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As whole-genome sequencing becomes commoditized and we begin to sequence and analyze personal genomes for clinical
and diagnostic purposes, it is necessary to understand what constitutes a complete sequencing experiment for determining
genotypes and detecting single-nucleotide variants. Here, we show that the current recommendation of ~30@ coverage is
not adequate to produce genotype calls across a large fraction of the genome with acceptably low error rates. Our results
are based on analyses of a clinical sample sequenced on two related Illumina platforms, GAIIx and HiSeq 2000, to a very
high depth (126@). We used these data to establish genotype-calling filters that dramatically increase accuracy. We also
empirically determined how the callable portion of the genome varies as a function of the amount of sequence data used.
These results help provide a ‘‘sequencing guide’’ for future whole-genome sequencing decisions and metrics by which
coverage statistics should be reported.

[Supplemental material is available for this article.]

Whole-genome sequencing and analysis is becoming part of a

translational research toolkit (Lupski et al. 2010; Sobreira et al.

2010) to investigate small-scale changes such as single-nucleotide

variants (SNVs) and indels (Bentley et al. 2008; Wang et al. 2008;

Kim et al. 2009; McKernan et al. 2009; Fujimoto et al. 2010; Lee

et al. 2010; Pleasance et al. 2010) in addition to large-scale events

such as chromosomal rearrangements (Campbell et al. 2008;

Chen et al. 2008) and copy-number variation (Chiang et al. 2009;

Park et al. 2010). For both basic genome biology and clinical

diagnostics, the trade-offs of data quality and quantity will de-

termine what constitutes a ‘‘comprehensive and accurate’’ whole-

genome analysis, especially for detecting SNVs. As whole-genome

sequencing becomes commoditized, it will be important to deter-

mine quantitative metrics to assess and describe the comprehen-

siveness of an individual’s genome sequence. No such standards

currently exist.

For several reasons (sample handling, platform biases, run-

to-run variation, etc.), random generation of sequencing reads

does not always represent every region in the genome uniformly.

It is therefore necessary to understand what proportion of the

whole genome can be accurately ascertained, given a certain amount

and type of input data and a specified reference sequence. The

1000 Genomes Project (which aims to accurately assess genetic

variation within the human population) refers to this concept as

the ‘‘accessible’’ portion of the reference genome (1000 Genomes

Project Consortium 2010). While population-scale sequencing

focuses on low-coverage pooled data sets, here we focus on require-

ments for highly accurate SNV calls from an individual’s genome,

a question that is extremely important as whole-genome se-

quencing and analysis of individual genomes transitions from

primarily research-based projects to being used for clinical and

diagnostic applications. Additionally, we seek to understand the

relationship between the amount of sequence data generated and

the resulting proportion of the genome where confident geno-

types can be derived—we refer to this as the ‘‘callable’’ portion,

a term that is roughly equivalent to the 1000 Genomes Project’s

‘‘accessible’’ portion. Using these sequencing metrics and geno-

type-calling filters will help obviate the need for costly and time-

consuming validation efforts. Currently, no empirically derived

data sets exist for determining how much sequence data is needed

to enable accurate detection of SNVs.

To address this issue, we sequenced a blood sample from a

male individual with an undiagnosed clinical condition on two

related platforms—Illumina’s GAIIx and HiSeq 2000—to a total of

359 Gb (equivalent to ;1263 average sequenced depth). Here we

focus on the technical aspects of analyzing these data generated

as part of the expanded whole-genome sequencing efforts of the

National Institutes of Health (NIH) Undiagnosed Diseases Pro-

gram (UDP). We leveraged the ultra-deep coverage of this genome

to identify sources of incorrect genotype calls and developed ap-

proaches to mitigate these inaccuracies. We generated incremen-

tal data sets of the deep-sequenced genome to answer the fol-

lowing important questions: Given a specific amount of sequence

data, what fraction of the genome is callable? and how many

SNVs are detected? Ultimately, we seek to understand how much

sequence data is needed for adequate representation of the whole

genome for genotype calling and to develop standards by which

all whole-genome data sets can be evaluated with respect to

comprehensiveness.

Answers to these questions will help us make more informed

decisions for designing whole-genome sequencing experiments to

study genome biology and for clinical analyses, specifically in light

of accurately detecting variants that directly modify phenotypes

and cause disease.
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Results

Summary of whole-genome sequencing data sets
Paired-end 100-bp reads were generated from a single human ge-

nomic sample on two Illumina GAIIx flowcells (14 lanes) and two

HiSeq 2000 flowcells (16 lanes) (see Methods). Sequenced libraries

had mean estimated insert sizes of 378 bp (624 SD) and 436 bp

(626 SD) (Supplemental Fig. 1) and estimated diversities of 5.7 and

4.6 billion distinct molecules, respectively (see the Supplemental

Material). A total of 359 Gb of data passing filters (see below) (Table

1) was collectively generated across the four flowcells. We defined

the average sequencing depth as the mean coverage of a haploid

genome with reads that (1) pass the Illumina Chastity filter and (2)

contain at least 32 bases with phred-scaled qualities Q20 or higher,

which removes an additional 6.6% of the reads (on average) be-

yond the Chastity filter (see Table 1). All reads that pass sequence-

level filters were aligned to the hg18 reference (NCBI build 36)

using BWA (Li and Durbin 2009). We then defined the average

mapped depth based on all the aligned reads after duplicate read-

pairs were removed (8.8% on average) (see Table 1). We combined

the two GAIIx flowcells and report them as a single data set, and

report the two HiSeq 2000 flowcells individually (Table 1). Each

of these three data sets yielded an amount of data fairly typical

compared with previously published whole-genome studies that

use massively parallel short-read sequencing technology (Fujimoto

et al. 2010; Lee et al. 2010).

We first looked at the uniformity of coverage for each data set.

To do this, we assessed what proportion of the genome and coding

exome was represented at different minimum depths (Fig. 1A,B,

respectively) of high-quality bases ($Q20) from confident align-

ments (see below for definition and explanation). Theoretically,

for a data set with perfectly uniform coverage, a large percentage

of the genome will be covered at depths that approach its aver-

age mapped depth. However, Lander-Waterman statistics dictate

that genomic coverage follows a Poisson distribution (Lander and

Waterman 1988), and factors such as sample handling and library

preparation may introduce biases in sequencing. It is also known

that variation in data uniformity arises due to varying G+C content

of the genome, specifically under-representation of regions with

high G+C% (Bentley et al. 2008; Teer et al. 2010) and has been

attributed to various amplification biases (Kozarewa et al. 2009;

Aird et al. 2011). Regions with high G+C% are known to be cor-

related with high gene content (Mouchiroud et al. 1991; Zoubak

et al. 1996; Vinogradov 2003) and explain the difference in slope

we observe between coverage of the whole genome versus just the

coding exome (Fig. 1, cf. A and B). Overall, we note that the three

data sets have relatively similar coverage uniformity. HiSeq 2000

flowcell B (FC-B) performs slightly better and is likely due to the

higher yield from this flowcell. As expected, combining all three

data sets (Table 1, row ‘‘HiSeq 2000 FC-AB + GAIIx’’) boosts the

proportion of the genome with higher minimum depths.

While coverage statistics reported in this manner convey how

uniform a sequencing experiment is, it does not illustrate if the

data generated are sufficient to make confident genotype calls and

detect SNVs genome-wide. Many studies report the fraction of the

genome and exome covered in terms of minimum 13, 53, or 103

depths, sometimes without base and alignment quality filters

(Wang et al. 2008; Kim et al. 2009; McKernan et al. 2009; Fujimoto

et al. 2010; Pelak et al. 2010; Sobreira et al. 2010). However, there is

a finite probability associated with SNV detection such that all

alleles might not be observed even at 103 depth, which can lead to

an erroneous reference (or variant) genotype call. Keeping this in

mind, a more informative metric about a whole-genome data set

is what proportion of the genome is callable based on various ge-

notype-calling filters (delineated below). Of the 2,852,680,119

positions (excludes gaps and pseudo-autosomal bases) examined

in the hg18 build, 88.82% of the positions were callable in the

GAIIx data set, 90.99% in HiSeq FC-A, and 93.10% in HiSeq FC-B.

While these differences are largely due to the amount of sequence

in each data set, we note that analyzing an equivalent amount

of HiSeq 2000 data, compared with the GAIIx, still results in a slightly

greater callable portion of the genome (by 2.92%) (see Supplemental

Material). It is for this reason that we advocate here that, for the

purpose of evaluating the completeness of ‘‘personal’’ individual

genomes, the callable proportion should always be reported, as it is

more reflective of the downstream usability of the data set.

In addition to the above analysis of uniformity, we also found

that GAIIx and HiSeq 2000 runs were relatively equivalent with

respect to SNP-chip concordance rates, alignment error rates, and

G+C bias (see the Supplemental Material). We were therefore able

to treat the reads as if originating from a single platform. This

allowed us to pool all mapped reads from the GAIIx and HiSeq 2000

runs to create an extremely deep-sequenced data set (1263) with

an average mapped depth totaling 1023, with which we could

perform a number of informative downstream analyses.

Accurate genotype calling and SNV detection

We next sought to establish appropriate filters to produce accurate

SNV calls from whole-genome sequencing. Specifically, we wanted

to reduce incorrect genotype calls while maintaining a high overall

sensitivity. To do this, we created two identical genomes by split-

ting the deep-sequenced data set de-

scribed above into two equal-sized data

sets (each with an average mapped depth

of 503) and attempted to minimize the

apparent discordance between them; any

discordant genotypes between the two

data sets would likely represent incorrect

calls.

Genotype calls were made on un-

filtered BWA alignments using the Bayes-

ian genotype caller—Most Probable Ge-

notype (MPG) (Teer et al. 2010)—and were

then compared at overlapping positions.

We first required bases to have qualities

Q20 or greater and a genotype call to have

a MPG score of 10 or greater, signifying

Table 1. Sequencing and alignment summary

Data set
Reads PF
(@109)

Reads PF +
Q20 filter

(@109)

Average
sequenced

depth

Aligned
reads (all)

(@109)

Aligned reads
(no dup.)
(@109)

Average
mapped
depth

HiSeq FC-A 1.22 1.16 40.83 1.09 0.94 32.73

HiSeq FC-B 1.44 1.36 47.63 1.26 1.15 40.43

GAIIx(two flowcells) 1.18 1.07 37.43 1.02 0.98 34.23

HiSeq FC-AB + GAIIx 3.84 3.59 125.83 3.37 2.91 1023

Reads represent those that pass Illumina’s Chastity filter (PF) and contain $32 Q20 (or higher) bases.
The average sequenced and mapped depths were calculated using the non-N and non-PAR portion of
the human genome (2,852,680,119 bp). Aligned reads refers to the proportion of the reads passing
above filters that align to hg18 reference before and after molecular duplicates have been removed. The
average mapped depth reported is based on BWA alignments (post-duplicate removal) without any
filtering (we apply and report on subsequent alignment filters below in the text).
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that the theoretical probability of the call being incorrect is 1/e10

or 1/22,026. This is the lowest score that exceeds the minimum

operational accuracy of the human reference genome assembly (1

error in 104 bases) (International Human Genome Sequencing

Consortium 2004; Schmutz et al. 2004). Out of 2,805,179,303

positions that met or exceeded this score in both 503 genomes

(98.33% of hg18 non-N and non-PAR bases), there were 46,580

discordant genotypes between the two data sets (Table 2). This

equates to 1 in 60,223 positions that do not agree.

We and others have observed that a substantial non-trivial

source of incorrect genotype calls arises from the improper align-

ment of sequenced reads (both read placement and basewise

alignment). To minimize incorrect calls arising from such artifacts,

we restricted reads to only those that were mapped with quality

scores of 30 or higher. While this eliminated 11.7% of the mapped

reads (see Supplemental Fig. 4), it also reduced the number of dis-

cordant genotypes by 81.31% to 8710 (Table 2). A mapping quality

of 30 also showed the greatest reduction in the number of discordant

genotypes compared with lower alignment quality values (Fig. 2).

We further examined the remaining discordant positions and

noted that their genotype confidence scores were, on average,

lower than the concordant ones, particularly in high-coverage re-

gions (Fig. 3, cf. A and B). Rather than using the same score threshold

for all positions, we scaled this score based on the depth of coverage

at any given position, which dramatically reduced the number of

discordant genotypes. Specifically, we determined a confidence

measure such that at higher depths of

coverage, a higher genotype score is re-

quired. This filter reduced the number of

discordant genotypes by 61.47% while

retaining all of the sampled concordant

positions (Fig. 3C) from one of the 503

genomes. By applying this filter to both

503 genomes, the number of discordant

genotypes was reduced to 2275, and the

proportion of callable positions in hg18

was only reduced by 0.02% to 93.56%

(Table 2). We also demonstrate that the

confidence filter is more broadly applica-

ble and not specific to MPG. Specifically, we show that this filter also

works with samtools/bcftools, resulting in a substantial reduction

of discordant calls in a similar comparison of two identical ge-

nomes (see the Supplemental Material). A recent report also uses

a similar variant quality-to-depth measure to recalibrate and im-

prove variant calls (DePristo et al. 2011). Additional filtering for

nearby indels further reduced the number of discordant calls to

1673 (out of 93.13% of the positions callable in both genomes), or

a discordance rate of 1 in 1,588,046 (Table 2).

Since systematic errors in genotype calling cannot be identi-

fied by comparisons between two identical genomes, we compared

our calls with those generated by genotyping the same sample on

the Illumina Infinium HD Assay using the Human1M-Duo Bead-

Chip. We compared the calls between one 503 data set and those

made on the ‘‘clean’’ BeadChip positions (see Methods). We were

able to call 1,068,010 out of 1,096,530 positions (97.40%), of

which 1,067,563 agreed, yielding an overall concordance rate of

99.958% (or 1 in 2389 positions disagreeing with a call on the

BeadChip) and 99.928% for positions called as heterozygous from

sequencing. Similar results were also observed for genotype calls

on the other 503 data set, the individual HiSeq 2000 flowcells, and

the GAIIx data set (Supplemental Tables 3, 4). These results show

that genotypes called over the whole genome using these methods

are remarkably concordant with an independent assay.

As a final illustration of the effect of these filters on sensitivity

and discordance, we extended the analysis by comparing the iden-

Figure 1. Breadth versus depth of whole-genome coverage. The x-axis represents the minimum number of high-quality bases ($Q20) from high-
quality alignments ($MapQ30), and the y-axis represents the proportion of genome (A) or coding exome (B) covered at that depth. To calculate
percentages, the total size of hg18 build and the total number of non-redundant coding bases from the UCSC Known Genes table (2,852,680,119 bp and
34,068,542 bp, respectively) were used. Gaps and pseudo-autosomal regions (PAR) were excluded. Values were plotted for GAIIx (triangle), HiSeq flowcell
A (orange square), HiSeq 2000 flowcell B (dark red square), and all data sets combined (circle).

Table 2. Comparison of two identical genomes each with an average mapped depth of ~50@

Filter

Genome
callable in
both (%)

Concordance
rate (%)

Number of
discordant
positions

MPG $ 10 98.33 99.998340 46,580
MPG $ 10, MapQ $ 30 93.58 99.999674 8710
MPG $ 10, MapQ $ 30, confidence $ 0.5 93.56 99.999915 2275
MPG $ 10, MapQ $ 30, confidence $ 0.5,

indels (610)
93.13 99.999937 1673

The effect of applying various filters (column 1) is shown in terms of the number of callable positions
common to both genomes and the number of discordant genotypes.
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tical genomes at various lower mapped depths (203–403) with and

without genotype-calling filters (Fig. 4). When applying these filters,

more sequence data were required to obtain the same sensitivity as

a 303 genome analyzed using all unique (MapQ > 0) alignments

(Fig. 4A). However, discordance between the identical genomes was

an order of magnitude lower with these filters (Fig. 4B).

Whole-genome coverage and SNV detection as a function
of sequencing depth

With a firm understanding of appropriate alignment and geno-

type score filters from the previous sections, we next performed a

depth-of-coverage analysis to determine the relationship between

the amount of sequence data generated and the proportion of the

genome callable for confident genotype calls. We used these re-

sults to provide estimates of how much sequence data is needed

to reach specific levels of completeness for whole-genome anal-

yses. To the best of our knowledge, this is the first comprehensive

study of the relationship between effect of sequence depth and

the proportion of genome callable to determine how much se-

quence data is sufficient for a given study. In addition, we spe-

cifically sought to clarify ambiguous metrics of coverage currently

being reported in the literature that do not necessarily correlate

with what is callable, and propose the establishment of objective

parameters by which one can describe the completeness of a

whole-genome analysis.

To address these questions, we used the deep-coverage data

set to create 20 different data sets that each represented an in-

cremental coverage of the genome from ;53 to 1003 average

mapped depth (before alignment quality filters). For each data set,

we first calculated the percentages of the genome and CDS regions

that were callable, which, based on the above results, we define as

positions that satisfy the following criteria on MapQ $ 30 filtered

alignments: (1) MPG score is $10 for the genotype call; (2) MPG

score exceeds the confidence threshold based on depth of coverage

at the called position (i.e., a higher minimum score at higher

depths of coverage based on a simple formula of MPG/Q20 cov-

erage $ 0.5) (see Methods); and (3) positions are not within 10 bp

of a called indel.

At lower average mapped depths, the fraction of genome

callable increased exponentially, followed by a linear increase until

303. At this depth, 89.7% of the non-N and non-PAR bases ge-

nome-wide were callable (Fig. 5A; Supplemental Table 5) with

high-quality bases. Beyond 503, less than an additional 0.5% of

the genome was callable with every successive data set, which

suggested that these are likely regions where sequencing and/or

alignments pose a challenge. Indeed, when we examine the 2.3

million positions (<0.1% of the genome) that were callable only at

1003 (but not 953), we noted that the median number of high-

quality bases (Q20 or more) was #15 (Supplemental Fig. 7). When

considering only CDS bases in the genome, only 70% were callable

with the 303 data set, increasing to 81.36% with the 503 data set

(Fig. 5A; Supplemental Table 5). While we believe that the callable

portion of the genome should be used to report whole-genome

sequencing studies, we also calculated the proportion of the ge-

nome and coding exome that are covered by 5, 10, and 20 or more

high quality bases (Supplemental Fig. 6). We noticed a similar

paucity of coding exome covered by 20 or more Q20 bases even at

average mapped depths >503. This may be due to GC-biases known

to be platform-specific or library-specific high cluster densities that

were observed for these flowcells (see GERALD summaries in the

Supplemental Material). We show that the disparity between the

Figure 2. Effect of alignment filter on the discordance rate of identical
genomes. The number of discordant positions (y-axis) was observed by
varying MapQ values (x-axis). A MapQ value of 0 indicates that no map-
ping quality filter was applied.

Figure 3. Determination of genotype confidence threshold for genotype calls. (A,B) The x-axes represent Q20 depth for genotype calls from one of the
503 genomes, and the y-axes represent corresponding MPG scores. (A) A random set of ;8700 concordant genotypes; (B) 8710 discordant genotypes.
Black lines represent a line with slope of 0.5, which is the confidence threshold used to filter genotypes. (C ) The fraction of genotypes retained by varying
the confidence threshold; (blue curve) the fraction of concordant genotypes retained; (red curve) the fraction of discordant genotypes retained.
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proportion of genome and coding exome callable or covered may be

reduced when these biases are mitigated (see below).

Next, we ran each data set through the above-established

variant detection pipeline to assess the number of SNVs at every

depth. We observed an exponential increase in the number of

SNVs detected as we increased the average mapped depth to 253

before saturation at ;40–453 (Fig. 5B; Supplemental Table 6).

With the 503 data set, we detected 3,319,872 autosomal variants,

94.89% of what was observed at 1003. We also noted that 46,529

new variants were added at 553 com-

pared with 503, while 16,954 were found

at 1003 compared with 953 (Supple-

mental Table 6). Overall concordance of

genotype calls with the BeadChip was at

least 99.94% in all data sets (Fig. 5D) and

>99.92% at heterozygote positions (data

not shown), highlighting that our estab-

lished alignment and variant detection

filters are equally accurate at low depths of

coverage and are only limited by sensitivity

(Fig. 5C) with respect to the amount of in-

put data. This is an improvement over

other similar analyses where accuracy is

affected at lower depths of coverage (Wang

et al. 2008).

Using the methods developed here,

an average mapped depth of 503 (or ;453

using reads with MapQ $ 30) was required

for this data set to produce confident ge-

notype calls for >94% of the genome and

>80% of the coding exome (which is what

we minimally define as ‘‘comprehensive’’).

Given that an average of 85% passing-filter

reads were mapped to the genome (Table

1), this equated to 170 Gb (or 603) of

passing-filter reads, taking into consider-

ation the uniformity of data generated and

the diversities of the libraries sequenced

here. We note that the amount of se-

quence data required for confident calls

is dependent on the uniformity of cov-

erage, specifically the representation of

all G+C fractions of the genome fairly

equally. We recently sequenced an un-

related genome on the HiSeq 2000 plat-

form using newer versions of chemistry

and base-calling software. The average se-

quenced depth and mapped depth for this

genome (aligned to hg19) was ;903 and

753, respectively. We repeated the sam-

pling followed by genotype-calling exper-

iment on this genome and noticed a much

better representation of the coding exome

even at 353 mapped depth (>403 sequenc-

ing depth), indicating a noticeable reduc-

tion in GC-bias (Fig. 6).

Roughly 303 has been purported to

be required for adequate whole-genome

analyses (Koboldt et al. 2010), but we

were unable to find any published quan-

titative data to support this level of cov-

erage. To the best of our knowledge, the

only relevant quantitative data that have been reported support-

ing this level of coverage is in Figure 5 from a recent publication

(Bentley et al. 2008). However, their analysis highlighted the sen-

sitivity and accuracy of identifying variants, not calling genotypes.

Furthermore, it was limited to chromosome 2 with reduced

stringency of detecting variants. While the Bentley et al. (2008)

analyses highlighted the accuracy of the newly reported se-

quencing chemistry, it did not address genotype-calling accuracy

for genome-wide studies, as we do here.

Figure 4. Comparison of identical genomes at various mapped depths. (A,B) The x-axes represent the
average mapped depths at which two identical genomes were compared. The y-axes represent the
proportion of hg18 callable in both genomes (A) and the discordance per megabase of callable sequence
(B). Analyses were done on all unique alignments (MapQ > 0) without applying any filters (red curve) and
after applying mapping quality and genotype confidence filters as explained in the text (blue curve).

Figure 5. Genotype calling as a function of average mapped depth. The x-axes represent the average
mapped depth of each data set, and the y-axes represent the proportion of the whole genome (dark
blue circles) and coding exome (green triangles) that is callable (A), the number of SNVs detected (B),
the proportion of Illumina BeadChip positions callable (C ), and the concordance rates with the Bead-
Chip calls (D).
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Discussion
In this study, we sequenced a clinical human sample on two sep-

arate Illumina platforms (GAIIx and HiSeq 2000) to a combined

average mapped depth of 1023. Our analysis of the data generated

from these platforms showed that sequence from both instruments

were of comparable quality with the exception that HiSeq 2000

reads covered the genome slightly more uniformly. We then com-

pared two identical 503 genomes to establish genotype-filtering

methods, thereby generating genotype calls that were nearly

identical (99.999937%) in both data sets and highly concordant

(>99.955%) with those obtained by genotyping the same sample on

the Illumina Human1M-Duo BeadChip. These filters were used to

determine how much sequence data is required for a comprehensive

study of an individual whole genome, particularly to call genotypes

and detect SNVs with extremely high accuracy.

We also believe that an objective measure of completeness of

genome sequencing is the proportion of reference bases where

genotypes can be accurately determined using high-quality se-

quence data from confidently aligned reads. For example, with

the data reported here (generated at the beginning of 2010), if we

require that this proportion be at least 95% of the genome, we

showed that a genome data set with an average mapped depth of

503 (before alignment filters) or average sequenced depth of 603

was necessary. We could have obtained similar sensitivity at lower

mapped depths without any of the genotype filters, but at the great

sacrifice of accuracy. Conversely, lower mapped depths (with these

additional filters) may be sufficient to reach the level of com-

pleteness recommended above with improvements in sequenc-

ing technologies that produce more uniform coverage of the ge-

nome. Indeed, using newer chemistry and software, we sequenced an

unrelated genome and determined that 95% of the genome and 95%

of the coding exome were callable at 353 average mapped depth

(>403 average sequencing depth assuming 85% read-pairs align).

It is important to note that the high sequencing depth needed

to reach the level of completeness is more applicable for personal

genomes (especially in a clinical setting) rather than population-

scale sequencing studies. We also anticipate that it will be in-

creasingly easier in the near future to generate greater amounts of

data in an economical and timely manner, such that sequencing

cost will be a small factor when designing whole-genome studies.

This then lends to making highly confident genotype calls thereby

minimizing the substantial time and cost needed to perform sec-

ondary validations and analysis of a small number of positions.

Today, an average sequencing run spans 8–10 d and can produce two

to four genomes. Secondary alignment, genotyping, and variant

detection analyses can be completed in ;3–4 d when using several

hundred CPUs concurrently. However, the interpretation of these

results is open-ended—the cost of these various tertiary analyses of

whole-genome data will greatly overshadow that of sequencing

(Mardis 2010), underscoring the importance of spending a bit

more for increased accuracy in the initial data-generation phase.

As whole-genome sequencing becomes routine, it is impor-

tant to understand what level of coverage is required to perform

various base-pair-level analyses. With different metrics being

reported currently in whole-genome studies, both in terms of

quantity and quality of bases that cover the genome, there is no

established measure of the completeness of a genome sequencing

experiment. We, therefore, outline objective parameters that may

be used to characterize such studies. We first define the ‘‘average

sequenced depth’’ as the mean coverage of a haploid genome with

usable sequence data that are obtained after applying various read-

level filters. In our analysis of the sequenced genome, we use two

filters—Illumina Chastity filter (PF) and a requirement that each

read in a pair must contain at least 32 high-quality ($Q20) bases

(by which we eliminate ;5% of the PF reads). We then define the

‘‘average mapped depth’’ as the mean coverage of a haploid ge-

nome after all usable read-pairs are mapped to the reference and

duplicate read-pairs are removed. The average sequenced depth

and average mapped depth, when taken together, then give a fair

indication of the amount of ‘‘data loss’’ associated with (1) un-

mapped reads and (2) redundant sequence attributed to molecular

and/or optical duplicates. To make accurate genotype calls, it is

further necessary to filter out reads that are placed ambiguously on

the genome, resulting in additional data loss (see Supplemental

Fig. 4; Supplemental Table 5).

The proportion of genome covered by a specified minimum

number of high-quality bases has been used as a metric to judge the

comprehensiveness of a whole-genome sequencing experiment

and is currently being reported in many such studies. While

reporting the fraction covered at a 103 minimum depth might be

informative if the uniformity of the sequence data were reproducible

and predictable, this does not translate to a consistent proportion of

the genome where high-confidence genotype calls can be made.

From a probabilistic standpoint, if we assume a binomial model,

there is a 22.6% chance of not identifying a known heterozygous

position where the depth is 103 (using MPG) (see Supplemental

Material) owing to events where (1) only one allele is observed

leading to an incorrect homozygous call or (2) the heterozygous

genotype call does not meet score requirement (MPG $ 10, confi-

dence $ 0.5). Incidentally, at 103 depth, the MPG score of a ho-

mozygous genotype call is always <10 regardless of the allele ob-

served. This probability and the number of less-confident genotypes

is much higher at 13–53 depths, such that reporting the fraction

of genome covered at these minimum depths ceases to be useful for

a personal genome. Therefore, in addition to the average sequenced

and mapped depths, we report the proportion of bases in the ge-

nome and CDS where genotypes are callable with an accuracy that

exceeds the minimum human genome reference base accuracy

(1 error in 104 bases). In our analysis of different incremental data

sets of the deep-sequenced genome, we show how the callable

proportions of the genome and CDS vary as a function of average

mapped depth (Fig. 4A; Supplemental Table 5). Importantly, these

metrics are derived from an empirical analysis and can be used as

a ‘‘sequencing guide’’ with respect to sequencing technology (circa

spring 2010) noting that sample preparation, quality of input DNA,

and other factors can dramatically affect the numbers reported.

Figure 6. Improved representation of genome with TruSeq v3 sequenc-
ing chemistry and software. The x-axis represents the average mapped depth
of the data set, and the y-axis represents the proportion of the whole genome
(dark blue circles) and coding exome (green triangles) that is callable.
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As technologies improve, we anticipate a reduction in se-

quencing biases thus producing more uniform coverage of the

human genome (as we show above) and thereby reducing the in-

put data required to achieve the same level of genome represen-

tation. One approach to alleviate biases specific to a particular

technology is to evaluate and adopt a multi-platform sequencing

methodology to possibly increase the accessible portion of the

genome (Sampson et al. 2011). Longer read lengths, improved

experimental protocols, newer single-molecule sequencing tech-

nologies, improvements in alignment algorithms, and localized

assembly techniques will also contribute to increasing the callable

proportion of the genome.

Methods

Library preparation and sequencing
Two libraries with slightly different insert mean sizes, 378 bp and
436 bp (see Supplemental Fig. 1), were prepared from 5 mg of ge-
nomic DNA purified from a blood sample following the standard
protocol provided by Illumina with the following modifications.
After shearing with a Covaris instrument, but before adapter liga-
tion, we performed an initial gross size selection by gel electro-
phoresis, cutting out an ;200-bp band around the final desired
size range. Also, to minimize any biases introduced in the final PCR
amplification, we took an aliquot of the final library template and
performed a series of PCRs with different numbers of cycles to
determine the minimum amount of amplification needed to vi-
sually observe the template by gel electrophoresis. After a suitable
number of cycles was determined, in this case six cycles, two tubes
were amplified, pooled together, and purified using Agencourt
Ampure SPRI beads.

One GAIIx run (378-bp library) was performed with version 4
chemistry, and the images were saved and subsequently analyzed
offline with OLB v1.8 (equivalent to the image analysis algorithm of
RTA v1.8). The other GAIIx run (436-bp library) was with version 5
chemistry and RTA v1.8. Sequence data from a single HiSeq 2000 run
(378-bp library) with two flowcells were obtained from the on-rig RTA
software. An unrelated human genome was sequenced on the HiSeq
2000 with TruSeq v3 chemistry and updated RTA (v1.10.36) to
illustrate the effect of the improved chemistry/software. The re-
mainder of our analyses were initiated from the FASTQ files pro-
vided by Illumina’s downstream analysis CASAVA software suite.

Alignment of short reads

Paired-end fragments from each flowcell were pre-processed to
eliminate read-pairs that did not pass Illumina Genome Analyzer
Pipeline’s chastity filter. In addition, both reads in a pair were re-
quired to have at least 32 Q20 bases. We then aligned read-pairs
meeting these criteria using BWA against the reference human
genome (hg18). Alignments were further processed to remove du-
plicate read-pairs using the rmdup utility from the samtools suite of
programs. This resulted in an average mapped depth of 303–403 of
the haploid genome for the individual data sets (GAIIx, HiSeq A, and
HiSeq B). We derived larger data sets by merging smaller ones and
further removing duplicate read-pairs that may have been added.

Single-nucleotide variant detection

Genotype calls were made using Most Probable Genotype (MPG),
a Bayesian algorithm that produces single-nucleotide and small-
scale insertions and deletions (of the size that can be aligned across
with BWA and 100-bp reads). The algorithm was originally pub-
lished recently (Teer et al. 2010), and the most recent version

and description can be found at http://research.nhgri.nih.gov/
software/bam2mpg/. In the case of autosomes, genotypes were
called in diploid mode, while non-PAR regions on ChrX and ChrY
were called in haploid mode. We further imposed several filters as
outlined below:

Base qualities

Bases were considered for genotype calling only if their phred-
scaled qualities were 20 or greater.

Mapping qualities

Reads were considered only if their mapping qualities (see BWA
MapQ description) were 30 or greater. This serves to eliminate
reads that are (1) placed in repetitive regions on the genome, or (2)
mapped with multiple mismatches or clipped bases, which occurs
when sequences in the sample are aligned to paralogous regions in
the reference.

Genotype score and confidence filters

For each genotype call made, a score is assigned to represent the
difference between natural log-scaled probabilities of the most
probable genotype and the next most probable genotype. We used
a MPG score cutoff of 10 that was determined empirically but
theoretically represents the first score at which the probability of
an incorrect genotype call (e10 » 1/22,026) exceeds the probability
of an incorrect base in the reference sequence (one error in 104

bases). The MPG score was also required to be no less than half the
number of Q20 bases that were observed at that position, that is,
MPG:Q20-coverage $ 0.5. This filter allows us to scale up the MPG
score threshold in regions where coverage is higher.

Indel filter

Indel calls identified by MPG were subjected to the same thresh-
olds and criteria as variants (MPG $ 10 and confidence measure $

0.5). SNVs that were within 10 bp of indel positions were then
discarded.

BeadChip validation

We genotyped the clinical sample on the Human1M-Duo Bead-
Chip, part of Illumina’s Infinium HD assay. To prevent ‘‘sample
effects,’’ we did not consider array positions that were (1) within 25
bp of an indel as determined by MPG and/or (2) within 25 bp of
a variant as determined by sequencing. These indels and so-called
hidden SNPs in the sample can likely result in nearby array posi-
tions being incorrectly genotyped. All filters were imposed on the
largest data set (‘‘HiSeq AB + GAIIx’’ or 1003 data set in the depth-
of-coverage analysis) to allow for between-data set comparisons
using a common denominator.

Depth of coverage analysis

From the merged data set (1023) that was created, we sampled
mapped read-pairs at random to create 20 different genomic data
sets each with 53 more data than the previous. Only properly
mapped read-pairs were considered using the ‘‘samtools view’’
command with the ‘‘�f 2’’ option. To parallelize this process on
a computing cluster, we sampled read-pairs from 10-Mb segments
of the genome. By doing so, read-pairs that span the boundaries of
adjacent 10-Mb segments do not get sampled. We believe that
this loss is not significant compared with the speedup that was
achieved by parallelization. Each data set, N3, thus created con-
tained all read-pairs in the data set (N-5)3 and an additional
53 worth of data. For example, all the data in the 253 data set was
also present in the 303 data set.
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Data access
Raw sequence data are publicly available from the European Nu-
cleotide Archive’s Sequence Read Archive (http://www.ebi.ac.uk/
ena/) through accession number ERP000765.
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