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We propose a novel metal artifact reduction method based on a fractional-order curvature driven diffusion model for X-ray com-
puted tomography. Our method treats projection data with metal regions as a damaged image and uses the fractional-order cur-
vature-driven diffusion model to recover the lost information caused by the metal region. The numerical scheme for our method
is also analyzed. We use the peak signal-to-noise ratio as a reference measure. The simulation results demonstrate that our method
achieves better performance than existing projection interpolation methods, including linear interpolation and total variation.

1. Introduction

Metal artifact reduction (MAR) is still one of the major
challenges in X-ray computed tomography (CT) imaging [1-
6]. For high density objects, such as a metal object, the severe
attenuation of X-rays allows only a limited number of photos
to reach the receiving CT array of sensors. As a result, streak
artifacts appear in the reconstructed image after filtered back
projection (FBP). The artifacts spread through the whole
image, thereby contaminating the imaging quality.

Since the projection data of the metal regions are much
larger than ordinary tissue projection data sets, we can as-
sume that the segments of the sinogram with the metal pro-
jection data sets are dominated by the metal component only.
Based on this assumption, we can deal with projection data of
metal objects as lost information, using one of the two main
categories of methods: projection interpolation methods [7—
12] or iterative reconstruction methods [13—17]. After theo-
retical analysis, MAR methods based on iterative reconstruc-
tion have better reconstruction performance than projection
interpolation methods, but they often incur high compu-
tational costs and are difficult to implement in current CT
imaging systems. In this paper, we concentrate on projection
interpolation methods for MAR. In 1978, Lewitt and Bates
used a Chebyshev polynomial to implement interpolation
[7]. Kalender et al. employed linear interpolation (LI) [8],

while Crawford added various assistant processes based on it
[9]. Also based on linear interpolation, Gu et al. presented a
more accurate metal region segmentatio method using the
differences in neighboring pixels [10]. Zhao et al. proposed
interpolating the wavelet coefficients of the projection data
[11]. To obtain a better visual effect, inpainting based on
partial differential equations (PDEs) was introduced in [12,
13]. The inpainting method proposed by Gu et al. is based on
FEuler’s elastica and curvature [12]. Duan et al. introduced a
classical image inpainting method based on total variation
(TV) for MAR [13]. However, the existing PDE image
inpainting method cannot connect a wide inpainting region
smoothly, and therefore, if wide regions exist, it does not
achieve satisfactory results.

In this paper, we propose a fractional-order curvature-
driven diffusion (FCDD) MAR model based on our gener-
alized image regularization framework [18]. First, we intro-
duce the FCDD inpainting model. Then, we give the numer-
ical scheme for our method. After presenting our simulation,
we conclude this paper.

2. Method

The main steps in our algorithm are similar to those in con-
ventional projection interpolation algorithms as shown in
Figure 1.
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FiGure 1: Flowchart of projection interpolation algorithms.

The main difference between our method and the con-
ventional projection interpolation methods lies in the step
“correction for metal projection data” When the metal
damages the original projection data in the form of a gap,
conventional methods apply interpolations [7, 8] or PDE
inpainting [12, 13] algorithms to restore the data gap. But
these conventional methods have some drawbacks. First, the
gap boundaries after inpainting lack smoothness. Second,
if the gap is wide, the inpainting results do not achieve
satisfactory visual effects. The proposed CT MAR method
is based on FCDD that can fix these flaws. This method
achieves smoother results and can also cope with the artifacts
caused by wide data gaps. In this section, we first introduce
the well-known TV inpainting model, and then present our
FCDD model. Finally, the numerical algorithm is given for
our model.

2.1. Review of Classic TV Inpainting Model. Assume a
standard image model defined as

u(x) = uo(x) + n(x), (1)

where uy is the original image, n is additive noise, and u is
the contaminated image with noise.

Let Q) be the inpainting (open) domain with its boundary
0Q), and E an extended domain surrounding the 0Q) such that
0Q lies within E U Q. The image inpainting model based on
TV proposed by Chan and Shen [19] is followed here:

min],\[u]:J |Vu|dxdy+/\f0)[|u—uo\2dxdy. (2)
EuQ 2 Jg

The first term is the regularizing term for inpainting dam-
aged domains, while the second term in the energy function
is the data fidelity term that can keep important features and
sharp edges when noise exists. 1q is a scale function to tune
the weights of the two terms. According to variational theory,
the Euler-Lagrange equation corresponding to (2) is

—v-(|w|*1w)+)\g(u—uo):o (3)

with the Neumann boundary condition, du/dn = 0 on 0Q,
where

A (x,y) €E

/\QZA'IE(%}’): . (4)
0, otherwise.

This model is inspired by the classic TV denoising model
[20].

2.2. Proposed FCDD Inpainting Model. In the classical TV
inpainting model, the conductivity coefficient of the diffu-
sion strength, which only depends on the numerical value of
the isophotes, is

F=|Vu|™l (5)

The geometric information of the isophotes is not consid-
ered, which is why a wide gap cannot be restored perfectly.
Motivated by the methods in [21, 22], to recover from
this situation, we use a new fractional-order conductivity
coefficient instead of the old one:

F = f(I&*)V%ul ", (6)
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where f(-) is a function with the following property:
0, s=0
f(s) =1 o0,

between 0 and o, 0<s< oo,

If the isophote has a large fractional-order curvature, the
diffusion strength is also large. In this paper, we choose
f(s) = s. Thus, the Euler-Lagrange equation for the FCDD
model is

ou
— =V- f(IK“I)IV"‘uI_IVu , in D,
a0l ] (8)

u=ugy, Iin D"

Here, the inpainting domain D is a mathematical open set,
D¢ denotes the outer area of D, and uy is the available part of
the image. The fractional-order curvature x* is defined as

K = Ve - [ Veulveu Y. 9)

2.3. Numerical Scheme. In this section, we apply a time
marching scheme to our model. Assuming a time step size
of At and a space grid size of h, we let

xi=ih, yj=jh i,j=0,1,...,N, with Nh =1,
(10)
t, =nAt, n=0,1,...
The explicit scheme iterates as
uttt :u”+At(Au|K"‘HV“u|71). (11)

First, we describe the discretization of the fractional-
order gradient operator V*and fractional-order Laplacian
operator A* using the Griitmwald-Letnikov definition [23] in
fractional calculus as the mask we proposed in [24, 25].

The a-order Grimwald-Letnikov definition-based frac-
tional differential can be expressed as

o __
Pl s = Tt — a1 ey
NS Tk - )
B Nhinoo‘: I(~a) kzzo rk+n  (12)

i)

where the duration of signal s(x) is [a,x], a is any real
number, and s(x — k((x — a)/N)) is the discrete sampling.

If N is big enough with a = 0, the limit symbol can be
dispensed with and (12) is rewritten as

d(X
dx« s() ‘ G-L

(13)

L NG Tk —a) ( %_ki>
T T(-a) 5 T(k—1) 2N N/

To obtain the value of s(x + ax/2N — kx/N), we use Lagrange
3-point interpolation with s(x + x/N — kx/N), s(x — kx/N),
and s(x — x/N — kx/N). Then, we obtain

doc
dx>

s(x)

_ x NG Tk - )
T T(-a) & T(k+1)

o o?
X | sx + Z(Sk—l — Ski1) + E(Sk—l — 28 + Skr1) |-
(14)
If k = n < N — 1, from (13), the anterior n + 2 approximate

backward differences of the fractional partial differentials on
the negative x- and y-axes, respectively, are expressed as

(S Tk —ar ) (o)
(k+1)! 4 8

k=1
o? I'k-—a-1) a ol
'(1—4>+<k_m'(‘4+8>]

I'n—a-1) o?
xs(x—k,y)+ [(n— Do) (1 - 4)
JI-a=2) ([« o
(n—2)'T'(~«a) 4 8
I'n—a-—1)
XS(X—H+1,}/)+m
(—Z+0;2> xs(x—n,y),
2%s(x, y)
oy~
= ﬁ+0ﬁ (x,y+1)
“\a e )Y
ar ol 1
+<1—2—8> Xs(x,y)+r(_a)

n
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X
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INES

N I(n-a-2) _g+oﬁ
(n—2)T(~a) 4 8

I'n—a-1)
(n—DI'(—a)

Xs(x,y—k)-k[ [n—a-1) (1—

(n- DT (-a)
-n+1)+

(15)

For simplicity, we only use fractional order masks in
four directions for calculation, including positive x- and y-
coordinates and negative x- and y-axes. Let Dg,, D_, D5,
and D$_ denote the calculations in the four directions, as
illustrated in Figure 2.

The coefficients of the masks in Figure 2 are given below:

(04 04
C57121+§
0(2 3
Co=l-% %
5 500 ot
=t T e
1 I'k—a+1) (a o
= . 7+7
Ca F(—a)[ (k+1)! (4 8
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(53)]
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(k-1

(16)

I'n—a-2) l—oﬁ
(n—2)! 4
T(n—a-3) 7g+0c72
(n—13)! 4 8

_Tn-a-1) a?
Cot = - DM ) (1 B 4)
+F(n—oc—2) _ _g_f_oﬁ
(n—2)'I'(~w) 4

8
_In—a-1) [ a &
o = - DI ( 4+8>'

Computational and Mathematical Methods in Medicine

Thus, we get a discrete representation of each item

Au = u, + uy,

Uy = minmod(ufc, minmod(Zu)bC, Zu,{)),

uy = minmod(u;, minmod(Zuf,,Zu;)),
Veul ! = ! :
2
\/(ID?+u|2 + ‘D%u‘ +s)
Veu
o __ o
K=V (\vam) (17)
_ Do D¢, u
= 2
\/<|D§+u|2+ D;’,‘+u‘ +s)
DS u
)/+
+Dj_

\/(|Ds:+u|2 + |Dgu] +e)

where ¢ is a small positive number to prevent dividing by
zero, the superscript indexes ¢, b, and f denote central, back-
ward, and forward differences, respectively, and the minmod
function satisfies

minmod(x, y) = sign(a) - max(0, min(|al,b - sign(a))).
(18)

3. Results

In this section, we present the experimental results of our
FCDD model compared with the LI and TV models.

As there is no quantitative method to measure the
performance of CT MAR [11], we apply the peak-signal
to-noise ratio (PSNR), which is commonly used in image
inpainting [26], as the available criterion

2552) (19)

PSNR = 10 X logm(”u ol

Here, u is the image after inpainting and u is the original
image. The greater the value of the PSNR is, the better is the
performance. PSNR is usually used to measure the similarity
between an inpainted image and a real image, and as such it
is a suitable reference.

Several concrete steps are followed in our method. First,
because in this paper we focus on the inpainting algorithm,
for simplicity, we only use the threshold method to extract
the metal region. It is easy to say that a more accurate seg-
mentation algorithm would enhance the performance of
MAR. Second, we locate the corresponding metal regions in
the projection data set. Third, we employ the FCDD algo-
rithm to inpaint the metal regions. Finally, we reconstruct
the image from the inpainted sinogram and insert the metal
regions.
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TABLE 1: Parameters of the modified S-L phantom with five metal regions: 7 is the attenuation coefficient; A, B are the lengths of the semiaxes
of each ellipse; x, y are the central coordinates of each ellipse; 6 is the rotation angle (in degrees).

No. T A B X y 0
1 1.0 0.920 0.6900 0 0 90
2 -0.8 0.874 0.6624 0 —-0.0184 90
3 -0.2 0.310 0.1100 0.22 0 72
4 -0.2 0.410 0.1600 -0.22 0 108
5 0.1 0.250 0.2100 0 0.3500 90
6 0.1 0.046 0.0460 0 0.1000 0
7 0.1 0.046 0.0460 0 —0.1000 0
8 0.1 0.046 0.0230 —0.08 —0.6050 0
9 0.1 0.023 0.0230 0 -0.6050 0
10 0.1 0.046 0.0230 0.06 -0.6050 90
11 30.0 0.075 0.0500 0 —0.4800 0
12 25.0 0.030 0.0250 0.25 —0.6200 45
13 30.0 0.040 0.0300 —0.45 0.5000 135
14 30.0 0.050 0.0400 0.45 0.2000 0
15 30.0 0.050 0.0450 —0.42 —0.3000 72
0 0 0 0 0 0 0 0 0 0 0 0 0 0
G| Coo | Cop | = | Cs |-+ | Cspo| Csn| G, Cs, | Cspoi| Csn Cs; Cs | C | Csy
0 0 0 0 0 0 0 0 0 0 0 0 0 0
(a) (b)
0 |G, | 0 0 |G| 0
0 [Csy O 0 |Gy 0
0 |Gy O 0 |Gy | 0
0 |Cy | 0 0 Gy | ©
0 |Cy o |--- < 0 |Gy O
0 [Cy | O |- -0 |G| O
0 |G| o] - o]0 e, | o

(0) (d)

FIGURE 2: Masks of the four directions: (a) D, (b) D%_, (c) Dy, and (d) D*_.
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(d)

(e)

Figure 3: Comparison of different sinogram inpainting methods with multiple metal regions: (a) phantom with five metal regions, (b)
filtered back projection with metal artifacts, (c) filtered back projection after LI (PSNR = 26.4205), (d) filtered back projection after TV
(PSNR = 25.9497), and (e) filtered back projection after FCDD (PSNR = 26.4399).

In the first experiment, while dealing with multiple met-
als, we compared the performance of FCDD against other
methods. Five metal regions with much higher attenuation
were added into the Shepp-Logan (S-L) phantom (256 X
256) to simulate the metal artifacts. The parameters are given
in Table 1.

Figure 3 shows the results of the different algorithms,
where Figure 3(a) gives the original phantom with a metal
region while Figure 3(b) shows the phantom reconstructed
from the projection data and containing severe metal arti-
facts. Figures 3(c) to 3(e) illustrate the results of LI, TV, and
FCDD, respectively. In these figures, we can see that metal
artifacts are suppressed to different degrees. Compared with
LIand TV, FCDD achieves a better visual effect. The structure
information (edges and shapes) in Figure 3(e) (a« = 1.8) is
the clearest. In particular, the shapes of the virtual organs
are almost maintained, except that the TV method causes
an artificial effect. Near the metal regions, the staircase effect
is marked. The results of FCDD show the best performance
with the highest PSNR. To explain the reason for this, we also
give the sinograms after inpainting with these three methods
in Figure 4.

When there are multiple metal regions, the gaps to be
inpainted are much wider than a single metal region and

there is much more missing information that needs to be
interpolated. The classic interpolation methods only use
the information in the same column for interpolation. The
useful information is too scant to obtain an accurate result,
as shown in Figure 4(a). As the TV and FCDD methods
are 2D inpainting methods, they make use of not only the
information in the columns, but also that in the rows and
thus they obtain better results. However, TV has a flaw in
dealing with wide regions, and the staircase effect occurs. The
reason for this is that the order of TV is 2 and to obtain
an accurate result, the order must be greater than 2 [27]
but less than 4 [28]. In this experiment, we set « = 1.8 in
FCDD, which means that the order approximates to 3 and
thus the visual effects of inpainting sinograms of FCDD are
superior.

Figure 5 gives the variation of the PSNR value with the
order of the algorithm. If « = 1, the model is the same
as in [22]. As the order increases, the PSNR value also
increases. If « ~ 1.8, the PSNR peaks and subsequently
declines.

Figure 6 shows the clinical case of a patient with metal
implants in both femurs. In this experiment, we do not know
the original image, so we cannot choose & according to the
PSNR. Based on the analysis in the previous experiment, we
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FIGURE 4: Sinogram inpainting results for different methods with multiple metal regions: (a) sinogram after LI, (b) sinogram after TV, and
(¢) sinogram after FCDD.

approximately set « = 1.8. Figure 6(a) shows the original 26.6

image with dark, board streaks radiating from the metals. 26.5
Figures 6(b) to 6(d) illustrate the reduction in the most 264
severe artifacts using LI, TV, and FCDD, respectively. The 26.3
dark streaks are not adequately suppressed in Figures 6(b) = 2621
and 6(c), while fictitious artifacts caused by TV are visible in £ 2611

Figure 6(c). These disturbing artifacts are reduced to a large 26 ¢

degree in Figure 6(d). Structural information previously 259
invisible because of artifacts or the incomplete correction 25.8 |
becomes visible. 25.7 . . . . . . . .

1 1.1 1.2 13 14 15 16 1.7 18 19 2
Fractional order

4. Conclusion F1GURE 5: Variations in PSNR with fractional order.

A new MAR algorithm has been proposed based on the
classic TV inpainting model. We replaced the conditional

conductivity coefficient for TV with a new fractional-order work will focus on the adaptive selection of the order of the

curvature, and in comparison with linear interpolation and algorithm.
TV, our method obtained better quantitative results and
visual effects. Acknowledgments
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