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Abstract
Nuclear magnetic resonance (NMR) spectroscopy has emerged as a technology that can provide
metabolite information within organ systems in vivo. In this study, we introduced a new method of
employing a clustering algorithm to develop a diagnostic model that can differentially diagnose a
single unknown subject in a disease with well-defined group boundaries. We used three tests to
assess the suitability and the accuracy required for diagnostic purposes of the four clustering
algorithms we investigated (K-means, Fuzzy, Hierarchical, and Medoid Partitioning). To
accomplish this goal, we studied the striatal metabolomic profile of R6/2 Huntington disease (HD)
transgenic mice and that of wild type (WT) mice using high field in vivo proton NMR
spectroscopy (9.4 Tesla). We tested all four clustering algorithms 1) with the original R6/2 HD
mice and WT mice, 2) with unknown mice, whose status had been determined via genotyping, and
3) with the ability to separate the original R6/2 mice into the two age subgroups (8 and 12 wks
old). Only our diagnostic models that employed ROC-supervised Fuzzy, unsupervised Fuzzy, and
ROC-supervised K-means clustering passed all three stringent tests with 100% accuracy,
indicating that they may be used for diagnostic purposes.
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1. INTRODUCTION
The ability to utilize common clustering methods in order to develop diagnostic biomarker
models that can accurately render a differential diagnosis of a single unknown subject in a
given disease state has yet to be demonstrated. Typically, in the vast majority of the cases,
common clustering analyses are employed to classify data into two or more groups. For
example, in the case of a disease where there are three well-defined groups of subjects
(normal, pre-symptomatic, and symptomatic), if a sufficient amount of data of all three of
those groups is available, then a common clustering analysis may classify correctly the
subjects in the data into three clusters corresponding to the aforementioned three groups. If,
on the other hand, a common clustering analysis is presented with the data of a single
unknown subject, i.e. it is not known to which of the aforementioned three groups the
subject belongs, then, to the best of our knowledge, no common clustering analysis will be
able to identify/diagnose that single subject. The ability, therefore, to employ a common
clustering analysis in order to develop a diagnostic biomarker model (DBM) that can be
used to accurately diagnose a single unknown subject in a disease with well-defined group
boundaries constitutes a novel approach. Moreover, and more importantly, this approach has
significant implications for the biomedical and clinical sciences because it makes possible
the transference of clustering analysis from the research area, i.e. identification of groups in
data, to the clinical area, i.e. identification/diagnosis of a single subject.

In two previous studies, using the NMR spectroscopy data we examined mathematical
approaches in connection with the identification and assessment of key biomarkers in a
disease state, as well as with the development of diagnostic biomarker models and clinical
change assessment models [1,2]. In the present study, we investigated four clustering
methods (K-means, Fuzzy, Hierarchical, and Medoid Partitioning) that are popular in the
medical sciences in connection with the development of diagnostic biomarker models.

Clustering theories first gained popularity in the 1960’s, when biologists and social scientists
took a keen interest in exploring ways of finding groups in their data [3]. A decade later,
aided by advancements in computers, clustering methods were used in medicine, psychiatry,
archaeology, anthropology, economics, and finance [4]. Today, there are various clustering
methods, K-means, Fuzzy, Hierarchical, Medoid Partitioning, Clustering Regression, etc.,
and they are used routinely in every scientific field with a focus from the macrocosm to the
microcosm – from studying the internal structure of dark matter halos in a set of large
cosmological N-body simulations to trying to discover groups of genes in microarray
analysis and to predicting protein structural classes [5–12].

As Kaufman et al. [3] remarked, “Cluster analysis is the art of finding groups in data.” The
objective of all clustering methods is to classify N subjects (observations) with P
independent variables (IVs) into K clusters according to the spatial relationships among the
subjects – subjects in the same clusters are maximally similar, whereas subjects in different
clusters are maximally dissimilar. By design, therefore, the primary objective of every
clustering method is the correct determination of the number of groups into which a given
set of data can be partitioned, and that in itself constitutes, by far, the most difficult task that
a clustering analysis has to do. As it so happens, in the medical sciences, especially in the
area of diagnostics, the number of groups is known. In our study of experimental Huntington
disease (HD), for example, we know a priori that we have two, and only two, groups of
mice: a mouse can be either normal wild type (WT) or an R6/2 (HD) mouse. We can
therefore ask a clustering method not to waste time examining all the possible clustering
outcomes but to focus instead in classifying all of our subjects (data) into only two clusters.
This constitutes a significant bypass of the most difficult course – both in terms of obstacles
and potential pitfalls – that a clustering analysis has to traverse. This holds true for any other
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disease where the number of groups is known. If, for example, we studied a disease with
three groups, including the normal group, then we would pre-set the number of clusters to
three.

Availing ourselves of the aforementioned significant theoretical advantage, we sought to
answer the question of whether it was possible to use a common clustering method to
ultimately render a differential diagnosis of a single unknown subject in a disease with well-
defined group boundaries. To address this question, we first developed a clustering approach
that made it possible to use a common clustering method for such a purpose, and we
subsequently investigated four clustering methods (K-means, Fuzzy, Hierarchical, and
Medoid Partitioning) by applying them to the in vivo analysis of the striatal metabolomic
profile of R6/2 transgenic mice with Huntington disease (HD) and WT mice using proton
nuclear magnetic resonance (1H NMR) spectroscopy. We first assessed the clustering
models in an unsupervised way. Then, we introduced the concept of employing ROC curve
analysis with the express purpose of supervising the clustering models in order to increase
their accuracy, and we subsequently assessed the performance of the ROC-supervised
clustering models and compare it to that of their unsupervised counterparts. Our ultimate
goal was to accomplish the following two objectives:

1. Construct diagnostic biomarker models (DBMs) that could accurately diagnose
R6/2 mice as a prototype for the diagnosis of diseases. Since HD is a
neurodegenerative disease with well-defined group boundaries (WT vs. R6/2),
since genotyping is available for the R6/2 mice, and since genotyping is the gold
standard, we would use HD to test the accuracy of our DBMs.

2. Subject all four clustering methods to thorough, stringent tests in order to assess
their strengths, weaknesses, and overall suitability for diagnostic applications.

2. METHODS
2.1. ANIMAL METHODS

2.1.1. R6/2 Transgenic mice—Original R6/2 mice were purchased from the Jackson
Laboratories (Bar Harbor, ME, USA) and bred by crossing transgenic males and wild type
(WT) females at 5 weeks of age. Offspring were genotyped according to established
procedures [13] and the Jackson Laboratory. All animal breeding and all animal experiments
described in this study were performed in accordance to the procedures approved by the
University of Minnesota Institutional Animal Care and Use Committee. This study was
specifically approved by the aforementioned Institutional Committee.

2.1.2. Animal Preparation—Prior to the in vivo 1H NMR (proton nuclear magnetic
resonance) scanning, all animals were anesthetized and maintained thus throughout the
duration of the scanning procedure. The anesthesia used was a gas mixture (O2: N2O = 1:1)
containing 1.25–2.0% of isoflurane that flowed throughout the cylindrical chamber wherein
the spontaneously breathing animals were placed. The temperature inside the chamber was
maintained at 30° C by the circulation of warm water on the outside surface of the chamber.
The duration of the 1H NMR scanning was approximately 1hr.

2.1.3. In Vivo 1H NMR Spectroscopy—All 1H NMR scans were conducted with a 9.4
T/31 cm magnet (Magnex Scientific, Abingdon, UK) equipped with an 11 cm gradient coil
insert (300 mT/m, 500 ls) and strong custom-designed second order shim coils (Magnex
Scientific, Abingdon, UK) [14]. The position of the volume of interest (VOI) was selected
based on multi-slice RARE images. The VOI was centered in the left striatum at the level of
the anterior commissure. The size of the VOI, which varied from7–12 μL, was adjusted to
fit the anatomical structure of the left striatum, as well as to exclude the lateral ventricle and,
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thus, to minimize partial volume effects (inclusion of a tissue other than the target tissue).
The striatum was selected as the area of interest because it consists to a large extent of the
medium spiny projection neurons, which are GABA-ergic, and which, more importantly,
constitute the initial and preferential target of HD. It is in this structure of the brain and in
this neuronal population that HD first manifests itself and its destructive force. At the end
stage, following extensive neuronal cell loss in the striatum, the disease evinces itself in
other brain areas, such as the cerebral cortex, globus pallidus, and – to a smaller extent – the
substantia nigra, the thalamus, the cerebellum, etc [15].

Thirty mice (17 WT and 13 R6/2) were scanned according to the aforementioned procedure.
Of the 17 WT mice, 8 were 8 wks old and 9 were 12 wks old; whereas of the 13 R6/2 mice,
7 were 8 wks old and 6 were 12 wks old. Those 30 mice were used in the development of
the diagnostic biomarker models (DBMs) of all three analytical mathematical approaches. In
addition, 31 unknown mice (11 R6/2 and 20 WT) were also scanned according to the
aforementioned procedure and were used to test all three DBMs. All of those 31 unknown
mice were extraneous to the development of the three DBMs, and their status had been
ascertained via genotyping.

Spectral analysis resulted in the identification and individual quantification of 15
metabolites. By combining the obtained individual absolute concentrations of creatine (Cr)
and phosphocreatine (PCr), we created the Cr+PCr and PCr/Cr metabolites (variables) in
order to obtain information about the total striatal creatine (free and phosphorylated), as well
as about the ratio of those two metabolites. In the case of glycerophosphorylcholine (GPC)
and phosphorylcholine (PC), we were not able to separate those two and obtain individual
concentrations. We were able, however, to obtain the absolute concentration of the sum of
GPC and PC, which represents the total striatal phosphorylated choline. All of the 15 striatal
metabolites we were able to identify and quantify individually as a result of the high
magnetic field spectrometer we used (9.4 Tesla), as well as the two metabolites (variables)
we created, are shown in Table 1.

Since both of our animal groups (WT & R6/2) comprised two age subgroups (8-wk old &
12-wk old mice), the time dependent variable was collapsed, so the developed models would
be applicable from 8–12 weeks of age – a most important time period in the progression of
the disease in R6/2 mice, as well as a significant portion of the observed lifespan of the R6/2
mice. The development of all of the subsequent clustering DBMs, therefore, was based on
the data of the aforementioned 13 R6/2 mice [seven at 8 wks of age & six at 12 wks of age]
and 17 WT mice [eight at 8 wks of age & nine at 12 wks of age]. For more details on animal
methods, as well as on spectra obtainment and processing, please see our previous study
[16].

2.2. STATISTICAL SOFTWARE & GRAPHICS
For all clustering runs, we used the statistical software by NCSS 2007, Kaysville, Utah,
USA.

2.3. COMPUTER PROGRAMS
Computer programs were written using MATLAB R2010a by The MathWorks, Inc., Natick,
MA, USA.

2.4. DIAGNOSTIC BIOMARKER MODELS (DBMs)
2.4.1. Development of Clustering DBMs—We used the data of our original 30 mice
(17 WT and 13 R6/2) to develop all four clustering DBMs, each based on one of the
following four common clustering methods: K-means, Fuzzy, Hierarchical, and Medoid
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Partitioning. For those three clustering methods that allow the preselection of the number of
groups (K-means, Fuzzy, and Medoid Partitioning), we set the number of clusters to two
since in the disease of our interest, HD, there are only two groups (WT vs. R6/2 mice). As
we discussed earlier, that in itself can increase the accuracy of a clustering method
considerably. Then, we ran each of those four clustering methods unsupervised, i.e. we input
all of our 17 variables (concentrations of 17 metabolites measured by NMR spectroscopy),
and assessed their performance. Since our goal was to apply those clustering methods for
diagnostic purposes, which means that accuracy is of the utmost importance, we wanted to
find out which was the best possible setting of each of those four methods. We assessed the
best possible setting of a given clustering method by the following two ways. First, by the
clustering results, i.e. by whether or not all 30 of our original mice were classified into the
correct cluster (identified correctly in terms of being WT or R6/2). Secondly, by how good
the “fitting” of a particular setting is. In general, that is known as “Goodness of Fit.” In the
case of the ideal fitting, the clusters are very tight, and their centers are very far apart. In the
case of the worst fitting, the clusters are widely dispersed, and their centers are very close to
each other. We used the internal statistics of a particular clustering method to assess the
fitting of all of its settings. In order to find out which was the best possible setting (both in
terms of results and fitting) of a particular clustering method, we used receiver operating
characteristic (ROC) curve analysis.

Briefly, ROC curve analysis is a theory of probabilities. It studies two probabilities, namely,
sensitivity and (1-specificity), in order to determine a third probability, namely, the area
under the curve (AUC). The ROC AUC probability is basically an assessment of the
discriminating power of a given variable with respect to the two groups involved. If the
AUC of a given variable is equal to 1.00, then that means that according to that variable, the
two groups involved can be separated with 100% accuracy. A variable with perfect
discrimination between the two groups has an AUC=1.00, whereas a variable with the
poorest discrimination between the two groups has an AUC=0.50 (chance probability). For a
more detailed account on the properties, methodology, and applications of ROC curve
analysis, please see our previous study [1]. Since ROC curve analysis allows us to assess our
variables [also referred to henceforward as independent variables (IVs)] in terms of
discriminating power with respect to our two groups (WT vs. R6/2), we used the results of
ROC curve analysis (Table 2) to determine the best possible setting of a given clustering
method by supervising it, i.e. by inputting only those IVs that met a certain AUC threshold
value. To be more specific, first we entered only those IVs (metabolite concentrations) that
had an AUC > 0.70 (70%), then only those that had an AUC > 0.80, then only those with an
AUC > 0.90, and finally only those with an AUC > 0.98. By assessing in each of those cases
both the clustering results and the fitting, we were able to determine the best possible setting
for each of the four clustering methods.

Having, thus, determined the best possible setting for each of the four clustering methods,
we used that setting to develop a clustering DBM for each of those four clustering methods.
A clustering DBM comprises the following: 1) The 30 original mice (17 WT and 13 R6/2) –
the WT mice are in rows # 1–17, and the R6/2 mice are in rows # 18–30; 2) the input IVs as
determined by the best possible setting; and 3) the unknown mouse is in row #31. If, for
example, the best possible setting was attained by using only those IVs that had an AUC >
0.98, then only those IVs (Cr+PCr, Gln, Cr, and NAA)(Table 2) are used by the clustering
DBM. That also means that in the case of the unknown mouse, i.e. the mouse whose status
we would like to determine, we enter its NMR spectroscopy concentration values for the
aforementioned four IVs, i.e. Cr+PCr, Gln, Cr, and NAA.

The underlying rationale upon which a clustering DBM is predicated can be stated as
follows: If in a given disease, such as HD in our case, where the normal and the pathological
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states are well defined, we used a number of subjects from each of the two groups; if the
status of all of those original subjects were definitively known (in the case of HD,
genotyping is the gold standard); and if we used the best setting of a clustering method, i.e.
one that gave us the best separation and discrimination between the two clusters of our
original subjects; then we would have the best chance of identifying the status of an
unknown subject because this clustering model would have the sole task of deciding into
which of the two predetermined and pre-established clusters the unknown subject should be
classified based on its data. This clustering DBM can be developed and applied in any
disease for diagnostic purposes provided that the pathological and normal states in that
disease are well defined.

For comparison purposes, and in a similar fashion as the one outlined above, we also
developed unsupervised clustering DBMs, which used all of our 17 IVs.

2.4.2. All Clustering Analyses—We subjected all clustering DBMs (both unsupervised
and supervised) to the following three tests:

Test 1: Identification of our original 30 mice, which were intrinsic to the development of all
DBMs. This is a necessary first test in that a DBM has to demonstrate that it has the
prerequisite discriminating accuracy to classify correctly the original 30 mice, which were
used in the development of that DBM. It is by no means a foregone conclusion that a DBM
can pass this test with 100% accuracy. This is a mandatory test for a diagnostic model.

Test 2: Identification of 31 unknown mice, which were extraneous to the development of all
DBMs. This is the validation test, and as such, it is by far the most important test. A DBM is
asked to identify/diagnose 31 unknown mice. These 31 mice were new and different from
the 30 original mice used in the development of that DBM. The status of these 31 unknown
mice had been determined by genotyping, which is the gold standard in HD. A DBM would
be presented with one of those 31 unknown mice at a time and asked to identify/diagnose
that single unknown mouse. Typically, the sample size of the validation test is between 1/3
and 1/2 of the original sample size that was used to develop a model. In our case, the
validation sample size is > 100% the original sample size (31 vs. 30 respectively). This is
both a mandatory and a most important test for a diagnostic model.

Test3: Identification of our 13 original R6/2 mice with respect to their two age groups: 8
wk-old and 12 wk-old. Seven of those R6/2 mice were scanned at the age of 8 weeks and six
of them were scanned at the age of 12 weeks. This is a test designed to assess the sensitivity
of a DBM with respect to the progression of the disease. Those R6/2 mice that were scanned
at the age of 12 weeks are more impaired than those R6/2 mice that were scanned when they
were 8 weeks old. This is an optional test for a diagnostic model because it deals exclusively
with the population that has the disease (R6/2 mice, in our case). Unlike the preceding two
tests, this one does not assess discriminating ability between the normal controls (WT) and
those who have the disease (R6/2). It is administered with the sole purpose of showing
whether a diagnostic model has a sensitivity that extends outside the area of diagnosis and
into the area of the progression of the disease. As such, therefore, this test can only reveal
exceptional ability on the part of a diagnostic model, but it cannot constitute a diagnostic
criterion per se.

All three of the aforementioned tests were administered in the same manner to all clustering
DBMs (both unsupervised and supervised); and all clustering DBMs were assessed, first, for
accuracy and, secondly, for clustering fitting.
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For all of the clustering analyses, and for all of their settings in connection with the first test,
we entered our data (subjects) in the following order: rows #1–17 were the WT mice and
rows #18–30 were the R6/2 mice. For all of the clustering analyses, and for all of their
settings in connection with the second test, we entered our data (subjects) in the following
order: rows #1–17 were the original 17 WT mice, rows #18–30 were the original 13 R6/2
mice, and row #31 was an unknown mouse. For all of the clustering analyses, and for all of
their settings in connection with the third test, we entered our data (subjects) in the
following order: rows #1–7 were the 8-wk old R6/2, whereas rows #8–13 were the 12-wk
old R6/2 mice.

2.4.3. K-Means Clustering Analysis (KMCA)—The K-means clustering algorithm was
developed and introduced by Hartigan [4]. It seeks to classify N subjects (observations) with
P IVs into K clusters until the within-cluster sum of squares is minimized, that is to say until
the within-cluster variance is minimized. KMCA is ideally suited for partitioning a large
number of subjects (observations) into a small number of clusters [17].

KMCA conditions: There is only one condition: all IVs have to be continuous.

In our case, all of our IVs are continuous – they are concentrations of metabolites.

Outliers: Despite a number of subjects with outlying metabolite values, we decided to do
nothing about them in order to further test not only the KMCA but also the rest of the
clustering methods. Moreover, in our previous studies [1,2], where we investigated a
number of analytical mathematical approaches and other data analysis/mining methods
using the same 1H NMR spectroscopy data, we made no alterations to the data in connection
with outlying observations. Therefore, in order to be able to compare the results of those
approaches and methods investigated in those studies with the results of the clustering
approaches investigated in this study, we decided to make no alterations to the data here, as
well.

Missing Values: One of our R6/2 mice had a missing GSH value. We used the mean GSH
value of the R6/2 mice to impute the missing value.

Minimum, Maximum, and Reported Number of Clusters: As we explained above, we set
the minimum, maximum, and reported number of clusters equal to 2.

2.4.4. Fuzzy Clustering Analysis (FCA)—The Fuzzy clustering algorithm we used was
introduced by Kaufman et al. [3]. FCA is different from all other clustering analyses in that
it seeks to ascribe cluster membership probabilities to every data point. For example, pik is
the probability that subject i (row i) belongs in cluster k. If, let us say, we have 30 subjects
and three clusters, then the probability that subject 1 belongs in cluster 1 is p11, the
probability that it belongs in cluster 2 is p12, and the probability that it belongs in cluster 3 is
p13. As is the case with every probability, pik ≥ 0 *with i=1, 2, 3, … N and k=1, 2, 3, … K
(N is the total number of subjects, and K is the total number of clusters)+ and p11+ p12+
p13=1. Instead of classifying a subject into one, and only one, cluster, which is what all the
other clustering analyses do, FCA classifies a subject into all clusters according to its cluster
membership probabilities (pik). This “fuzzification” in the classification of a subject into a
particular cluster renders FCA – at least theoretically – less sensitive to outliers. FCA seeks
to minimize the function F, which comprises all cluster membership probabilities and
distances in such a way that their grand sum represents the total amount of dissimilarity, or
the total amount of dispersion, for all subjects in all clusters.

FCA conditions: As far as FCA is concerned, there are no conditions.
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Missing Values: Once again, we used the same method as described above in the KMCA
section to impute the one missing value from our data.

Distance Method: We selected Euclidean distance (the shortest distance between two
points) as opposed to Manhattan distance (the distance defined by the sum of the two sides
of a right angle triangle that are perpendicular to each other).

Scaling Method: We chose Standard Deviation as the scaling method for our continuous
IVs.

Minimum, Maximum, and Reported Number of Clusters: Just as we did above in the
case of KMCA, we set the minimum, maximum, and reported number of clusters equal to 2.

2.4.5. Hierarchical Clustering Analysis (HCA)—In addition to KMCA and FCA, we
investigated all eight of the agglomerative hierarchical clustering algorithms that are
available in the NCSS 2007 statistical software. Of those eight algorithms, the “Group
Average” gave us the best results, and it is to that we will refer henceforth.

As we mentioned earlier, the objective of any clustering analysis is to classify N subjects
with P IVs into K clusters so that both the within-cluster similarities and the between-cluster
dissimilarities are maximized. Hierarchical Clustering Analysis (HCA) seeks to accomplish
that via the following way: first, assign every subject into a cluster all by itself (N subjects
into N clusters); then calculate all distances among all clusters; then take the clusters C1 and
C2, to which the shortest between-cluster distance corresponds, and merge them, i.e. place
the subjects in those two clusters into one new cluster; and start the process anew and
continue until there is one cluster left in the end.

For our runs, we chose the following:

Clustering Method (algorithm): As was mentioned above, we chose the Group Average
algorithm.

Distance Method: We selected Euclidean distance.

Scaling Method: We chose Standard Deviation.

Cluster Cutoff: Since we knew we had two groups, we would select the cluster cutoff value
that gave us two clusters.

2.4.6. Medoid Partitioning Clustering Analysis (MPCA)—We tried two medoid
algorithms: the one introduced by Spath [18] and the one introduced by Kaufman et al. [3].
Of those two, the latter gave us better results, and our referring to MPCA henceforth will
pertain only to the Kaufman and Rousseeuw algorithm.

The algorithm of MPCA [the Kaufman and Rousseeuw algorithm (PAM: Partitioning
around Medoids)] [3] seeks, via an iterative cluster member exchange, to minimize the total
distance between the members within each cluster.

For our runs, we chose the following:

Clustering Method (algorithm): We used the Kaufman – Rousseeuw algorithm.

Distance Method: We selected Euclidean distance.
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Scaling Method: We chose Standard Deviation.

Minimum, Maximum, and Reported Number of Clusters: We set all three equal to 2.

3. RESULTS
3.1. K-MEANS CLUSTERING ANALYSIS (KMCA)

First, we ran KMCA unsupervised, i.e. with all 17 IVs (metabolites). Pertaining to the first
test, KMCA correctly classified all of the 30 original mice into their appropriate group as
either R6/2 (Cluster 2) or WT (Cluster 1) [17/17 WT mice (100% correct) & 13/13 R6/2
mice (100% correct) → with a total accuracy of 30/30 original mice (100% correct)].
Therefore, in this case, the sensitivity=1 and the (1-specificity)=0.

The positive Likelihood Ratio [(+)LR] [19,20] is:

(+)LR= (sensitivity)/(1-specificity) = 1/0 → ∞

The negative Likelihood Ratio [(−)LR] [19,20] is:

(−)LR= (1-sensitivity)/(specificity) = 0/1=0

Table S1 (Supplementary Material) shows in detail the above results. More specifically, the
unsupervised KMCA classified all of the WT mice (17) into Cluster 1 and all of the R6/2
mice (13) into Cluster 2.

The general results of all KMCA runs, including those of the aforementioned run, appear in
Table 3.

The Goodness-of-Fit criterion for KMCA is based on the within-cluster sum of squares,
which is precisely what the KMCA algorithm is striving to minimize [4]. With every run, we
obtained a value for the Percent of Variation, which is the percentage of the within-cluster
sum of squares for the number of clusters reported with respect to the within sum of squares
without clustering [4,17]. The smaller the Percent of Variation, the better. In the above run
of KMCA, i.e. when we entered all 17 IVs and ran it unsupervised, and with regard to the
first test, the Percent of Variation was 65.76.

We then subjected the unsupervised KMCA to the second test. The order of the entry of the
data was as follows: the first 17 subjects (#1–17) were the WT mice, the next 13 subjects
(#18–30) were the R6/2 mice. This order remained fixed for all of the KMCA runs in
connection with the second test. As we mentioned above, we had 31 unknown mice, which
were extraneous to all of our mathematical analyses, and the status of which had been
determined via genotyping. We entered each of those 31 unknown mice one at a time in row
#31, and then ran the KMCA 31 times, each time entering the data of one of the 31 unknown
mice in row #31, and each time asking the KMCA to classify the unknown mouse into one
of the two groups. In effect, what we did here was to ask the KMCA each time to make a
decision in terms of which of the two clusters (WT or R6/2) the “unknown” mouse in row
#31 belonged. KMCA correctly determined the status of 30/31 unknown mice [20/20 WT
mice (100% correct) and 10/11 R6/2 mice (90.91% correct), with a total accuracy of 30/31
unknown mice (96.77% correct)]. Therefore, for the second test, KMCA exhibited a
sensitivity=0.909 and a (1-specificity)=0 [(+)LR=0.909/0 → ∞ and (−)LR=0.091].

Next, we subjected the unsupervised KMCA to our third test. More specifically, we wanted
to know whether unsupervised KMCA was sensitive enough to detect the metabolomic
differences caused by the progression of the disease between our two R6/2 subgroups, i.e.
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between the 8-wk old R6/2 and the 12-wk old R6/2 mice. Physiologically, we know that the
progression of HD will effect alterations in the metabolite concentrations of the cells in the
striatum area of the brain. A diagnostic model, therefore, should be sensitive enough to
detect those alterations in the time span of four weeks. We entered all of the 17 IVs and our
13 R6/2 mice [(7) 8-wk old & (6) 12-wk old] in the following manner: rows #1–7 the seven
8-wk old ones and rows #8–13 the six 12-wk old ones. Unsupervised KMCA correctly
identified and classified all of our R6/2 mice into their respective two subgroups [(Cluster
1): 7/7 8 wk-old R6/2 mice (100% correct) & (Cluster 2): 6/6 12 wk-old R6/2 mice (100%
correct) → with a total accuracy of 13/13 original R6/2 mice (100% correct)]. In this case,
the sensitivity=1 and the (1-specificity)=0. For this run, the Percent of Variation was 66.12.

Since our goal was to find the best possible KMCA setting, in other words, the one that
would give us the best separation between the WT & the R6/2 mice, and use that setting to
develop a DBM (diagnostic biomarker model), we also availed ourselves of the results of the
ROC curve analysis. We therefore ran the KMCA with the top ten most significant IVs
according to ROC curve analysis (AUC > 70%) (see Table 2); then with the top nine most
significant IVs (AUC > 80%); then with the top seven IVs (AUC > 90%); and finally, with
the top four most significant IVs (AUC > 98%). In every one of those ROC-supervised
settings, KMCA correctly identified and classified our two groups of mice. The best setting,
however, was the one in which we used the top four most significant IVs (AUC > 98%)
because that is the one that yielded the lowest Percent of Variation (22.04). The Percent
Variation values for the intermediate settings were as follows: 43.67 for the top 10 IVs,
39.46 for the top 9 IVs, and 33.29 for the top 7 IVs. We should point out here three things:
1) The best ROC-supervised KMCA setting represented a considerable improvement over
the unsupervised KMCA setting (22.04 vs. 65.76 Percent of Variation respectively). 2) All
of the above ROC-supervised KMCA settings were better than the unsupervised KMCA
setting according to their aforementioned Percent of Variation values. 3) The best KMCA
setting was, therefore, the best ROC-supervised KMCA setting. Table S2 shows the results
of the best ROC-supervised KMCA setting (with top four IVs and Percent Variation =
22.04). It correctly identified all of the 30 original mice [17/17 WT mice (100% correct) &
13/13 R6/2 mice (100% correct) → with a total accuracy of 30/30 original mice (100%
correct)] [sensitivity=1; (1-specificity)=0]. More specifically, all of the WT mice were
classified into Cluster 1, whereas all of the R6/2 into Cluster 2. Dist 1 and Dist 2 are the
distances of each subject from the center of Cluster 1 and Cluster 2 respectively. Figure
1(A–F) depicts the separation of the two groups (WT & R6/2) into two clusters (Cluster 1
and Cluster 2 respectively) according to the aforementioned best KMCA setting; the top four
most significant IVs are plotted against each other in the six possible ways. It is worth
noting here that those biomarkers (metabolites) that have larger AUCs yielded clusters that
are tighter and more separated than biomarkers that have smaller AUCs. For example, in
Figure 1A, wherein Cr+PCr [most significant biomarker according to ROC curve analysis
(AUC=1.00) (see Table 2)] is plotted vs. Gln [second most significant biomarker
(AUC=0.98897)], the resulting clusters have greater separation and smaller spreads than the
clusters in the Figure 1F resulting from plotting Cr [third most significant biomarker
(AUC=0.98832)] vs. NAA [fourth most significant biomarker (AUC=0.98198)]. As one
moves from Figure 1A to 1F, one can observe that the two clusters become more dispersed
and their separation distance diminishes.

As we stated above, the most difficult task of a clustering analysis, by far, is the
determination of the appropriate number of clusters into which a given set of data can be
partitioned. Since in our case that is known a priori, in other words, we know beforehand
that we have only two groups, that can bestow upon a clustering analysis a large advantage
and put it in a position where it can be very successful and accurate. Taking advantage of
this theoretical observation, we subjected the best KMCA setting – the one that gave us the
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best separation between the WT and the R6/2 mice, i.e. the setting that gave us the lowest
total dissimilarity (dispersion) between the two clusters (Percent Variation = 22.04) – to our
second test. Using the same methodology as in the case of the unsupervised KMCA, we ran
this ROC-supervised KMCA setting 31 times in order to identify the status of the 31
unknown mice. It correctly determined the status of all of the 31 unknown mice [20/20 WT
mice (100% correct) and 11/11 R6/2 mice (100% correct), with a total accuracy of 31/31
unknown mice (100% correct)] [sensitivity=1; (1-specificity)=0]. Table S3 shows the results
of the best KMCA setting with respect to one of the unknown mice, which is in row #31.
This ROC-supervised KMCA correctly identified that unknown mouse as an R6/2
(confirmed via genotyping); more specifically, it classified all of the WT mice (rows #1–17)
into Cluster 1, all of the R6/2 mice (rows #18–30) into Cluster 2, and the unknown mouse
(row #31) into Cluster 2, i.e. in the same cluster as all of the R6/2 mice. We should note here
that the total accuracy of the unsupervised KMCA with regard to the second test was
96.77% (30/31 unknown mice), whereas that of the ROC-supervised KMCA was 100%
(31/31 unknown mice) [Table 3].

Subjecting the best ROC-supervised setting of KMCA to the third test was the next task.
The third test concerns itself exclusively with the R6/2 mice; more specifically, it assesses
the ability of a given model to discriminate between the two R6/2 groups: the 8-wk old vs.
the 12-wk old. The ROC curve analysis with which we supervised KMCA in the first and
second test, and the results of which appear in Table 2, was designed to assess the ability of
all 17 IVs to discriminate between the WT and the R6/2 mice. Clearly, as far as the third test
was concerned, we had to perform another ROC curve analysis, one that would deal
exclusively with the 13 original R6/2 mice, and one that would assess all of the 17 IVs in
terms of their ability to discriminate between the 8-wk old and the 12-wk old R6/2 mice.
The top 5 most significant IVs (metabolites) in the discrimination between the two R6/2
groups according to their AUC value as determined by the R6/2 ROC curve analysis are: 1)
TTau (AUC=0.97515) [Transformed Tau in order to meet normality criteria], 2) GPC+PC
(AUC=0.95167), 3) Glu (AUC=0.94598), 4) Lac (AUC=0.94456), and 5) Gln
(AUC=0.94319). The best R6/2 ROC-supervised KMCA setting was the one that employed
only the top two most significant IVs (AUC>95%), i.e. TTau and GPC+PC; this setting gave
us the lowest Percent of Variation value (33.78) of all settings; and it is this setting that we
used for the third test. The R6/2-ROC-supervised KMCA correctly identified and classified
all of our R6/2 mice into their respective two subgroups [(Cluster 1): 7/7 8 wk-old R6/2
mice (100% correct) & (Cluster 2): 6/6 12 wk-old R6/2 mice (100% correct) → with a total
accuracy of 13/13 original R6/2 mice (100% correct)] [sensitivity=1; (1-specificity)=0].
Table S4 shows those results. More specifically, the R6/2-ROC-supervised KMCA
classified all of the 8 wk-old R6/2 mice into Cluster 1 and all of the 12 wk-old R6/2 mice
into Cluster 2 (Percent of Variation=33.78). Compared with its counterpart, i.e. the
unsupervised KMCA setting (Percent of Variation=66.12), the R6/2-ROC-supervised
KMCA was a considerably better setting (Percent of Variation=33.78), that is to say, it
yielded tighter clusters.

All of the aforementioned test results of KMCA are summarized in Table 3.

3.2. FUZZY CLUSTERING ANALYSIS (FCA)
We first ran FCA unsupervised, i.e. with all 17 IVs. In connection with the first test, the
unsupervised FCA correctly classified all of the 30 original mice into their appropriate group
as either R6/2 or WT [17/17 WT mice (100% correct) & 13/13 R6/2 mice (100% correct) →
with a total accuracy of 30/30 original mice (100% correct)] [sensitivity=1; (1-
specificity)=0].
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There are three Goodness-of-Fit criteria for FCA, all of which are discussed at great length
by Kaufman et al. [3]. We chose the most common, namely, the “Silhouette Coefficient”
(SC). SC takes values from -1 to 1. If SC=0, then the method of classifying a subject into a
particular cluster is no better than the chance method (50-50). If SC=1, then a subject is
perfectly classified; the amount of dissimilarity between that subject and other subjects in
the same cluster is extremely small in comparison with the amount of dissimilarity between
it and subjects from other clusters. If SC=-1, then a different classification method is
warranted. If one calculates the average value of all SCs (for all subjects), that constitutes
the Average Silhouette (AS) value for the whole clustering analysis for the number of the
reported clusters. The closer the value of the Average Silhouette is to 1, the better the
classification by fuzzy clustering is. We used the Average Silhouette (AS) to assess the
clustering fitting of all FCA settings.

In connection with the first test, the aforementioned unsupervised FCA yielded: Average
Silhouette = 0.311791.

Having used the same methodology as the one explained in the case of KMCA, we
subjected the unsupervised FCA to the second test. It correctly determined the status of all
of the 31 unknown mice [20/20 WT mice (100% correct) and 11/11 R6/2 mice (100%
correct), with a total accuracy of 31/31 unknown mice (100% correct)] [sensitivity=1; (1-
specificity)=0].

In connection with the third test, the unsupervised FCA correctly identified and classified all
of our R6/2 mice into their respective two subgroups [(Cluster 1): 7/7 8 wk-old R6/2 mice
(100% correct) & (Cluster 2): 6/6 12 wk-old R6/2 mice (100% correct) → with a total
accuracy of 13/13 original R6/2 mice (100% correct)] [sensitivity=1; (1-specificity)=0]. In
this case, Average Silhouette = 0.234672.

Just as we did in the case of KMCA, we ran FCA with the top ten most significant IVs
according to ROC curve analysis (AUC > 70%) [Table 2]; then with the top nine most
significant IVs (AUC > 80%); then with the top seven IVs (AUC > 90%); and finally, with
the top four most significant IVs (AUC > 98%). In every one of those settings, the ROC-
supervised FCA correctly identified and classified our two groups of mice. The best setting,
however, just like in the case of KMCA, was the one in which we used the top four most
significant IVs (AUC > 98%) because that is the one that yielded the highest value for the
Average Silhouette [Average Silhouette = 0.654794]. This, incidentally, shows that, at least
in clustering analysis, using more IVs is not necessarily better.

Table S5 shows the results of the aforementioned best FCA setting (top four most significant
IVs) in connection with the first test. This ROC-supervised FCA correctly identified all of
the 30 original mice [17/17 WT mice (100% correct) & 13/13 R6/2 mice (100% correct) →
with a total accuracy of 30/30 original mice (100% correct)] [sensitivity=1; (1-
specificity)=0]. More specifically, all of the WT mice were classified into Cluster 1, whereas
all of the R6/2 into Cluster 2. Prob in 1 & Prob in 2 are the membership probabilities of each
subject in Cluster 1 and Cluster 2 respectively. The Cluster Medoids Section of Table S5
shows the cluster average metabolite concentration values with respect to the four
metabolites (IVs) (top four most significant according to ROC curve analysis) used in this
setting. Subjects # 7 and # 29 were the medoids (closest to the center) of Cluster 1 and
Cluster 2 respectively for this setting, as they had the highest probability of belonging to
their respective cluster (0.9111 and 0.8826 respectively).

Next, we subjected this ROC-supervised FCA to the second test in the same manner as we
did in the case of KMCA. The ROC-supervised FCA correctly determined the status of all
of the 31 unknown mice [20/20 WT mice (100% correct) and 11/11 R6/2 mice (100%
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correct), with a total accuracy of 31/31 unknown mice (100% correct)] [sensitivity=1; (1-
specificity)=0]. Table S6 shows the results of the ROC-supervised FCA with respect to one
of the unknown mice, which is in row #31. The ROC-supervised FCA correctly identified
that unknown mouse as a WT (confirmed via genotyping); more specifically, it classified all
of the WT mice (rows #1–17) into Cluster 1, all of the R6/2 mice (rows #18–30) into Cluster
2, and the unknown mouse (row #31) into Cluster 1, i.e. in the same cluster as all of the WT
mice.

Using the R6/2 ROC curve analysis, explained above in the case of KMCA, we subjected
the R6/2-ROC-supervised FCA to the third test. It correctly identified and classified all of
our R6/2 mice into their respective two subgroups [(Cluster 1): 7/7 8 wk-old R6/2 mice
(100% correct) & (Cluster 2): 6/6 12 wk-old R6/2 mice (100% correct) → with a total
accuracy of 13/13 original R6/2 mice (100% correct)] [sensitivity=1; (1-specificity)=0]. In
this case, Average Silhouette = 0.525337. Table S7 shows those results. More specifically,
the R6/2-ROC-supervised FCA classified all of the 8 wk-old R6/2 mice into Cluster 1 and
all of the 12 wk-old R6/2 mice into Cluster 2. The Cluster Medoids Section shows the
cluster average metabolite concentration values with respect to the two metabolites TTau
and GPC+PC (top two most significant according to the R6/2 ROC curve analysis)
(AUC>95%) used in this setting. Subjects # 3 and # 10 were the medoids (closest to the
center) of Cluster 1 and Cluster 2 respectively for this setting, as they had the highest
probability of belonging to their respective cluster (0.9199 and 0.9159 respectively).

As was the case with KMCA, the ROC-supervised settings of FCA were considerably better
than their respective unsupervised counterparts in that they yielded tighter clusters; the
former had considerably higher Average Silhouette value than the latter.

All of the aforementioned test results of FCA are summarized in Table 3.

3.3. HIERARCHICAL CLUSTERING ANALYSIS (HCA)
In the same manner we did in the case of KMCA and FCA, we tested the unsupervised HCA
with our three tests. The unsupervised HCA failed all of our three tests. In each of those
tests, the unsupervised HCA yielded results that made little sense. Figure 2 depicts the
results of the unsupervised HCA in connection with the first test. Rows #1–17 are the WT
mice, whereas rows #18–30 are the R6/2 mice. Looking in the area where there are only two
clusters (Dissimilarity range of ~ 1.63–2.26), one can see that subject #30 was classified into
one cluster all by itself, and that all other 29 subjects were classified into the other cluster.
This classification makes little sense.

The Goodness-of-Fit criteria for HCA are 1) the Cophenetic Correlation (CC) coefficient,
which measures the degree of similarity (the closer to 1 it is, the better); 2) Δ(0.5); and 3)
Δ(1.0) [21,17]. The last two measure the degree of dissimilarity, and, hence, the closer to 0
they are, the better [17]. With respect to the first and third test, the aforementioned
unsupervised HCA gave the following CC coefficients respectively: 0.873 and 0.832.

Next, we ran ROC-supervised settings of HCA. Just as we did with our previous clustering
analyses, we ran HCA with the top 10 most significant IVs (AUC > 70%) according to ROC
curve analysis, then with the top 9 IVs (AUC > 80%), then with the top 7 IVs (AUC > 90%),
and finally with the top 4 IVs (AUC > 98%). ROC-supervised HCA failed the first test, i.e.
to classify correctly all of the 30 original mice into the two groups (clusters) (WT and R6/2),
when run with the top 10 most significant IVs (AUC > 70%) [17/17 WT mice (100%
correct) & 12/13 R6/2 mice (92.31% correct) → with a total accuracy of 29/30 original mice
(96.67% correct)]. However, ROC-supervised HCA did correctly identify and classify all of
the 30 original mice into the two groups in the last three settings, i.e. when we used the top
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9, top 7, and top 4 most significant IVs. Of those last three successful settings, the last one
[with the top 4 most significant IVs according to ROC curve analysis (AUC > 98%)] was
the best setting of all ROC-supervised, as well as of all unsupervised, HCA settings in that it
yielded the highest Cophenetic Correlation coefficient (0.913287) and the lowest Δ(0.5)
*0.171784+ and Δ(1.0) *0.204949+. This ROC-supervised HCA, with the top 4 most
significant IVs, as was mentioned, successfully passed our first test: [17/17 WT mice (100%
correct) & 13/13 R6/2 mice (100% correct) → with a total accuracy of 30/30 original mice
(100% correct)] [sensitivity=1; (1-specificity)=0]. Figure 3 depicts, in the form of a
dendrogram, the results of the best ROC-supervised HCA in connection with the first test.
Rows #1–17 are the WT mice, whereas rows #18–30 are the R6/2 mice. Looking in the area
where there are only two clusters (Dissimilarity range of ~ 1.1–1.8), one can see that
subjects # 1–17 (all of the WT mice) were classified into the lower cluster, whereas subjects
#18–30 (all of the R6/2 mice) were classified into the upper cluster.

In connection with the second test, the aforementioned ROC-supervised HCA correctly
determined the status of all of the 31 unknown mice [20/20 WT mice (100% correct) and
11/11 R6/2 mice (100% correct), with a total accuracy of 31/31 unknown mice (100%
correct)] [sensitivity=1; (1-specificity)=0]. Figure S1 shows, in the form of a dendrogram,
the results of the ROC-supervised HCA in connection with the second test, and with respect
to one of the unknown mice, which is in row #31. Rows #1–17 are the WT mice, whereas
rows #18–30 are the R6/2 mice. The ROC-supervised HCA correctly identified that
unknown mouse as an R6/2 (confirmed via genotyping). More specifically, looking in that
area of the dendrogram where there are only two clusters (Dissimilarity range of ~ 1.2–1.7),
one can see that subjects # 1–17 (all of the WT mice) were classified into the lower cluster,
whereas subjects #18–30 (all of the R6/2 mice) and # 31 (the unknown mouse) were
classified together into the upper cluster.

Using the R6/2 ROC curve analysis, we subjected the R6/2-ROC-supervised HCA to the
third test. As was the case with all of the unsupervised HCA settings, the results of the R6/2-
ROC-supervised HCA made little sense. In a dendrogram presentation, Figure S2 depicts the
results of the R6/2-ROC-supervised HCA in connection with the third test. Rows #1–7 are
the 8 wk-old R6/2 mice, whereas rows #8–13 are the 12 wk-old R6/2 mice. Looking in the
area where there are only two clusters (Dissimilarity range of ~ 1.4–2.4), one can see that
subject #13 was classified all by itself into the upper cluster, whereas all of the remaining
subjects were classified into the lower cluster. That, of course, makes little sense. The CC
coefficient was 0.840.

We should point out here that, just like in the case of the previous two clustering methods,
the ROC-supervised settings of HCA exhibited better clustering ability than the
unsupervised HCA as was indicated by the CC (Cophenetic Correlation) coefficient,
including the case of the R6/2-ROC-supervised HCA, even though it failed the third test.
We observed that the successful ROC-supervised HCA settings, including the 31 settings for
the 31 unknowns, all had a CC > 0.884, with 91% of those settings having a CC > 0.900.

All of the aforementioned test results of HCA are summarized in Table 3.

3.4. MEDOID PARTITIONING CLUSTERING ANALYSIS (MPCA)
With respect to the first test, the unsupervised MPCA correctly classified all of the 30
original mice into their appropriate group as either R6/2 (Cluster 2) or WT (Cluster 1)
[17/17 WT mice (100% correct) & 13/13 R6/2 mice (100% correct) → with a total accuracy
of 30/30 original mice (100% correct)] [sensitivity=1; (1-specificity)=0].
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The Goodness-of-Fit criterion for MPCA is the Silhouette Coefficient (SC), or simply
Silhouette Value, which was discussed at length in the Fuzzy Clustering Analysis section
earlier [3]. The average value of all individual SC values constitutes the Average Silhouette
(AS) value for the whole clustering analysis for the number of the reported clusters. Once
again, the closer this value is to 1, the better the classification, or partitioning, by the MPCA.
The aforementioned unsupervised MPCA gave AS=0.312 in connection with the first test.

Pertaining to the second test, the unsupervised MPCA incorrectly classified 2 out of the 31
unknown mice. More specifically, it correctly classified 20/20 WT mice (100% correct) and
9/11 R6/2 mice (81.82% correct), with a total accuracy of 29/31 unknown mice (93.55%
correct) [sensitivity=0.818; (1-specificity)=0; (+)LR=0.818/0 → ∞; (−)LR=0.182].

With regard to the third test, the unsupervised MPCA correctly identified and classified all
of our R6/2 mice into their respective two subgroups [(Cluster 1): 7/7 8 wk-old R6/2 mice
(100% correct) & (Cluster 2): 6/6 12 wk-old R6/2 mice (100% correct) → with a total
accuracy of 13/13 original R6/2 mice (100% correct)] [sensitivity=1; (1-specificity)=0]. In
this case the AS=0.235, which is the same value as the one yielded by the unsupervised FCA
in connection with this test. Table S8 shows the above results. More specifically, the
unsupervised MPCA classified all of the 8 wk-old R6/2 mice into Cluster 1 and all of the 12
wk-old R6/2 mice into Cluster 2. The Average Silhouette (AS) value was 0.235. “Average
Distance Within” is the average distance of a subject with respect to all other members of
the same cluster, whereas “Average Distance Neighbor” is the average distance of a subject
with respect to all members of the other cluster.

Availing ourselves of the results of the ROC curve analysis (Table 2), we ran MPCA first
with the top 10 most significant IVs (AUC > 70%), then with the top 9 IVs (AUC > 80%),
then with the top 7 IVs (AUC > 90%), and finally with the top 4 IVs (AUC > 98%). In every
one of those settings, the ROC-supervised MPCA correctly identified and classified the 30
original mice into the two groups (clusters) (WT and R6/2). The best setting, however, just
like in the case of all previously discussed clustering analyses, was the one in which we used
the top four most significant IVs (AUC > 98%) because that is the one that yielded the
highest value for the Overall Average Silhouette (AS=0.6548). More specifically, the results
of the best ROC-supervised MPCA (top four IVs) pertaining to the first test were as follows:
17/17 WT mice (100% correct) & 13/13 R6/2 mice (100% correct) → with a total accuracy
of 30/30 original mice (100% correct) [sensitivity=1; (1-specificity)=0]. Table S9 shows
those results. As can be seen, all of the WT mice (rows #1–17) were classified into Cluster
1, whereas all of the R6/2 mice (rows #18–30) were classified into Cluster 2. The Average
Silhouette (AS) value was 0.655.

In connection with the second test, the ROC-supervised MPCA misclassified 1 out of the 31
unknown mice. More specifically, it correctly classified 20/20 WT mice (100% correct) and
10/11 R6/2 mice (90.91% correct), with a total accuracy of 30/31 unknown mice (96.77%
correct) [sensitivity=0.909; (1-specificity)=0; (+)LR=0.909/0 → ∞; (−)LR=0.091]. Table
S10 shows the misclassification of the aforementioned unknown mouse. As can be seen, the
unknown mouse (row #31), whose status had been determined to be R6/2 by genotyping,
was classified into Cluster 1, together with all the WT mice (rows #1–17). All of the R6/2
mice (rows #18–30) were classified into Cluster 2. It is worth pointing out here that the fact
that the individual Silhouette Value of the unknown mouse (row #31) is close to zero
(0.0157) indicates that the decision on the classification of that mouse was hardly better than
the chance decision (50-50).

With regard to the third test, the R6/2-ROC-supervised MPCA correctly identified and
classified all of our R6/2 mice into their respective two subgroups [(Cluster 1): 7/7 8 wk-old
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R6/2 mice (100% correct) & (Cluster 2): 6/6 12 wk-old R6/2 mice (100% correct) → with a
total accuracy of 13/13 original R6/2 mice (100% correct)] [sensitivity=1; (1-specificity)=0].
In this case, AS = 0.525. Table S11 shows those results. As can be seen, the R6/2-ROC-
supervised MPCA classified all of the 8 wk-old R6/2 mice into Cluster 1 and all of the 12
wk-old R6/2 mice into Cluster 2. By direct comparison of the R6/2-ROC-supervised MPCA
(Table S11) with the unsupervised MPCA (Table S8), one can see that the former constitutes
a considerable improvement of the latter. The individual Silhouette value of every subject is
higher in the case of the R6/2-ROC-supervised MPCA, indicating a considerably better
overall clustering power. For instance, looking at the most difficult subject in terms of
classification (row #8), one can see that the Silhouette value of that subject in the R6/2-
ROC-supervised MPCA is nearly sixteen times higher than the one in the unsupervised
MPCA (0.1949 vs. 0.0122).

All of the aforementioned test results of MPCA are summarized in Table 3.

4. DISCUSSION
Our results demonstrate that certain clustering methods can be employed for the
development of clustering diagnostic biomarker models (DBMs) that can render a
differential diagnosis of a single unknown subject in diseases where the boundaries between
the pathological and the normal are well defined, such as neurodegenerative diseases,
cancer, etc. (Table 3). In particular, FCA passed all three of our tests with 100% accuracy,
both when run unsupervised and when run supervised by ROC curve analysis. The ROC-
supervised KMCA also passed all three of our tests with 100% accuracy.

More specifically, of all the clustering methods we investigated, FCA was the only one to
pass all three of our tests both unsupervised and when supervised by ROC curve analysis.
The fact, therefore, that FCA proved to be the most accurate and the most consistent
clustering method in our study, provides strong evidence for the robustness of the FCA
algorithm and, more importantly, for its suitability for diagnostic applications. Given that the
ROC-supervised FCA evinced considerably greater clustering ability than the unsupervised
FCA [greater AS value both for Test 1 and 3 (Table 3)], it stands to reason that FCA aided
by ROC curve analysis is, according to our investigation, the best clustering method for the
development of accurate diagnostic biomarker models.

The ROC-supervised KMCA also passed all of our three tests, and it proved that it is the
second most robust clustering method according to our study. The fact that the unsupervised
KMCA passed the first and the third test, and that it failed the second test by missing just
one of the 31 unknown subjects, redounds greatly to the innate clustering ability of the
KMCA algorithm. That and the demonstrated accuracy of the KMCA aided by ROC curve
analysis provide compelling support for the employment of the ROC-supervised KMCA for
the development of accurate diagnostic biomarker models.

MPCA passed the first and the third test both in the unsupervised and in the ROC-supervised
condition. The second test, however, proved particularly difficult for MPCA. Even the
ROC-supervised MPCA was not able to pass the second test, although it demonstrated better
accuracy than the unsupervised MPCA. Those results, as well as the high accuracy required
of a diagnostic biomarker model, argue against the employment of MPCA for diagnostic
purposes. HCA demonstrated by far the lowest accuracy and consistency of all clustering
methods according to our investigation. It was the only method that failed all of our three
tests when run completely unaided. Even when aided by the R6/2 ROC curve analysis, HCA
failed to classify correctly the 13 original R6/2 mice into their two subgroups. All other
clustering methods were able to do so and pass the third test both in the unsupervised and
the R6/2-ROC-supervised way. Insofar as the diagnosis of diseases constitutes the end goal,
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or, equivalently, in any task requiring a high degree of accuracy, using HCA would not
constitute a wise choice according to the results of our study.

We should point out here that there are at least two possible explanations for the poor results
on the part of HCA. First, of all the methods we examined, HCA is the only one that does
not allow the preselection of the number of clusters [21,17]. As was stated earlier, knowing
beforehand the number of clusters significantly increases the accuracy of a clustering
method. Since in the diagnosis of a disease, the number of groups (clusters) is known, the
inability to preset the number of clusters and, thus, to significantly increase the accuracy of
the algorithm constitutes a major disadvantage on the part of HCA. Secondly, of all the
clustering methods we examined, HCA is the only one that lacks an iterative capability
[3,21,17]. Once a subject is assigned into a cluster, HCA’s algorithm does not re-assess the
impact of that classification to the entire model by re-examining all possible intra- and inter-
clustering subject relationships. A misclassified subject, especially in the early stages of the
clustering process, will inevitably impair the accuracy of the final results to a large extent.
The fact that HCA also failed the third test when run supervised by the R6/2 ROC curve
analysis further evidences the inappropriateness of its use for diagnostic purposes, where a
high degree of accuracy is necessary.

Apropos of the aforementioned results and observations, we should interject here the
following remarks. Today, clustering methods have found their way in the main stream of
biomedical research. Owing to significant advances of technology, such as the ability to
gather information about large numbers of genes or proteins, vast amounts of data can be
generated; and nowhere is that more evident than in the fields of genomics and proteomics.
Confronted by such a plethora of generated data, researchers have little choice but to resort
to data mining methods, such as clustering analyses. On account of a host of reasons,
ranging from ease of use to the undeniable convenience afforded by the visual presentation
of results (dendrograms or other branch-like graphs), HCA, in one form or another, has
become the data tool of choice. Many researchers routinely entrust their data to HCA and
predicate their study conclusions on the results provided by HCA [22–25].

Theoretically, according to their individual internal statistics, all four clustering methods
demonstrated considerably better clustering ability when run supervised by ROC curve
analysis compared with their unsupervised counterparts. That was indeed the case for all
ROC supervised settings of all four clustering methods in connection with all three tests,
including the 31 runs for the 31 unknowns for each method in the second test. This
theoretical evidence, attesting to the significantly superior clustering ability of the ROC-
supervised settings of all four clustering methods, was not the only evidence; in terms of
results, i.e. in terms of classification accuracy, the ROC-supervised settings proved to be
considerably more accurate than their respective unsupervised settings. Nowhere was this
manifested in a more obvious way than in the case of HCA. The unsupervised HCA settings
all yielded results that were not meaningful; whereas, in connection with the first and second
test, the ROC-supervised HCA settings passed both of those tests (100% total accuracy)
[Table 3]. Regarding the second test, the ROC-supervised settings of both KMCA and
MPCA demonstrated higher accuracy than their respective unsupervised settings: the total
accuracy of the former improved from 96.77% to 100%, whereas the total accuracy of the
latter improved from 93.55% to 96.77%.

It is interesting to note that the internal statistic of FCA, Average Silhouette (AS), is the
same as the one employed by MPCA. The fact that all FCA settings yielded the same AS
value as their MPCA counterparts attests to the similarity of the algorithms of the two
clustering methods, both of which were introduced by Kaufman et al. [3]. In this case, we
have two different clustering methods which employ the same internal statistic, and which
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are applied to the same data. That, however, constitutes the entire extent of similarity
between those two methods. FCA’s probability based algorithm, with its fuzzification
capability, proved to be superior not only to that of MPCA but also to the ones of the rest of
the clustering methods.

Unlike in the case of other more complex multivariate analyses, such as linear discriminant
analysis, regression methods, etc., clustering analyses do not impose the fulfillment of any
conditions (normality, equality of variance, etc.) as a prerequisite for their use. This renders
clustering analyses an easy option, especially when the volume of the data is large. However
great this versatility and ease of use may be, one should be aware of the limitations of
clustering diagnostic biomarkers. If in a particular disease state or disorder there is no clear
separation between the affected and the normal, then the two clusters/groups will be, under
the best conditions, widely dispersed and close to each other; and that will not be conducive
to the development of an accurate diagnostic model. Another significant limitation in the
development of a clustering diagnostic model has to do with the particular field of a disease.
If, for example, in a disease state or a disorder there is no definitive diagnosis (gold
standard), then one will not be able to definitively ascertain the status of the original subjects
required to build the model. If the status of all of the original subjects is not known
definitively, that would compromise the accuracy of the developed diagnostic model.
Alzheimer disease constitutes such a case. Finally, as is always the case in statistics, larger
samples confer larger accuracy. In our case, if a larger number of original subjects were
used, that would minimize the impact of outlying or biovariability cases within all groups
involved, and that, in turn, would increase the accuracy of the developed diagnostic model.

In conclusion, as was mentioned earlier, in the vast majority of the cases, clustering methods
are typically used to find groups in data. That indeed constitutes the predominant
employment of clustering methods from physics to the medical sciences [5–12,26,27]. In
this study, we introduced and demonstrated the method whereby a clustering algorithm may
be used to develop a clustering diagnostic biomarker model that can be used to accurately
diagnose a single unknown subject in a disease with well-defined group boundaries. This is
important because in a number of diseases, the gold-standard diagnostic test is invasive,
expensive, and/or may be available only post-mortem. In the process of developing our
clustering diagnostic biomarker models, we investigated four different clustering methods,
and we assessed them in terms of clustering accuracy and fitting by subjecting them to three
tests, including the validation test with unknown subjects. We also introduced the concept of
supervising all four investigated clustering methods with ROC curve analysis in order to
increase their accuracy. Although we utilized an animal model with Huntington disease
(HD), and although the technology we used was NMR spectroscopy, the clustering
diagnostic approach we developed in this study can be applied to other disease states with
well-defined group boundaries using any type of platform technology to quantify outcome
measures.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Separation of the original WT & R6/2 mice by the best KMCA setting (ROC-
supervised KMCA)
The top four most significant IVs (AUC > 98%), namely, Cr+PCr, Gln, Cr, and NAA,
yielded not only the best ROC-supervised KMCA setting but also the best KMCA setting.
Those four IVs are plotted against each other (A–F). The WT mice (#1–17) are depicted in
Cluster 1 (yellow circles), whereas the R6/2 mice (#18–30) are depicted in Cluster 2 (red
triangles). IVs with larger AUCs yielded clusters that are tighter and more separated than
IVs with smaller AUCs. For example, in (A), wherein Cr+PCr [most significant IV
according to ROC curve analysis (AUC=1.00) (see Table 2)] is plotted vs. Gln [second most
significant IV (AUC=0.98897)], the resulting clusters have greater separation and smaller
spreads than the clusters in (F) resulting from plotting Cr [third most significant IV
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(AUC=0.98832)] vs. NAA [fourth most significant IV (AUC=0.98198)]. As one moves
from (A) to (F), one can observe that the two clusters become more dispersed and their
separation distance diminishes.

Nikas and Low Page 22

Comput Methods Programs Biomed. Author manuscript; available in PMC 2012 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Dendrogram classification of the original mice (17 WT & 13 R6/2) according to
unsupervised HCA
Rows #1–17 are the WT mice, whereas rows #18–30 are the R6/2 mice. Looking at the area
where there are only two clusters (Dissimilarity range of ~ 1.63–2.26), one can see that
subject #30 was classified into one cluster all by itself, and that all other 29 subjects were
classified into the other cluster. This classification makes little sense.
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Figure 3. Dendrogram classification of the original mice (17 WT & 13 R6/2) according to ROC-
supervised HCA
Rows #1–17 are the WT mice, whereas rows #18–30 are the R6/2 mice. The ROC-
supervised HCA correctly identified all of the 30 mice. Looking in the area where there are
only two clusters (Dissimilarity range of ~ 1.1–1.8), one can see that subjects # 1–17 (all of
the WT mice) were classified into the lower cluster, whereas subjects #18–30 (all of the
R6/2 mice) were classified into the upper cluster. The top four most significant IVs (AUC >
98%) according to ROC curve analysis were used in this setting, and the Cophenetic
Correlation Coefficient is 0.913287.
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Table 1

Names & abbreviations of all metabolites detected, measured, and evaluated in the study.

No. Metabolite Symbol Metabolite Name

1 Cr creatine

2 PCr phosphocreatine

3 Cr+PCr creatine + phosphocreatine

4 PCr/Cr phosphocreatine/creatine

5 GABA γ-aminobutyric acid

6 Glc glucose

7 Gln glutamine

8 Glu glutamate

9 GSH glutathione

10 GPC+PC glycerophosphorylcholine + phosphorylcholine

11 Lac lactate

12 MM macromolecules

13 mIns myo-Inositol

14 NAA N-acetylaspartate

15 NAAG N-acetylaspartylglutamate

16 PE phosphorylethanolamine

17 Tau Taurine
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Table 2

Rank of all metabolites based on their discriminating power (AUC) from ROC curve analysis.

ROC CURVE ANALYSIS

Metabolite AUC AUC Rank

Cr+PCr 1.00000 1

Gln 0.98897 2

Cr 0.98832 3

NAA 0.98198 4

GSH 0.94052 5

GPC+PC 0.90301 6

mIns 0.89978 7

PCr 0.87023 8

PE 0.83667 9

Tau 0.72888 10

NAAG 0.69632 11

Glc 0.58495 12

Glu 0.58179 13

PCr/Cr 0.53852 14

GABA 0.52209 15

Lac 0.52187 16

MM 0.50067 17

Comput Methods Programs Biomed. Author manuscript; available in PMC 2012 December 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Nikas and Low Page 27

Ta
bl

e 
3

Su
m

m
ar

y 
of

 th
e 

re
su

lts
 o

f 
al

l f
ou

r 
cl

us
te

ri
ng

 m
et

ho
ds

 in
 c

on
ne

ct
io

n 
w

ith
 a

ll 
th

re
e 

te
st

s.
 E

ac
h 

cl
us

te
ri

ng
 m

et
ho

d 
w

as
 te

st
ed

 b
ot

h 
in

 a
n 

un
su

pe
rv

is
ed

 a
nd

 R
O

C
-s

up
er

vi
se

d 
w

ay
. A

ll 
un

su
pe

rv
is

ed
 s

et
tin

gs
 w

er
e

ru
n 

w
ith

 a
ll 

17
 I

V
s.

 I
n 

th
e 

ca
se

 o
f 

th
e 

fi
rs

t a
nd

 s
ec

on
d 

te
st

, a
ll 

cl
us

te
ri

ng
 m

et
ho

ds
 w

er
e 

ru
n 

w
ith

 th
e 

to
p 

fo
ur

 m
os

t s
ig

ni
fi

ca
nt

 I
V

s 
ac

co
rd

in
g 

to
 th

e 
R

O
C

 c
ur

ve
 a

na
ly

si
s 

pe
rf

or
m

ed
 b

et
w

ee
n 

th
e 

W
T

 a
nd

 th
e 

R
6/

2
m

ic
e.

 I
n 

th
e 

ca
se

 o
f 

th
e 

th
ir

d 
te

st
, a

ll 
cl

us
te

ri
ng

 m
et

ho
ds

 w
er

e 
ru

n 
w

ith
 th

e 
to

p 
tw

o 
m

os
t s

ig
ni

fi
ca

nt
 I

V
s 

ac
co

rd
in

g 
to

 th
e 

R
6/

2 
R

O
C

 c
ur

ve
 a

na
ly

si
s 

pe
rf

or
m

ed
 b

et
w

ee
n 

th
e 

8-
w

k 
ol

d 
an

d 
th

e 
12

-w
k 

ol
d 

R
6/

2
m

ic
e.

 T
he

 in
te

rn
al

 s
ta

tis
tic

 o
f 

a 
cl

us
te

ri
ng

 m
et

ho
d 

as
se

ss
es

 th
e 

cl
us

te
ri

ng
 f

itt
in

g 
of

 th
at

 m
et

ho
d 

in
 a

 g
iv

en
 s

et
tin

g.

SU
M

M
A

R
Y

 O
F

 T
E

ST
 R

E
SU

L
T

S

K
M

C
A

F
C

A
H

C
A

M
P

C
A

U
ns

up
er

vi
se

d
(1

7 
V

ar
ia

bl
es

)
R

O
C

-S
up

er
vi

se
d

(4
 V

ar
ia

bl
es

)
U

ns
up

er
vi

se
d

(1
7 

V
ar

ia
bl

es
)

R
O

C
-S

up
er

vi
se

d
(4

 V
ar

ia
bl

es
)

U
ns

up
er

vi
se

d
(1

7 
V

ar
ia

bl
es

)
R

O
C

-S
up

er
vi

se
d

(4
 V

ar
ia

bl
es

)
U

ns
up

er
vi

se
d

(1
7 

V
ar

ia
bl

es
)

R
O

C
-S

up
er

vi
se

d
(4

 V
ar

ia
bl

es
)

T
E

ST
 1

ID
 o

f 
or

ig
in

al
 3

0
m

ic
e

%
 C

or
re

ct
%

 C
or

re
ct

%
 C

or
re

ct
%

 C
or

re
ct

17
 W

T
17

/1
7 

(1
00

%
)

17
/1

7 
(1

00
%

)
17

/1
7 

(1
00

%
)

17
/1

7 
(1

00
%

)
17

/1
7 

(1
00

%
)

17
/1

7 
(1

00
%

)
17

/1
7 

(1
00

%
)

13
 R

6/
2

13
/1

3 
(1

00
%

)
13

/1
3 

(1
00

%
)

13
/1

3 
(1

00
%

)
13

/1
3 

(1
00

%
)

13
/1

3 
(1

00
%

)
13

/1
3 

(1
00

%
)

13
/1

3 
(1

00
%

)

T
ot

al
30

/3
0 

(1
00

%
)

30
/3

0 
(1

00
%

)
30

/3
0 

(1
00

%
)

30
/3

0 
(1

00
%

)
*

30
/3

0 
(1

00
%

)
30

/3
0 

(1
00

%
)

30
/3

0 
(1

00
%

)

(+
) 

L
ik

el
ih

oo
d 

R
at

io
1/

0 
→

 ∞
1/

0 
→

 ∞
1/

0 
→

 ∞
1/

0 
→

 ∞
1/

0 
→

 ∞
1/

0 
→

 ∞
1/

0 
→

 ∞

(−
) 

L
ik

el
ih

oo
d 

R
at

io
0/

1=
0

0/
1=

0
0/

1=
0

0/
1=

0
0/

1=
0

0/
1=

0
0/

1=
0

In
te

rn
al

 S
ta

ti
st

ic
%

V
ar

=
65

.7
6

%
V

ar
=

22
.0

4
A

S=
0.

31
2

A
S=

0.
65

5
C

C
=

0.
87

3
C

C
=

0.
91

3
A

S=
0.

31
2

A
S=

0.
65

5

T
E

ST
 2

ID
 o

f 
31

 u
nk

no
w

n
m

ic
e

20
 W

T
20

/2
0 

(1
00

%
)

20
/2

0 
(1

00
%

)
20

/2
0 

(1
00

%
)

20
/2

0 
(1

00
%

)
20

/2
0 

(1
00

%
)

20
/2

0 
(1

00
%

)
20

/2
0 

(1
00

%
)

11
 R

6/
2

10
/1

1 
(9

0.
91

%
)

11
/1

1 
(1

00
%

)
11

/1
1 

(1
00

%
)

11
/1

1 
(1

00
%

)
11

/1
1 

(1
00

%
)

9/
11

 (
81

.8
2%

)
10

/1
1 

(9
0.

91
%

)

T
ot

al
30

/3
1 

(9
6.

77
%

)
31

/3
1 

(1
00

%
)

31
/3

1 
(1

00
%

)
31

/3
1 

(1
00

%
)

*
31

/3
1 

(1
00

%
)

29
/3

1 
(9

3.
55

%
)

30
/3

1 
(9

6.
77

%
)

(+
) 

L
ik

el
ih

oo
d 

R
at

io
0.

90
9/

0 
→

 ∞
1/

0 
→

 ∞
1/

0 
→

 ∞
1/

0 
→

 ∞
1/

0 
→

 ∞
0.

81
8/

0 
→

 ∞
0.

90
9/

0 
→

 ∞

(−
) 

L
ik

el
ih

oo
d 

R
at

io
0.

09
1

0/
1=

0
0/

1=
0

0/
1=

0
0/

1=
0

0.
18

2
0.

09
1

T
E

ST
 3

ID
 o

f 
or

ig
in

al
 1

3
R

6/
2 

m
ic

e

(R
6/

2)
-R

O
C

-S
up

er
vi

se
d 

(2
 V

ar
ia

bl
es

)
(R

6/
2)

-R
O

C
-S

up
er

vi
se

d 
(2

 V
ar

ia
bl

es
)

(R
6/

2)
-R

O
C

-S
up

er
vi

se
d 

(2
 V

ar
ia

bl
es

)
(R

6/
2)

-R
O

C
-S

up
er

vi
se

d 
(2

 V
ar

ia
bl

es
)

7 
R

6/
2 

8 
w

ks
 o

ld
7/

7 
(1

00
%

)
7/

7 
(1

00
%

)
7/

7 
(1

00
%

)
7/

7 
(1

00
%

)
7/

7 
(1

00
%

)
7/

7 
(1

00
%

)

6 
R

6/
2 

12
 w

ks
 o

ld
6/

6 
(1

00
%

)
6/

6 
(1

00
%

)
6/

6 
(1

00
%

)
6/

6 
(1

00
%

)
6/

6 
(1

00
%

)
6/

6 
(1

00
%

)

T
ot

al
13

/1
3 

(1
00

%
)

13
/1

3 
(1

00
%

)
13

/1
3 

(1
00

%
)

13
/1

3 
(1

00
%

)
*

*
13

/1
3 

(1
00

%
)

13
/1

3 
(1

00
%

)

(+
) 

L
ik

el
ih

oo
d 

R
at

io
1/

0 
→

 ∞
1/

0 
→

 ∞
1/

0 
→

 ∞
1/

0 
→

 ∞
1/

0 
→

 ∞
1/

0 
→

 ∞

(−
) 

L
ik

el
ih

oo
d 

R
at

io
0/

1=
0

0/
1=

0
0/

1=
0

0/
1=

0
0/

1=
0

0/
1=

0

Comput Methods Programs Biomed. Author manuscript; available in PMC 2012 December 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Nikas and Low Page 28

SU
M

M
A

R
Y

 O
F

 T
E

ST
 R

E
SU

L
T

S

K
M

C
A

F
C

A
H

C
A

M
P

C
A

U
ns

up
er

vi
se

d
(1

7 
V

ar
ia

bl
es

)
R

O
C

-S
up

er
vi

se
d

(4
 V

ar
ia

bl
es

)
U

ns
up

er
vi

se
d

(1
7 

V
ar

ia
bl

es
)

R
O

C
-S

up
er

vi
se

d
(4

 V
ar

ia
bl

es
)

U
ns

up
er

vi
se

d
(1

7 
V

ar
ia

bl
es

)
R

O
C

-S
up

er
vi

se
d

(4
 V

ar
ia

bl
es

)
U

ns
up

er
vi

se
d

(1
7 

V
ar

ia
bl

es
)

R
O

C
-S

up
er

vi
se

d
(4

 V
ar

ia
bl

es
)

In
te

rn
al

 S
ta

ti
st

ic
%

V
ar

=
66

.1
2

%
V

ar
=

33
.7

8
A

S=
0.

23
5

A
S=

0.
52

5
C

C
=

0.
83

2
C

C
=

0.
84

0
A

S=
0.

23
5

A
S=

0.
52

5

(*
) T

he
 r

es
ul

ts
 o

f 
th

is
 s

et
tin

g 
m

ad
e 

lit
tle

 s
en

se

(%
V

ar
):

 P
er

ce
nt

 V
ar

ia
tio

n 
– 

th
e 

lo
w

er
, t

he
 b

et
te

r 
th

e 
cl

us
te

ri
ng

(A
S)

: A
ve

ra
ge

 S
ilh

ou
et

te
 –

 th
e 

hi
gh

er
, t

he
 b

et
te

r 
th

e 
cl

us
te

ri
ng

(C
C

):
 C

op
he

ne
tic

 C
or

re
la

tio
n 

– 
th

e 
hi

gh
er

, t
he

 b
et

te
r 

th
e 

cl
us

te
ri

ng

Comput Methods Programs Biomed. Author manuscript; available in PMC 2012 December 01.


