Electrophysiological studies have
shown that icv injection of CRF as well as microinjection around the LC region act on
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noradrenergic LC neurons [15, 44, 60] and LC neurons increase their activity dramatically in
response to painful stimuli [22, 45]. Various stressors, for example restraint, tail shock,
auditory and hypotensive stress increase extracellular norepinephrine levels in LC terminal
regions [1, 10] and elevated levels of Fos mRNA and protein in the LC are induced in
response to abdominal surgery, restraint, shock, hypotension, swim force, immune
challenge, water avoidance stress and social stress [5, 6, 8, 12, 13, 18, 19, 24, 29, 32, 54]
(present study). Taken together, these data suggest that the activation of nesfatin-1-ir
neurons in the LC combined with LC-arising projections to CRF-containing neurons in the
PVN which are also activated by abdominal surgery [6] (present study) and release of brain
CRF contribute to the inhibition of gastric motor function and might be part of the factors
leading to the development of postoperative ileus occurring after abdominal surgery (Fig. 6).

In this study we showed for the first time that neuronal activation is induced in the EW upon
abdominal surgery and 74% of the Fos-ir neurons of the EW were positive for nesfatin-1.
These data indicate that the EW responds not only to environmental changes as previously
reported [25, 37] but also to somatosensory-visceral input (laparotomy plus cecal palpation).
It is of interest that NUCB2/nesfatin-1 immunoreactivity overlaps with another member of
the CRF family, urocortin 1 (Ucn 1) highly expressed in the EW nucleus [21, 38, 61, 65].
CRF, Ucn 1 and nesfatin-1 reduce food intake and gastric emptying after central as well as
peripheral injection [16, 43, 53, 56] and we could recently show that central nesfatin-1
exerts its anorexigenic effect via a CRF2 receptor-dependent pathway [60]. This may
contribute to the anorexia and delayed emptying accompanying POI and further corroborates
the hypothesis that Ucn 1 and nesfatin-1 share similarities in their functions and seem to use
similar if not the same pathways.

Taken together, abdominal surgery activates a large proportion of nesfatin-1-ir neurons in
the forebrain more prominently in magnocellular neuroendocrine hypothalamic (SON and
PVN) and anterior parvicellular PVN neurons, in nuclei of the catecholaminergic (LC, NTS
and VLM) and serotonergic (rRPa) systems as well as in the EW nucleus where Ucn 1 is
prominently expressed. This activation suggests a possible role of brain nesfatin-1 in the
functional alterations induced by abdominal surgery including reduced gastric transit and
food intake that will need to be further assessed.
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Fig. 1.
Abdominal surgery induces Fos expression in nesfatin-1 immunopositive neurons in the rat
supraoptic nucleus (SON). Fasted rats were exposed to 7-10 min anesthesia alone (control,
A) or combined with abdominal surgery and cecal palpation (surgery, B) and euthanized 120
min later. Brains were processed for immunohistochemical detection of Fos (dark blue) and
nesfatin-1 (brown) in the SON (A-B). The insert in B shows a higher magnification of
activated neurons co-localizing with nesfatin-1 in the SON. Scale bars: 100 μm in A and B
and 10 μm in the insert. Unilateral cell count/section in the SON after abdominal surgery
(C). Data are mean ± SEM of 6 rats/group. ** p < 0.001. opt = optic tract.
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Fig. 2.
Abdominal surgery induces Fos expression in nesfatin-1 immunoreactive neurons in the rat
paraventricular nucleus of the hypothalamus (PVN). Double immunohistochemical staining
for Fos (dark blue) and nesfatin-1 (brown) in the anterior parvicellular part of the
paraventricular nucleus (apPVN, A-B), medial magnocellular part of the PVN (mmPVN, C-
D), lateral magnocellular part of the PVN (lmPVN, E-F) and medial parvicellular part of the
PVN (mpPVN, E-F) in control rats (A, C, E) and 120 min after abdominal surgery (B, D, F).
The inserts in B, D and F show higher magnification of activated neurons co-localizing with
nesfatin-1 in the apPVN (insert B), mmPVN (insert D) and lmPVN (insert F). Scale bar: 100
μm in A-F and 10 μm in the inserts. 3V = third ventricle.
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Fig. 3.
Abdominal surgery induces Fos expression in nesfatin-1 immunoreactive neurons in the rat
paraventricular nucleus of the hypothalamus (PVN). Cell counting per section (unilateral) in
the apPVN (A), mpPVN (B), mmPVN (C) and lmPVN (D) in control rats and 120 min after
abdominal surgery. Data are mean ± SEM of 6 rats/group. ** p < 0.001.
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Fig. 4.
Abdominal surgery induces Fos expression in nesfatin-1 immunoreactive neurons in the rat
locus coeruleus (LC) and Edinger-Westphal (EW) nuclei. Double immunohistochemical
staining for Fos (dark blue) and nesfatin-1 (brown) in the LC (A−B) and EW (D−E) in
control rats (A+D) and 120 min after abdominal surgery (B+E). The inserts show a higher
magnification of activated neurons co-localizing with nesfatin-1 in the LC (insert B) and
EW (insert E). Scale bar: 100 μm in A, B, D, E and 10 μm in the inserts. Unilateral cell
count/section in the LC (C) and EW (F). Data are mean ± SEM of 6 rats/group. * p < 0.05;
** p < 0.002. 4V = fourth ventricle, Aq = aqueduct, scp = superior cerebellar peduncle.
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Fig. 5.
Abdominal surgery induces Fos expression in nesfatin-1 immunopositive neurons in the rat
rostral raphe pallidus (rRPa), nucleus of the solitary tract (NTS) and ventrolateral medulla
(VLM). Double immunohistochemical staining for Fos (dark blue) and nesfatin-1 (brown)
120 min after abdominal surgery in the rRPa (B), NTS (E), VLM (H) and in control rats (A,
D, G). The inserts in B, E and H show higher magnification of activated neurons co-
localizing with nesfatin-1. Scale bar: 100 μm in A, B, D E, G, H and 10 μm in the inserts.
Cell count per section (unilateral) in the rRPa (C), NTS at the level of the area postrema (F)
and VLM (I). Data are mean ± SEM of 6 rats/group. * p < 0.05; ** p < 0.01. AP = area
postrema; CC = central canal; DMN = dorsal motor nucleus of vagus; py = pyramidal tract.
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Fig. 6.
Hypothetical scheme of neuronal activation and projections in nesfatin-1-immunoreactive
brain nuclei involved in abdominal surgery and postoperative ileus. Activated nesfatin-1
neurons in these brain nuclei in response to abdominal surgery could underlie a neuronal
circuitry by which postsurgical alterations of gastric transit and reduction in food intake are
mediated. EW = Edinger-Westphal nucleus; LC = locus coeruleus; NTS = nucleus of the
solitary tract; PVN = paraventricular nucleus; rRPa = rostral raphe pallidus; SON =
supraoptic nucleus; VLM = ventrolateral medulla; solid line, neuronal projections; dashed
line, neurohumoral pathway.
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