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Much attention has been given to the problem of creating reliable multiple sequence alignments in a model incorporating
substitutions, insertions, and deletions. Far less attention has been paid to the problem of optimizing alignments in the
presence of more general rearrangement and copy number variation. Using Cactus graphs, recently introduced for
representing sequence alignments, we describe two complementary algorithms for creating genomic alignments. We have
implemented these algorithms in the new ‘‘Cactus’’ alignment program. We test Cactus using the Evolver genome evo-
lution simulator, a comprehensive new tool for simulation, and show using these and existing simulations that Cactus
significantly outperforms all of its peers. Finally, we make an empirical assessment of Cactus’s ability to properly align
genes and find interesting cases of intra-gene duplication within the primates.

[Supplemental material is available for this article.]

Multiple sequence alignment (MSA) is a long-standing problem

domain in sequence analysis. In short, all variants of the problem

partition the positions in a set of input sequences into equivalence

classes, each equivalence class representing positions that are in-

ferred to be homologous, usually meaning that the residues they

contain have derived from a common ancestor.

Probably the best studied MSA problem variant is global MSA,

in which the alignment is represented in a two-dimensional (2D)

matrix, with the rows representing the sequences and the columns

representing the alignment of positions (Feng and Doolittle 1987;

Higgins et al. 1992). Despite the popularity of global MSA (for re-

view, see Notredame 2007), it is limited to only allowing for evo-

lutionary operations that insert, delete, and substitute (replace)

positions in the aligned sequences.

Over the last 10 years, there has been a progressive move to-

ward more general MSA variants. Poset global MSA (Lee et al. 2002;

Blanchette et al. 2004b) (a ‘‘poset’’ being a partially ordered set) is

a variant of global MSA that also only models insertions, deletions

(collectively termed ‘‘indels’’), and substitutions, but that relaxes the

total ordering imposed by the matrix representation to a partial

ordering, therefore avoiding arbitrary ordering decisions between

indels in separate lineages. Reference MSA (Miller et al. 2007) can be

thought of as a variant of global MSA in which only a single chosen

reference sequence is necessarily present as a row in the matrix. In

the non-reference sequence rows of a reference MSA, the sequences

can be reordered to allow for rearrangements that disrupt their

linear ordering. Reference MSA has proved useful for studying the

conservation of the reference sequence (Siepel et al. 2005), but its

construction is inherently biased, making it less useful for studying

the relationships between non-reference species in the alignments.

Orthology MSA (Dewey 2007) is yet another variant in which

the alignments are represented in a set of 2D matrices. Each matrix

is like a global MSA, but by allowing for a set of such matrices,

rearrangements that disrupt the linear ordering of the sequences

can be featured. Depending on the methodology of construction,

orthology MSA avoids the problem of reference sequence bias, but

it does not allow multiple positions within the sequences of a

species to be aligned, its aim being to align only a single ‘‘orthol-

ogous’’ copy of each position in each species.

More general still is genome MSA, which allows for arbitrary

rearrangement and duplication (thereby including paralogs)

(Paten et al. 2008; Dubchak et al. 2009). Different data structures

exist for representing genome MSAs; perhaps the most widely

known is the A-Bruijn graph (Raphael et al. 2004), which has

similarities to the de Bruijn graphs (de Bruijn 1946) used in se-

quence assembly (Pevzner et al. 2001).

In this study, we use Cactus graphs (Harary and Uhlenbeck

1953), which we recently introduced for representing genome

MSAs (Paten et al. 2011). ‘‘Cactus graphs’’ are connected graphs

that have the property that any edge is a member of at most one

simple cycle, a simple cycle being one in which no edge or vertex is

repeated apart from the start/end vertex. Starting from any vertex

in the graph, this property allows a recursion to define a hierar-

chical tree structure. A genome MSA embedded within a Cactus

graph can therefore be hierarchically subdivided into a tree of re-

lated but independent subproblems (see below). This has a number

of obvious benefits when compared to a non-hierarchical repre-

sentation, such as the adjacency graph representation described

below. Firstly, it allows for efficient storage and random access.

Secondly, the decomposition of a genome MSA into independent

subproblems naturally lends itself to parallel processing. Thirdly,

the hierarchy reveals the general substructure of a genome MSA.

The first two of these benefits, although exploited by our al-

gorithms, are not significantly discussed in this study, while the

third is expanded on here. We start by proposing a problem on the

structure of genome Cactus graphs. We then give a heuristic al-

gorithm for its solution that we show is effective in improving on

an initial, naive genome MSA. Finally, we describe an algorithm

able to add to an initial Cactus graph, using the decomposition it

provides, and building on classical dynamic programming alignment

algorithms (Durbin et al. 1998) to produce a targeted refinement of

the structure.
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Sequences and stubs

Let p = {A/T, T/A, C/G, and G/C} represent the alphabet of oriented

paired nucleotides, called base pairs. There are only two unoriented

base pairs, A/T and G/C, but we distinguish A/T from its reverse

orientation T/A, termed its ‘‘reverse complement,’’ and similarly

G/C from its reverse complement C/G, using signs we hence can

equivalently write�A/T = T/A,�T/A = A/T,�G/C = C/G, and�C/G =

G/C. A DNA sequence is a member of the set p�=
S‘

n=0 pn of finite

sequences over the alphabet p. We write xi to represent a position

i in a sequence x, hence x = x1, x2, . . ., xn. The reverse complement

of a position xi is�xi; therefore, the reverse complement of x is�x=

�xn, �xn�1, . . ., �x1.

The end of each sequence in S is associated with an oriented

stub element from the set of stubs R. Stubs therefore represent in-

formation about the connections to the ends of the sequences in

S. For x 2 S, let leftStub(x) be a non-injective function that returns

the stub associated with the start of x; similarly, let rightStub(x)

be a non-injective function that returns the stub associated

with the end of x. As stubs are oriented elements, we can write

leftStub(x) = �rightStub(�x) and leftStub(�x) = �rightStub(x).

Homology and phylogeny

Let S be the set of input sequences, such that S�p*. Let S9 be the set

of all positions and their reverse complement positions in all se-

quences in S. Let ; denote the homology relation on S9 3 S9, such

that for x 2 S9, y 2 S9, x;y if and only if x and y both share a com-

mon ancestor in the same orientation (Fig. 1A,B). If x;y but x and y

do not represent the same oriented base pair in p, then there has

been a substitution (Fig. 1C), but they are still considered homol-

ogous. The relation ; is an equivalence relation, i.e., it is sym-

metric, reflexive, and transitive, and thus partitions S9 into a set

of equivalence classes, each member of which is called a column.

As we distinguish reverse complements, if x;y, then �x;�y but

not �x;y or x;�y; thus, for each column c, there exists a mirror

column �c = {�x|x 2 c} (Fig. 1B,D).

The alignment problem

The relation ; is generally unknown and must be inferred. Let ;;

denote the alignment relation on S9 3 S9, which is an equivalence

relation with the same properties as ; that we infer as an ap-

proximation to ;. If ; 6¼;;, as is generally the case, there are two

distinguishable problems. Firstly, if x;;y but not x;y, then we say

x;;y is spurious, in reverse, if x;y but not x;;y, we say x;y is

absent.

We can quantify absence and spuriousness if ; and ;; are

both known; in practice, this generally only occurs when using

simulations of evolution. Let absence(;;) = |;\;;|/|;| define the

absence of ;;, where we write |A| to denote the cardinality of the

set A and use \ to denote set difference. We also refer to the recall

of ;;, which is 1 � absence(;;). Let spuriousness(;;) =

|;;\;|/|;;| define the spuriousness of ;;; similarly, we also

refer to the precision of ;;, which is 1 � spuriousness(;;).

Adjacency graphs

We now describe for a given S, R, and ;; a restricted, simplified

form of the adjacency graph (for an example, see Fig. 2A; more fully

described in Paten et al. 2011).

Let a block be a column (i.e., equivalence class of ;;) con-

taining two or more positions. This definition of a block is more

restrictive than that defined in Paten et al. (2011); in the more

general form of the adjacency graph, blocks contain maximal

gapless contiguous sequences of columns and may contain col-

umns with just a single position. We use the more restrictive def-

inition because it is convenient for the exposition, but the algo-

rithms described herein are easily applied to the more general form

of the adjacency graph and resulting Cactus graph.

Each block c and its mirror �c is represented in the adjacency

graph by a pair of block end nodes a and b connected by a block edge

(a, b). We define a function label(a, b) that returns the oriented

label of an edge. For a block edge (a, b), the function returns

a column, such that label(a, b) = �label(b, a).

Each stub x in R is represented in the graph by a stub end node

a and a dead end node b connected by a stub edge (a, b) such that

label(a, b) = x. The set of dead end nodes is connected to one an-

other in a clique by backdoor adjacency edges.

The only other type of edge in the graph is called an adja-

cency edge. For any sequence x 2 S and any pair of positions xi, xj in

x, there exists an adjacency if no position in the (possibly empty)

subsequence between them is contained in a block, i.e., all the

bases between them are unaligned. For any sequence x 2 S and

any position xi, there exists a prefix adjacency if no position in the

(possibly empty) prefix sequence x1, x2, . . ., xi�1 between xi and

the start of the sequence is contained in a block. Similarly, for any

sequence x 2 S and any position xi, there exists a suffix adjacency if

no position in the (possibly empty) suffix sequence xi+1, xi+2, . . .,

xn between xi and the end of the sequence is contained in a block.

For two block edges (a, b) and (c, d) there is an adjacency edge (b, c)

if and only if there exists an adjacency between a position xi in

label(a, b) and a position xj in label(c, d) and i < j. For any block

edge (a, b) and stub end node c, there exists an adjacency edge

(c, a) if and only if there exists a prefix adjacency for a position

xi in label(a, b) such that leftStub(x) = label(d, c); similarly, there

exists an adjacency edge (a, c) if and only if there exists a suffix

adjacency for a position xi in label(a, b) such that rightStub(x) =

label(c, d).

Let the subsequence associated with an adjacency, including

prefix and suffix adjacencies, be called an adjacency sequence. The

adjacency graph is not a multigraph, i.e., there is at most one edge

connecting two nodes. For an adjacency edge (a, b) the function

label(a, b) gives the oriented multiset of adjacency sequences as-

sociated with the adjacencies that define it. Furthermore, the ad-

jacency sequences are oriented consistently so that each sequence

in S and its reverse complement is represented in the labels of an

alternating path of sequence and adjacency edges (a, b), (b, c), . . .,

(y, z), termed a thread, that starts and ends with an adjacency edge

Figure 1. (A) A column containing four positions: Xi, �Xj, �Yk, and Zl..
The overlaid trees show the position’s phylogenetic relationships. (B) The
mirror of the column in A. (C ) A most parsimonious history for the base
pairs in A. A substitution is inferred to have occurred along the lineage
marked by a star, but the base pairs are all still considered homologous.
(D) The mirror history of C.
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connecting to stub end nodes. Figure 2A shows an example adja-

cency graph containing two threads.

Cactus graphs

Let G0 be the adjacency graph for S, R, and ;;. We briefly describe

how G0 is transformed to a simplified form of the Genome Cactus

Graph G, also more fully described in Paten et al. (2011). G0 is

transformed into G in three steps:

1. Let a group component be an equivalence class of nodes in G0

connected only by adjacency or backdoor adjacency edges. We

call the group component composed of dead end nodes the

backdoor group component. The graph G1 contains a node for

each group component in G0. Two nodes a and b in G1, rep-

resenting, respectively (not necessarily distinct), group com-

ponents A and B in G0, are connected by a copy of every block

or stub edge in G0 from some a 2 A to some b 2 B. Thus, the

graph G1 is formed by merging nodes in group components

in G0 and eliminating all the adjacency and backdoor adja-

cency edges.

2. Let a 3-edge-connected component be an equivalence class of

nodes that are 3-edge-connected; these components can be

computed in linear time (we use the algorithm given by Tsin

[2007]). The graph G2 contains a node for each 3-edge-con-

nected component in G1. Like the previous step, two nodes

a and b in G2, representing, respectively (not necessarily dis-

tinct), 3-edge-connected components A and B in G1, are con-

nected by a copy of every block edge in G1 from some a 2 A to

some b 2 B. Thus, the graph G2 is formed by merging 3-edge-

connected equivalent nodes in G1.

3. An edge in a graph whose removal disconnects the graph is

called a bridge. Let a bridge tree be a connected component of G2

formed only by bridge edges; it is easy to verify that such

a structure must be a tree. For each bridge tree, we merge all

leaf nodes and branching nodes into a single node. The

resulting graph G is a Cactus graph (Harary and Uhlenbeck

1953) containing a single connected component in which

every edge is a member of exactly one simple cycle. Figure 2B

shows an example Cactus graph for the adjacency graph in

Figure 2A.

We call the node in G that represents the component that con-

tained the backdoor group component in G0 the origin node.

G0 can be constructed in time linearly proportional to |S9| +

|;;|; the above three steps can also be performed in time linearly

proportional to |S9| + |;;|; therefore, G can also be constructed in

time linearly proportional to |S9| + |;;|.

Chains

For a graph G, a traversal of a cycle C is a path in G containing only

edges in C. A simple cycle C in a graph G is fundamental if for any

path P in G, if we ignore all edges in P that are not in the cycle C, we

obtain a single contiguous traversal of C. A Cactus graph has the

special property that all its simple cycles are fundamental. A chain

C9 in G is merely a fundamental cycle C in G that has been opened

up at a designated node n, where n is either the origin node or the

node whose removal disconnects C9 from the origin node. As de-

scribed, every block edge is a member of exactly one chain in the

Cactus graph we have defined (see Fig. 2B). For a chain C, let SC be

the set of sequences obtained from S by ignoring all the base pairs

from blocks that do not label members of C. Then because C is

fundamental, it follows that every sequence in SC is a traversal of C.

Thus, the simple cycles in G represent universal substructure re-

lationships of S, R, and ;;.

Figure 2. (A) An adjacency graph G0 showing examples of threads. Blue and green lines depict two homologous threads traversing a series of residues in
blocks and the joining adjacencies. The block edges are the aligned boxes containing letters. The stub edges are the aligned boxes not containing letters.
The ends of the blocks/stubs are mapped as filled black rectangles on the edges of the aligned boxes. The adjacency edges are sets of lines connecting
nodes. To distinguish the backdoor adjacencies, they are dotted. DNA bases within the adjacencies are written along the lines representing adjacency
edges. Starting at a1, the blue thread gives the sequence ACTTAGAATTCATTTTGCCTGGAGGCTCTGTGGATGAC. Similarly, the green thread gives the
sequence AGCCTGCATAGAAGTCATggCATTTGTGAAggCTGATTCccctaAG. The lowercase letters represent the reverse complement of the block residues
and adjacency sequences as they are written, and result from the traversal of the adjacency/block in the reverse orientation from right to left. (B) The Cactus
graph G for G0. The blue and green lines again depict the two threads. Each node is shown as a circle; the origin node is colored gray. The block/stub edges
are depicted with multiple arrows, representing the different threads traversing them. Stub edges are dotted. The red numbers indicate the length of the
chains. (C ) The Cactus graph with embedded net substructure (G0, G). Each node in (G0, G) has added adjacency edges drawn, which connect the block
end nodes represented by the ends of the block edges incident with each node. The origin node in (G0, G) is drawn containing the origin node from G0 to
connect the prefix and suffix adjacency substructure.

Paten et al.
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Groups and nets

A group is a subgraph of G0 composed of a group component and

incident adjacency and backdoor adjacency edges.

Let a net component in G0 be an equivalence class of nodes that

were merged to form a node in G. By Step 1 in the construction of G

and the observation that the construction of G from G0 involves

only the repeated merging of nodes and the removal of adjacency

edges, it is clear that a net component is always the union of a set of

group components. A net is a subgraph of G0 composed of a net

component and incident adjacency and backdoor adjacency

edges. It is easy to verify that a net for a node in G represents the

adjacency connectivity between the ends of block edges with which

it is incident; we can represent nets therefore as substructure

within nodes of Cactus graphs (Fig. 2C). We write (G0, G) to rep-

resent a Cactus graph G whose nodes each have an associated net

substructure. Let cactus(S, R, ;;) = (G0, G) be the function that

constructs (G0, G) for a given S, R, and ;;.

Multilevel Cactus graphs

A multilevel Cactus graph is a tree of Cactus graphs connected to-

gether using groups. For a group M = (V, E), we call the multiset of

adjacency sequences that label members of E S(M). If S(M) contains

only empty sequences, then M is terminal, and no further, non-

empty alignment relation can be defined on the members of S(M);

else it is non-terminal. For an adjacency sequence x in S(M) labeling

(b, c) 2 E, let leftStub(x) = (a, b) and rightStub(x) = (c, d), where (a, b)

and (c, d) are block/stub edges. We can therefore define the set of

stubs R(M) for the sequences in S(M). A non-trivial child Cactus

graph cactus S Mð Þ;R Mð Þ;;;0ð Þ = G00;G
0ð Þ for a non-terminal group

M can therefore be defined. A normal multilevel Cactus graph is

one in which the chains in each Cactus graph are maximal, that is,

no chain can be extended by blocks in child Cactus graphs (for

formal definitions, see Paten et al. 2011).

Results
We outline two algorithms, both of which use the structure of the

Cactus graph and both of which can be used to construct a genome

MSA. The first algorithm is aimed at defining an initial Cactus

graph, the second constructs a multilevel Cactus graph from an ini-

tial Cactus graph, by attaching child Cactus graphs to non-terminal

groups, and thereby refining the fine details of the graph’s alignment.

Firstly, we describe a problem that motivates the first algorithm.

The maximum weight Cactus subgraph with large
chains problem

The length of a chain is the total number of block edges that it

contains. The weight of a block edge is equal to the cardinality of

the labeling block’s columns. The weight of a Cactus graph is equal

to the sum of the weights of its block edges.

For cactus(S, R, ;;) = (G0, G) and positive integer a (a pre-spec-

ified large chain threshold ), the Maximum weight Cactus subgraph with

large chains (MSLC) problem is to find cactus S;R;;;0ð Þ= G00;G
0ð Þ such

that ;;9�;;, all chains in G9 have length $a, and the weight of G9

is maximal.

Our intuition is that alignments between positions in blocks

of chains whose length is $a are less likely to be spurious than

those whose length is <a. If this intuition is correct and we can

ascertain a, then finding a solution to the MSLC problem ought on

average to reduce the spuriousness of the alignments in the Cactus

graph, while minimizing the degree of absence by maximizing the

weight of the resulting Cactus graph. We therefore explore an al-

gorithm for this problem and show below that this intuition is,

indeed, correct.

The Cactus alignment filter algorithm

The complexity of the MSLC problem is unknown. It does not

appear to have a simple polynomial time solution; we therefore

initially introduce an iterative and greedy heuristic algorithm that

is somewhat inspired by simulated annealing algorithms and that

we call the Cactus alignment filter (CAF) algorithm. It is not guaran-

teed to find an optimal solution, but we show that it still has

considerable utility.

The algorithm we outline has two key functions, one that

removes (melts) alignments from the graphs and one that adds

(anneals) them back into the graph. We first define these two

functions before describing the algorithm.

Removing chains from G

The MSLC problem allows for the removal of an arbitrary subset of

;; to find a solution. In this study, however, we limit ourselves to

the following operation. For cactus(S, R, ;;) = (G0, G), let

meltðG0;G;XÞ = cactusðS;R;;;nfx;;yjðx2 labelða;bÞ _
x2 labelðb; aÞÞ ^ ða; bÞ 2 EðCÞ ^C2XgÞ;

where X is a set of chains in G and E(C) is, for the chain C, the set of

block edges that it contains. This function therefore constructs an

updated Cactus graph in which the alignments contained in X are

absent. Figure 3, A and B, demonstrates this function. It is im-

portant to note how the removal of a chain can cause a local re-

organization of the graph that can result in the formation of new

longer chains.

Adding further alignments to nets within G

As well as removing alignments, we can add them back into the

graph, using the structure of G to filter which homologies to in-

clude. Let groups(G0, G) return the set of groups in (G0, G) and E(M)

now be the set of adjacency edges in a group M. For cactus(S, R, ;;) =

(G0, G), let

anneal G0;G;;;9ð Þ = cactus S;R;;;0ð Þ;
where ;;9 is a new alignment relation and

;;0 = ;;[ x;;9y j x 2 f Mð Þ ^ y 2 f Mð Þ ^M 2 groups G0;Gð Þf g;
where

f Mð Þ= xi 2 x j x 2 label a; bð Þ _ x 2 label b; að Þð Þ ^ a; bð Þ 2 E Mð Þf g:

This function only adds in alignments between positions in

the same group, the rationale being that, given our confidence in

the alignments of surrounding blocks, the positions in a net are

more likely to be aligned together than to positions in other nets.

Figure 3C–E demonstrates this function.

Tree coverage

As well as considering the minimum chain length as a parameter

for accepting or rejecting a chain, we consider the amount of the

species tree that the species in a chain cover.

A species tree T is an unrooted tree whose leaves are each

assigned a unique species label and whose branches each have

Algorithms for genome multiple sequence alignment
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a positive real-number branch length. For a given species tree T, if

we assume that each member of S is assigned a species label that

also labels a leaf of T, then we can assign a tree coverage value to a

chain. For a chain C, let SC be the subset of S that has positions con-

tained in one or more columns that label the edges of C. Let TC be the

induced subtree of T that includes only the leaves of T whose

species label members of SC. For a given Tand S, treeCoverage(C, T) =

branchLength(TC)/branchLength(T), where branchLength is a func-

tion that returns the sum of the branch lengths in a tree.

Overview

Algorithm 1 outlines the CAF algorithm. The function length(C)

returns the length of a chain C and chains(G) returns the set of

chains in G. The algorithm takes, along with S, R, T, and ;;, two

integer arrays, annealingArray and meltingArray, which represent val-

ues of a that are iterated over and a floating point minTreeCoverage

value. It returns a Cactus graph for the inputs.

Algorithm 1. CAF (S, R, T, ;;, annealingArray, meltingArray,

minTreeCoverage)

Require "i, annealingArray[i] > 0

Require "i, meltingArray[i] > 0

Require "i < j, meltingArray[i] < meltingArray[j]

Require 0 # minTreeCoverage # 1.0

(G0, G) ) cactus (S, R, f)

i ) 1

while i # length (annealingArray) do

{Add alignments to groups}

(G0, G) ) anneal(G0, G, ;;)

{Progressively undo chains less than length annealingArray[i]}

j ) 1

while j # length(meltingArray) do

if meltingArray[j] < annealingArray[i] then

(G0, G) ) melt(G0, G, {C|C 2 chains(G) ^
(length(C) < meltingArray[j]) _
treeCoverage(C, T) < minTreeCoverage)})

else

break

end if

j ) j + 1

end while

(G0, G) ) melt(G0, G, {C|C 2 chains(G) ^ (length(C) <

annealingArray[i]) _
treeCoverage(C, T) < minTreeCoverage)})

i ) i + 1

end while

return (G0, G)

The call to cactus sets up a Cactus graph containing only stubs and

adjacency edges. The algorithm has two while loops; the top-level

loop iterates over the integers in annealingArray. At the start of the

outer loop, alignments are added to the graph; within the inner

loop, chains of increasing length are progressively undone by it-

erating over progressively larger integers in the meltingArray.

Consequently, at the end of an iteration of the top-level loop, G

will contain no chains less than annealingArray[i] in length or with

a tree coverage of less than minTreeCoverage. Therefore, by in-

creasing the value of annealingArray[i] in the outer loop and in the

inner loop melting increasingly larger chains, the algorithm at-

tempts to iteratively extend larger chains while removing smaller

and lower tree-covering chains that generally correspond to mis-

alignments.

As a demonstration, if (G0, G) = cactus(S, R, ;;) is the Cactus

graph in Figure 2C, the MSLC solution shown in Figure 3C for a = 8

is found (for example) by CAF(S, R, T, ;;, [8], [2], 0).

The base-level alignment refinement algorithm

Let the size of a group be the sum of the lengths of the adjacency

sequences that it contains. After applying the CAF algorithm, we

find many of the groups’ sizes in the resulting Cactus graph are

typically below a few kilobases. We reason that once the size of

a group is below a certain threshold, it makes sense to apply sen-

sitive hidden Markov model (HMM)–based dynamic programming

algorithms (Durbin et al. 1998) to align the adjacency sequences.

Unfortunately, we cannot naively globally align the adjacency

sequences in a group, as the group may involve rearrangements

that prevent a partial ordering of the alignment; we have therefore

developed an algorithm that we call the Base-level alignment re-

finement (BAR) algorithm.

Let M = (V(M), E(M)) be a (non-terminal) group in (G0, G),

where V(M) is a set of vertices in G0 and E(M) is the set of adjacency

edges that connect them. For a 2 V(M), let Sa be the set of oriented

adjacency sequences that label adjacency edges incident with

a and let ;;a be an alignment relation on the positions in Sa such

that Sa defines a partial ordering between the columns (equiva-

lence classes) defined by ;;a. We call ;;a an end alignment; it can

be thought of as a poset global MSA for Sa. Let P(xi;;yj|x, y, u),

which we abbreviate henceforth to P(xi;;yj), be the posterior

probability of xi;;yj given x, y, and a pairwise-HMM u (Durbin

et al. 1998). For each a 2V(M), the first step in the BAR algorithm is

the construction of an end alignment ;;a and imputation of

a pairwise posterior probability for each member of ;;a. These

end alignments are constructed using code adapted from the Pecan

global MSA program (Paten et al. 2009) (see Methods).

The union of the set of end alignments for a group will po-

tentially contain a degree of spuriousness, because each adjacency

sequence is contained in two independent end alignments con-

structed without regard to each other. The second step in the BAR

algorithm is hence a simple strategy to ‘‘prune’’ the alignments.

Let x1, x2, . . ., xn be an adjacency sequence labeling the adja-

cency edge (a, b), where a and b are in V(M). Let the cumulative

alignment score for xj and ;;a be

score xj;;;a

� �
= +

xi;;ayji # jf g
P xi ;; ayð Þ:

Similarly, let

score �xi;;;að Þ= +
xj;;ayji # jf g

P xj ;; ay
� �

:

Let a cut point for x be an integer between 0 and n. For a cut

point i, if i = 0, then the cut-point score equals score(�x1, ;;b), if i = n

the cut-point score equals score(xn, ;;a), else i > 0 and i < n and the

cut-point score equals score(xi, ;;a) + score(�xi+1, ;;b). A maximal

cut point is one with a maximal cut-point score for the given ad-

jacency sequence u and pair of end alignments.

For an adjacency sequence x labeling adjacency edge (a, b)

and a cut point j, a cut-point filtering is the removal of all xk;;ay

from ;;a, where k > j, and removal of all xi;;by from ;;b, where

i # j. The pruning of the end alignments proceeds iteratively. We

start with the initial set of end alignments. We pick an ordering

(currently arbitrarily) of the adjacency sequences in the group,
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then for each adjacency sequence in turn, we find the optimal cut

point and update the end alignments by performing a cut-point

filtering for this optimal cut point. The end result of this procedure

is a set of end alignments that do not overlap along any adjacency

sequence. These ‘‘consistent’’ end alignments are then used to

form a Cactus graph for the group, thus applying the BAR algo-

rithm to each non-terminal group, we can construct a multilevel

Cactus graph. As this computation is independent for each non-

terminal group in the Cactus graph, the computation can be per-

formed in parallel. An example of the BAR algorithm for one group

is outlined in Figure 4.

Alignment simulations

To test our methodology, we used the Evolver suite of genome

evolution tools provided by Edgar, Asimenos, Batzoglou, and

Sidow (http://www.drive5.com/evolver/), to produce two simula-

tions of a 500-kb loci, one of a primate-like phylogenetic tree

(human, chimp, gorilla, orangutan) and one of a mammal-like

phylogenetic tree (human, dog, cow, mouse, rat) (see Methods).

Evolver models many rearrangement operations. Table 1 is

a summary of the main operations that affect our simulations.

Among others, Evolver models substitutions, insertions, deletions,

tandem duplications, inversions, repetitive tranpositions (‘‘M.E.

Insert’’ in Table 1), segmental duplications

(‘‘Copy’’ in Table 1), and intra-chromo-

somal translocations (‘‘Move’’ in Table 1).

It also has a constraint model, which

preferentially conserves genic and con-

served non-coding elements, and numer-

ous other biologically inspired features.

These simulations represent the first time

to our knowledge that Evolver has been

used to assess alignment programs, and

thus we purposefully chose limited simu-

lations to allow us to manually assess the

resulting output. Supplemental Figures

S1 and S2 show dot plots of the evolved

sequences. Figure 5 shows a dot plot of

the simulated human and simulated

mouse sequences for the Evolver mam-

mals simulation; it is possible to observe

insertions, inversions, translocations, and

a segmental duplication.

Evolver proceeds by evolving a set of

sequences forward in time, while keeping

track of the changes that separate ances-

tral sequences from their derived versions.

Evolver therefore starts from a single root

sequence. The root sequence and its an-

notations were taken from an actual hu-

man genomic loci (see Methods). We

simulated forward evolution from the

root genome for a total phylogenetic

distance of 1.0 neutral substitutions per

site in step sizes of 0.01, in order to gen-

erate the most recent common ancestor

(MRCA) genome for subsequent simula-

tions. This MRCA genome was then used

as the input for both the Evolver primate

and Evolver mammal simulation. We

term this process a burn-in.

Producing a burn-in allowed us to check that the parameters

for the simulations were close to stationarity, that is, the genome

was not significantly shrinking or growing rapidly with simulation

distance; and perhaps more importantly, it allowed us to establish

a known evolutionary history over a lengthy time period for the

entire genome. As such, for both simulations, we report two sets of

precision/recall numbers, one including the evolutionary events

during the burn-in and one excluding them.

We do this for three reasons. Firstly, the burn-in inclusive

homology relation contains many pairs that we have no rea-

sonable hope of correctly aligning; it is thus unduly severe to use

only this set to calculate recall. Secondly, and conversely, the

burn-in exclusive homology relation excludes many pairs that we

should reasonably judge as being homologous; thus, it is unduly

harsh to use only this set to calculate precision. Thirdly, it is in-

teresting to contrast our ability to align events that occurred be-

fore the MRCA to those that occurred after the MRCA. However,

to avoid overcomplicating matters, we sought a single measure

that avoids the first two issues to measure overall accuracy. To do

this, we use a standard Fb score (Rijsbergen 1979), where b is used

to adjust the weight placed on precision versus recall, in which

we use the burn-in inclusive homology relation to calculate

recall and the burn-in exclusive homology relation to calculate

precision.

Figure 3. Melting and annealing examples. (A) An example showing the results of melt((G0, G), X),
where (G0, G) is the Cactus graph in Figure 2C and X = {c}. (B) Like A, but with chain g also removed.
(C,D) Examples of the effect of anneal((G0, G), ;;), where (G0, G) are the Cactus graphs in B and ;;

contains the alignments in chain c of the Cactus graph in Figure 2B added. (E) The MSLC solution for the
Cactus graph in Figure 2C with large chain threshold a = 8. This is the result of the annealing function
illustrated by C and D. The length of the longest chain in B increases by 2.
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One important issue with Evolver is that it does not consider

independently inserted copies of the same transposon as homol-

ogous. This is understandable, given that there may be many

thousands or hundreds of thousands of copies of related elements

in a single genome; and thus it is both unreasonable and imprac-

tical to consider instances of these elements to be homologous.

However, this behavior is also problematic: firstly, because such

elements have evolved in vivo by a process of duplicative trans-

position that, in the case of segmental duplication, we do consider

to be a generator of homology (and that Evolver does separately

model); secondly, and more practically, because multiple copies of

a transposon introduced in a short period of time appear homol-

ogous, but yet are not considered homologous by Evolver. Thus in

these simulations, the homology relation can be considered to be

conservative because it excludes certain pairs that might otherwise

reasonably be considered to be homologous.

In addition to testing with these novel simulations, we used

a set of previously published simulations generated by Blanchette

et al. (2004b). Their simulations attempt to model the neutral

region evolution of nine extant mammalian species: human,

chimp, baboon, mouse, rat, dog, cat, cow, and pig. The simula-

tions comprise 50 50K alignments. The mutational operators

considered included substitutions; CpG effects; insertions, in-

cluding the action of transposed repetitive elements; and fi-

nally, deletions. Importantly, the Blanchette simulations do not

model any nonlinear rearrangements that break the partial or-

dering of the sequences with respect to one another; thus, they

are appropriate for assessing programs that generate global

MSAs as well as partially exercising those that can generate

more general forms of MSA. The root sequences for these

simulations were generated from a Markov process, and thus are

assumed to contain no self-homology; hence, no burn-in is nec-

essary for these simulations. These simulations also contain re-

peat elements, which are not treated as homologous and which

therefore create the same issues as discussed above for the Evolver

simulations.

Figure 4. An illustration of the BAR algorithm. (A) A subgraph of an adjacency subgraph. The magenta and orange coloring of the blocks highlights the
two chains; the outer A chain contains the inner B chain, which has been inverted in the red thread. (B) An example of the BAR algorithm. Box (1), four end
alignments are constructed, one for each end in the net that contains ends of A and B. The alignments are oriented from their respective ends. These four
alignments are inconsistent; if they were accepted as they are, they would together create many likely spurious alignments. Box (i), the blue adjacency
sequence ACAT between a1 and b1, is chosen at random. A cut point is chosen (drawn as a red line) on an induced alignment, one containing only the
columns with residues in the chosen adjacency sequence. The cut point must lie before the first, after the last, or between two residues in the adjacency
sequence. The cumulative alignment score of aligned pairs to the adjacency sequence is shown below the two induced alignments, in both cases cu-
mulated away from the respective block end. The cut point is chosen so that the cumulated score before the cut point in the induced alignment of a1 plus
the cumulated score after the cut point in the induced alignment of b1 is maximal. Alignments to the adjacency sequence in the a1 end alignment after the
cut points are removed, and alignments to the adjacency sequence in the b1 alignment before the cut points are removed. In this case, the cut point is after
position 4, so all of the a1 alignments are kept and all of the alignments to the adjacency sequence in the b1 alignment are removed. Box (2), the result of
removing the alignments discarded in (i). Boxes (ii–vi) and (3–7) show this process repeated for each of the remaining adjacency sequences in turn. The
ordering of adjacency sequences in this process is random. (C ) The resulting adjacency subgraph after the alignments in Box (7) of B are included. The
adjacency sequences are now all empty, and there are three chains, the orange and magenta chains, which have been lengthened, and a single block cyan
chain corresponding to an indel.
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Testing CAF

To test the CAF algorithm, we experiment with two values for each

of the melting and annealing arrays, giving four possible combi-

nations. Either the annealingArray contains a single value, which

we call simple annealing, or a monotonically increasing array of

values, which we call progressive annealing. Similarly, either the

meltingArray is empty, which we call simple melting, or it contains

a monotonically increasing array of values, which we call progressive

melting. We experiment with different maximum values in these

arrays, which can be thought of as the value of a, in all cases using

a range of powers of 2, from 4 to a maximum of 8192. For a default

tree coverage of 0.8, Figure 6 shows the effects of these four com-

binations for the three different simulations for different maxi-

mum values of a.

Precision-recall (Fig. 6A,D,G) plots show the trade-off be-

tween these measures as a function of a. As expected, larger values

of a produce higher precision but lower recall. To choose a default

value for a, we calculate the F0.25 score (Fig. 6B,E,H), which weights

precision four times over recall; as the CAF algorithm is used to

choose the alignment map on which the BAR algorithm will be

run, we weight precision more highly than recall at this stage. We

also plot (Fig. 6C,F,I) the computation time for running CAF in

these evaluations.

Let the combined simple melting and simple annealing

strategy be called the naive strategy. We find that compared to the

naive strategy, the strategy involving progressive melting and

simple annealing increases precision by 4.1% on average, increases

recall 16.4% on average, and increases the F0.25 score 14.9% on

average, where the average is over all simulations and all tested

values of a. We find using the same form of comparison that the

strategy involving progressive annealing and simple melting in-

creases precision 5.8% on average, increases recall 15.9% on av-

erage, and increases the F0.25 score 17.7% on average, compared to

a naive strategy. Combining both progressive melting and pro-

gressive annealing does not significantly change precision or recall

on average over using progressive annealing and simple annealing

alone. Many of these differences come from larger values of a;

using an a value up to 256, we find that the progressive melting/

annealing strategy is 2.9% on average better in precision and does

not significantly alter recall, resulting in an average 6.8% increase

in the F0.25 score.

The progressive annealing strategy adds most significantly to

computation time, while the progressive melting strategy adds

only marginally versus the naive strategy. This is largely because

the former currently requires linearly traversing the set of input

alignments, which is relatively slow, while the latter requires only

a recalculation of the Cactus graph, which is linear time in the size

of the elements in the adjacency graph and relatively quick.

The differences in the F0.25 score for each simulation are quite

small across a wide range of values. The value of a that gives the

highest F0.25 score for the Evolver mammals and the Blanchette

simulation is 32 for the non-naive strategies. For the Evolver pri-

mates simulation, the F0.25 score is close across a range of values,

but peaks at a = 1024. This difference partly reflects the much lower

values of recall that are achieved in the mammal and Blanchette

simulations by the CAF algorithm, and partly seems to relate to the

alignment of transposons, which we address in the next section.

Testing BAR

To test the combined CAF and BAR algorithms, we perform the

same analysis as described for the CAF algorithm alone; the results

are shown in Figure 7 and laid out as in Figure 6, the only difference

being that we now plot the F1 measure in Figure 7B,E,H, as we are

now equally interested in precision and recall.

The relationship between precision and recall follows the

same simple trade-off relationship in the Evolver mammals simu-

lation. The Evolver primates and Blanchette simulations, however,

show a more complex relationship. In the former case, there is an

apparent step in the curve that suddenly increases precision at a =

1024, after which the curve reaches an asymptotic limit. In the case

of the Blanchette simulations, the relationship between precision

Figure 5. A dot plot showing the Evolver mammals alignment of
simMouse and simHuman. The true alignment is shown in blue, and overlaid
in red is the predicted Cactus alignment. The density of different sequence
annotations, as maintained by the Evolver model, are plotted on rows along
the axes. (CDS) Coding sequence; (UTR) untranslated region; (NXE) non-
exonic conserved regions; (NGE) non-genic conserved regions; (island) CpG
islands; (tandem) repetitive elements. The gray box is expanded at the
bottom of the figure for five different predicted alignments. Only the Cactus
alignment correctly identifies the tandem duplication at the bottom left of the
expanded region.

Table 1. An accounting of some of the simulated events that
occurred during the burn-in, between the burn-in and the
simulated human in the primate simulation, and between the burn-
in and the simulated human in the mammal simulation, respectively

Evolver rearrangement operations

Event Burn-in Primates Mammals

Substitute 486,597 9798 85,944
Delete 33,557 655 6111
Invert 170 2 23
Move 58 2 15
Copy 194 4 41
Tandem 15,605 323 2663
Insert 2566 47 470
M.E. insert 472 9 94
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and recall is not a trade-off; rather, for a range of a between 4 and

2048, the precision and recall both increase. For values greater

than a = 2048, the result then collapses, as no chains of this length

can be reliably found within the simulations, and thus the algo-

rithm generally returns a trivial alignment containing no aligned

pairs.

Both the Evolver primate and Blanchette results circumstan-

tially appear influenced by the two simulators’ treatment of re-

petitive transposition, which we discussed above. To attempt to

discern this effect in the Evolver simulations, we reran them with

repetitive transposition turned off. Figure 8 shows the results in terms

of precision and recall for the Evolver primates simulation (see Sup-

plemental Fig. S3 for the equivalent figure for the Evolver mammals

simulation). We note that the steplike change in precision that oc-

curs at a = 1024 is gone in the no-transposons simulation; rather, the

curve shows a smooth relationship between precision and recall, and

precision as a function of a reaches its asymptotic limit earlier, at ;a =

64. We conclude therefore that, at least in the Evolver simulations,

the issue of repetitive transposition significantly affects the result.

Questions remain as to how much the operation of repetitive

transposition disrupts the correct alignment of homologies recog-

nized by Evolver, and how much Evolver’s decision to not recognize

homologies created by independently inserted repetitive trans-

positions artificially biases the result against shorter values of a.

After manual analysis of both the Evolver primate and Blanchette

simulations, we strongly suspect that the latter explanation largely

accounts for this effect, although it is probable that the former effect

is not negligible. In future work, we therefore plan to better address

this homology problem by formulating methods to identify re-

petitive homologies and classify them into those that cannot rea-

sonably be justified, and those that can. However, for the remainder

of this analysis, we test two versions of Cactus that are identical with

the exception that in one a = 64 and in the other a = 1024. We

call the former simply Cactus, and it is the default mode of the

program; the latter we call Cactus No Transposons [Cactus (N.T.) in

the tables]. When we compare Cactus to existing programs (see

below), we show results for both.

We find that the progressive annealing and melting strategy

has 15.4% higher recall on average, 14.1% higher precision on

average, and 14.7% higher F1 score than a naive strategy, where the

average is over all simulations and all values of a. However, as with

the CAF algorithm alone, much of this effect comes from higher

values of a, looking again at values of a from 4 to 256, we find

a 0.9% increase in precision and 0.8% decrease in recall, leading to

a marginal 0.24% increase in overall F1 score. For small values of a,

we conclude that the BAR algorithm is largely able to compensate

for differences between the different strategies in terms of pre-

cision and recall. However, we find that the overall computation

time of the BAR and CAF algorithms over all simulations is, on

average, lowest when progressive annealing and melting is en-

Figure 6. The effects of altering the minimum chain length a on the alignment predicted by the CAF algorithm. (A–C) Using the Evolver mammals data
set. (D–F) Using the Evolver primates data set. (G–I ) Using the Blanchette data set. (A,D,G) Precision-recall plots. The variable a is altered in powers of 2
from 4 to 8192. In general, increasing a increases precision and decreases recall. Four strategies are shown, for the four combinations involving simple
melting/progressive melting and simple annealing/progressive annealing. (B,E,H ) The F0.25 score (weighting precision fourfold over recall) as a function of
a, for the four CAF strategies (colors consistent with [A,D,G]). (C,F,I ) The computation time (using a single contemporary 0 3 86 processor) as a function of a.
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abled. For this reason, and because they are robust to increases in a,

we therefore select them as defaults.

For all of the above comparisons of the two algorithms, we

used a minimum tree coverage of 0.8. Figure 9 shows the effect of

adjusting the minimum tree coverage on the combined results of

the CAF and BAR algorithms. We find that for values of a <32,

a minimum tree coverage of 1 is best. This is likely because it is

advantageous to have complete tree coverage when choosing to

accept very short chains. For values of a >16, we find that a mini-

mum tree coverage of 0.8 gives the highest F1 scores.

The BAR algorithm uses the posterior probabilities of aligned

pairs to choose how to trim sets of end alignments and make them

consistent. We can also use a threshold that we call g on the sum

of posterior probabilities in a column to choose to accept or reject

the pairs it contains (see Methods), in a similar fashion to that

described in Schwartz and Pachter (2007). Figure 10 shows the ef-

fects of adjusting g on the resulting alignments. By adjusting g

we can achieve a smooth trade-off between precision and recall

in the simulations involving pan-mammalian comparisons. In the

Evolver primates simulations, very few pairs are uncertain, and

hence the parameter has little effect.

Comparisons to existing programs

Finding freely available programs to compare with was surprisingly

difficult; we found relatively few contemporaries that were easily

capable of aligning all of these simulations. We tested Pecan (Paten

et al. 2009), FSA (Bradley et al. 2009), Multiz (Miller et al. 2007),

TBA (Blanchette et al. 2004b), and progressiveMauve (Darling et al.

2010). Pecan is our program for large-scale global MSA generation

and has previously been shown to perform well in the Blanchette

simulation (Paten et al. 2008). FSA is another large-scale global MSA

program that optimizes a slightly modified AMAP score (Schwartz

and Pachter 2007). In our hands, we could not make it scale to

align the Evolver simulations in reasonable time or memory, but

expect it to perform similarly to Pecan in these benchmarks.

Multiz is used by the UCSC browser (Fujita et al. 2011) to create

whole-genome reference-based MSAs; as such, it does handle

nonlinear rearrangements, but it does not allow for duplications

and is likely to perform best for the chosen reference sequence. TBA

builds on Multiz and uses more extensive dynamic programming

to make the alignment symmetrical (non-reference-based). We

also tested a version of TBA used during the ENCODE pilot project

(Margulies et al. 2007), which allows for duplication of non-refer-

ence bases. Progressive-Mauve is a new and more sensitive version of

the Mauve genome alignment program (Darling et al. 2004) that

handles nonlinear rearrangements although not duplications.

The global MSA programs Mavid (Bray and Pachter 2004) and

Mlagan (Brudno et al. 2003a) were excluded from comparison

because they had previously performed more poorly than those we

tested in the Blanchette benchmark (Blanchette et al. 2004b; Paten

et al. 2008) and have not been updated. The shuffle-Lagan program

(Brudno et al. 2003b) does handle rearrangements, but is pairwise

only, does not handle duplications, and could not be made to run

stably in our hands. The synteny mapping programs Enredo (Paten

et al. 2008) and Mercator (Dewey 2007) are not currently suitable

Figure 7. The effects of altering the minimum chain length a on the combined results of the CAF and BAR algorithms (the implementation is col-
lectively called Cactus). The format of the figure is the same as in Figure 6, except F1 scores are shown in plots B, E, and H.
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for these benchmarks, as they require sets of predetermined ‘‘an-

chor’’ alignments, such as those of exons, which, due to the rela-

tively small size of the simulations, are both few and not readily

computable by an existing method. All the tested programs were

run with their default parameters and using the latest versions

available, with a few exceptions (see Methods).

Tables 2, 3, and 4 show the results for the Evolver mammals,

Evolver primates, and Blanchette simulations, respectively. We

break the results down into a number of categories. For the Evolver

simulations, we give categories both excluding and including the

burn-in period. For all tables, we show the results over all (‘‘All’’

columns) pairs, and results for just pairs involving human se-

quences (‘‘Human’’ columns), which we used as a reference se-

quence for those programs that need a reference (Multiz and

ENCODE TBA). We also look at pairs, including (‘‘All’’ rows), ex-

cluding (‘‘No repeats’’ rows) and only containing pairs (‘‘Repeats’’

rows) where one or both sequence positions has been deemed re-

petitive by the repeat masking. Finally, we attempt to discount

local misalignment using the near category (‘‘Near’’ rows). For any

homologous pair xi;yj, if xi+k;;yj or xi;;yj+k for �n # k # n,

where n is a mis-alignment parameter (in all these comparisons n =

5), we consider xi;yj to be contained in ;; when calculating ab-

sence and spuriousness. Symmetrically, for the aligned pair xi;;yj

pair if xi+k;yj or xi;yj+k for �n # k # n, we consider xi;;yj to be

contained in ; when calculating absence and spuriousness. Thus,

small misalignments are acceptable in the near category, while

larger misalignments are penalized, and thus the Near row num-

bers are always equal or improvements on the All row numbers.

In the Evolver mammals simulation, the default Cactus pro-

gram substantially outperforms all other programs in terms of re-

call and F1 score in all categories, and, in fact, in every possible

pairwise comparison of the constituent species (see Supplemental

Tables S1–S5). In terms of precision, the Cactus (N.T.) program has

slightly higher overall precision, although by only ;0.3%. The

other programs perform largely as expected. Pecan has good pre-

cision, but its inability to handle nonlinear rearrangements means

that it cannot align some sequences and so correspondingly has

poor recall. TBA and Multiz are quite close in overall precision and

recall, although Multiz performs significantly better in human

reference terms and significantly worse in non-human reference

terms (see the Supplemental Material). Only progressive-Mauve

performs substantially more poorly than might be expected; after

discussion with the author, the problem appears to be related to

a failure in the automatic detection of a ‘‘weight’’ parameter; there-

fore, with parameter adjustment, this result might be improved.

In the Evolver primates simulation, the difference between

the programs is smaller, as might be expected, given the relative

simplicity of the majority of this alignment problem. We find that

our Cactus (N.T) program has the highest F1 score, but that TBA

and the Cactus default programs are very close behind. The pre-

viously noted issues with homology produced from repetitive

transposition arise in the benchmark, meaning that the precision

numbers should be considered a conservative measure that may

discount some homologies that may be considered reasonable. We

note that Multiz achieves high human-reference recall, although

at an apparently high cost in terms of precision.

In the Blanchette simulation, our Pecan program was pre-

viously the best performing in terms of recall and F1 score. We find

that Cactus (N.T.) outperforms it in terms of precision and F1 score,

Figure 8. Comparing the effect of removing the repetitive transposition
operation on two independent runs of the Evolver primates simulation,
one including and one without the operation. (A) A precision-recall plot of
the predicted Cactus alignments showing the effect of altering a in powers
of 2 from 4 to 8192. (B) The precision as a function of a. Note particularly
the step-up in precision between a = 512 and a = 1024 for the simulation
including repetitive transposition, whose alignment is not considered
homologous by Evolver.

Figure 9. The effects of adjusting tree coverage. (A) A precision-recall
plot of the predicted Cactus alignments showing the effect of altering a in
powers of 2 from 4 to 8192. Four curves are plotted, showing changes in
minimum tree coverage from 0 to 1.0 (see key in A). (B) The F1 score as
a function of a for the four different minimum tree coverages (colors
consistent with A). (C ) As in B, but showing time.
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although the difference between Pecan and Cactus is relatively

small compared to the other programs considered, which generally

have much poorer recall. We note that in this benchmark and in

the Evolver primates, benchmark progressive-Mauve appears to

perform somewhat better. The FSA program, which we could run

on this benchmark, produces good precision, but its recall is rela-

tively poor.

Primate gene alignments

We have analyzed our methods using simulation. We can also do

empirical analysis of the alignments of actual biological sequences.

There are many different possible approaches (see (Margulies et al.

2007 and Paten et al. 2008 for interesting biological metrics), in

this study, we examined the conservation of genes and exons and

compared and contrasted our results with the human reference

Multiz alignments (Miller et al. 2007) hosted by the UCSC browser

(Fujita et al. 2011), which are probably the most cited set of existing

genomic alignments.

We chose the first 10 ENCODE pilot project regions

(ENm001–ENm010) (Margulies et al. 2007) and constructed

alignments for a set of primates (human, chimp, orangutan, and

rhesus) (see Methods). These alignments were selected because we

thought that they gave a reasonably sized set of genes and corre-

sponding alignments whose evolutionary distance made manual

analysis of all the results possible.

We collected all human RefSeq mature mRNA transcripts

(NM* accession) that are located within the 10 selected regions,

and looked for homologs of their CDSs (coding sequences) in other

species using the alignments (see Methods). For each gene that had

multiple transcripts, we only selected the transcript with the lon-

gest CDS to prevent repeat penalization. We will refer to these

human CDSs as the reference CDSs.

In each non-human species, we call a sequence that aligns to

a human exon a conserved homolog if (1) it has a total insertion and

deletion size (total indel size) that is a multiple of 3, and (2) neither

the insertion nor deletion size exceeds 10% of the reference exon

length; else we call it a non-conserved homolog. A non-conserved ho-

molog that contains more than 10 contiguous wildcard Ns (generally

representing a scaffold breakpoint) is deemed to have missing data,

describing the state in which there is not enough information to

deem if the sequence could have been correctly aligned.

An exon is defined as conserved if there is at least one con-

served homolog in every species; else it is non-conserved. An exon

that is non-conserved has missing data if at least one homolog

sequence in the alignment contains missing data.

In each species a sequence that aligns to the exons of a human

gene is similarly called a conserved homolog of the gene if it contains

a conserved homolog of each exon in the same order and orientation

as the reference gene; else it is called a non-conserved homolog of

the gene. For genes we say that a non-conserved homolog of a gene

has missing data if it contains any non-conserved exon homologs.

Consistent with the definition of exon conservation across

species, a gene is defined as conserved if there exists at least one

conserved homolog in every species; else it is non-conserved. As

with exons, a gene that is non-conserved has missing data in the

alignment if at least one homolog sequence aligned to a reference

exon contains missing data.

There were a total of 1776 exons in 232 genes. Ninety-four

genes (40.52%) and 100 exons (5.63%) were removed from the

comparison because (1) they were not conserved by both Multiz

and Cactus; and (2) the alignments were found to contain missing

data (as described above). Many of those classified as having

missing data were missing substantial portions of sequence, typi-

cally involving entire exons.

Table 5 shows a comparison of cross-species conservation be-

tween Cactus and Multiz. We find that there is a high degree of

concordance between the two methods at both the exon and gene

level, but with Cactus predicting a smaller number of non-con-

served genes and exons than Multiz. When a gene was conserved by

one program’s alignment but not conserved by the other program’s

alignment, it was always due to the non-conservation of an exon.

Where Cactus predicts a conserved exon but Multiz does not

(75 cases) (see Supplemental Table S9), we find 40 cases in which

Multiz fails to align a homologous sequence in one or more species

(for an example, see Supplemental Fig. S5). We find 29 cases in

which Multiz aligns a homologous sequence in every species, but,

because it must choose just one such sequence per species, it picks

a homolog in at least one species that does not conserve the exon

(for examples, see Supplemental Figs. S6, S7). In the remaining six

cases, the Multiz alignments contain a large indel in one or more

species’ homologous sequences. Interestingly, upon further in-

vestigation, each such indel apparently arose by a tandem dupli-

cation, a process that can apparently confuse Multiz into aligning

the prefix of the 59 copy and the suffix of the 39 copy to the single

human copy, leaving the remainder of the duplication as an indel

(Supplemental Fig. S8 shows an example). In each of these tandem

duplication cases, Cactus properly aligns both copies together.

Where Multiz predicts a conserved exon but Cactus does not

(11 cases) (see Supplemental Table S9), we find that Cactus has

failed to align a homolog in 10 cases (for an example, see Supple-

mental Fig. S4) and aligned a homolog that was not conserved in

the other case.

While the Evolver simulations were too small to contain sig-

nificant amounts of duplication, these 10 loci allow us to observe

the performance of our program when dealing with duplications.

As mentioned, while the Multiz alignments can give no indication

of duplications, the Cactus alignments predict that 346 (19.48%)

exons, 542 of 1544 introns (35.1%), 161 genes including exons

and introns (69.4%), and 112 genes including only exons contain

duplication. Many of these duplications are between paralogous

members of gene families, but we also find cases that correspond to

Figure 10. The effect of adjusting g. (A) A precision-recall plot of the
predicted Cactus alignments showing the effect of altering g, for the three
different alignment simulations. (B) The F1 score as a function of g for the
three different simulations; shapes consistent with A.
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short intra-gene tandem and local segmental duplications (as in

Supplemental Fig. S8).

Discussion
We have described two novel algorithms for genome alignment

whose combination produces alignments that allow for nonlinear

rearrangements and duplications and yet achieve good levels of

precision and recall, overall outperforming all their existing peers.

The implementation is freely available (see Methods) and can be

used to align substantial genomic loci or megabase-scale genomes.

We believe therefore that the program will prove useful for many

comparative genomics efforts. However, we are also aware of the

need to scale it to handle clades of entire mammalian size ge-

nomes. Given the recursive, nested nature of the Cactus graph

structure that we build, we believe that this will be possible and,

indeed, efficient. It is our intention that the Cactus program will

shortly provide complete genomic alignments, and that these will

be available within the UCSC Genome Browser.

We have described the MSLC problem and the CAF algorithm

for finding (non-optimal) solutions. The MSLC problem has sim-

ilarities with and was somewhat inspired by the Maximum Weight

Subgraph with Large Girth (MSLG) problem for A-Bruijn graphs

proposed by Pevzner et al. (2004). In that problem, the in-

vestigators aim to rid the A-Bruijn graph, which has similarities to

an adjacency graph, but does not represent the difference between

x;;y (or equivalently �x;;�y) and x;;�y (or equivalently

�x;;y) (for a discussion of this topic, see Medvedev and Brudno

2009), of cycles with a girth (number of edges) less than a threshold,

these low girth cycles typically resulting from spurious alignments,

very short tandem repeats, and indels. The result of solving the

MSLG problem is a subgraph that does not properly represent all the

input sequences, many adjacencies and subsequences having been

removed. In the MSLC problem, the resulting Cactus graph does still

properly represent all the input sequences, the difference between

the input and output being in the represented set of align-

ments—this therefore avoids any problem of threading the input

sequences back through the resulting graph.

We have also described the BAR algorithm, which attempts to

make consistent a set of overlapping global poset MSAs. We have

found that the combination of the CAF and BAR algorithms pro-

vides significant benefit over applying the CAF algorithm alone,

particularly in terms of improving recall. In both algorithms we

have used the structure of the Cactus graph, in the CAF algorithm

Table 2. Comparisons using the Evolver mammals data set

Evolver mammals simulation

Program Class

All Human

Burn-in No burn-in

F1

Burn-in No burn-in

F1R P R P R P R P

Cactus All 0.489 0.921 0.729 0.921 0.814 0.528 0.927 0.773 0.927 0.843
No repeats 0.489 0.921 0.729 0.921 0.814 0.528 0.927 0.773 0.927 0.843
Repeats 0.552 0.767 0.608 0.771 0.678 0.596 0.773 0.665 0.776 0.715
Near 0.549 0.962 0.774 0.961 0.858 0.590 0.967 0.818 0.966 0.886

Cactus (N.T.) All 0.425 0.924 0.634 0.923 0.752 0.463 0.927 0.679 0.927 0.784
No repeats 0.425 0.924 0.634 0.923 0.752 0.463 0.927 0.679 0.927 0.784
Repeats 0.477 0.773 0.524 0.775 0.624 0.523 0.795 0.582 0.798 0.672
Near 0.477 0.964 0.673 0.963 0.793 0.519 0.967 0.719 0.966 0.825

Pecan All 0.328 0.885 0.489 0.885 0.630 0.360 0.892 0.527 0.891 0.663
No repeats 0.328 0.886 0.489 0.885 0.630 0.360 0.892 0.527 0.891 0.663
Repeats 0.388 0.709 0.425 0.710 0.532 0.421 0.726 0.467 0.726 0.568
Near 0.370 0.931 0.522 0.929 0.669 0.405 0.937 0.561 0.935 0.702

TBA All 0.428 0.815 0.637 0.814 0.715 0.445 0.815 0.651 0.814 0.724
No repeats 0.428 0.815 0.637 0.814 0.715 0.445 0.815 0.651 0.814 0.724
Repeats 0.377 0.594 0.413 0.596 0.488 0.344 0.546 0.382 0.546 0.449
Near 0.490 0.869 0.689 0.866 0.769 0.511 0.874 0.707 0.871 0.782

TBA (ENCODE) All 0.428 0.723 0.637 0.721 0.677 0.444 0.793 0.649 0.791 0.714
No repeats 0.428 0.723 0.637 0.721 0.677 0.444 0.793 0.649 0.791 0.714
Repeats 0.386 0.518 0.425 0.521 0.467 0.350 0.518 0.390 0.520 0.445
Near 0.493 0.778 0.691 0.770 0.732 0.511 0.851 0.705 0.847 0.771

Multiz All 0.421 0.812 0.626 0.809 0.707 0.493 0.818 0.718 0.813 0.765
No repeats 0.421 0.812 0.626 0.809 0.707 0.493 0.818 0.718 0.813 0.765
Repeats 0.316 0.552 0.347 0.553 0.426 0.435 0.592 0.481 0.589 0.530
Near 0.484 0.867 0.679 0.862 0.762 0.565 0.877 0.778 0.869 0.825

pMauve All 0.206 0.614 0.307 0.614 0.409 0.236 0.614 0.346 0.613 0.442
No repeats 0.206 0.615 0.307 0.614 0.409 0.236 0.614 0.346 0.613 0.442
Repeats 0.213 0.441 0.234 0.444 0.306 0.242 0.440 0.269 0.440 0.334
Near 0.232 0.646 0.328 0.645 0.435 0.266 0.647 0.369 0.645 0.470

(Program) The program generating the alignment relation; (Class) comparisons using subsets of the alignment and homology relations. Either (All)
including all pairs; (No repeats) excluding pairs in which one or both sequence positions is marked repetitive; (Repeats) including only pairs in which one
or both positions is marked repetitive; or (Near) including all pairs, but allowing for some local alignment error (see main text). The next five columns (All),
including all pairs, following five columns (Human), including only pairs involving a human sequence position. (Burn-in) Homology relation includes
events on a 600-million-year lineage leading to the MRCA; (No burn-in) homology relation only includes events including and proceeding the MRCA; (R)
Recall; (P) Precision; (F1) F1 score using the burn-in homology relation’s precision and the no burn-in homology relation’s recall (see main text). Boldface
entries denote the highest entry in each category.
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to filter the alignments, and in the BAR algorithm to decompose

the problem into a set of independently alignable nets. Given that

the cumulative run time of the BAR algorithm far exceeds that

of the CAF algorithm, the ability to apply the BAR algorithm in

parallel provides essential performance.

We have created challenging Evolver genome simulations

and comprehensively benchmarked our program against its peers.

Additionally, we have tested our program against an established

benchmark, the Blanchette et al. simulations (Blanchette et al.

2004a). It is beyond the scope of this study to establish in general how

realistic these simulations are. Clearly, both have limitations to their

complexity; for example, neither models gene conversion events or

transcription factor binding site evolution, each of which might be

needed for accurate simulation of certain genomic loci. However, we

note that both simulations, covering similar groups of species, show

reasonable concordance in their individual pairwise species pre-

dictions of recall and precision for our Cactus alignments. This is

despite the fact that the Evolver simulations both include all the

operations modeled by the Blanchette simulations, and indeed those

modeled by similar methods such as Varadarajan et al. (2008), and

add numerous extra mutational operators. This supports the notion

that certain classes of highly prevalent mutation, e.g., substitutions

and indels, dominate other, rarer operations, such as inversions and

translocations, when assessing overall recall and precision.

We have also tested our genome MSAs using an analysis of

how well our method aligns known genes within large genomic

loci. Our analysis of primate gene alignments suggests that there is

rampant duplication present in the genic sequences. Some of this

may correspond to assembly artifacts, but it is probable that many

cases reflect real biology.

The Supplemental Material for this study can be found

at http://hgwdev.cse.ucsc.edu/;benedict/code/Cactus_files/

cactusAlignmentSupplement.zip.

Methods

Cactus implementation
We have implemented the CAF and BAR algorithms in a new
program called Cactus. The basic inputs to the program are a set of
‘‘genomes,’’ a genome being simply one or more multiple fasta
files, and a tree, which may have nodes of arbitrary degree (not just
binary), describing the relationships between the input genomes
that are assigned to its leaves. Additionally, a configuration file
describing parameters to the various algorithms can be provided as
input; otherwise, the default settings are used. The output of
Cactus is a database. Cactus works with a variety of database en-
gines, including the SQL databases MySQL (http://www.mysql.
com/) and PostgreSQL (http://www.postgresql.org/), the embed-
ded interface to the NoSQL database Tokyo Cabinet (http://fallabs.
com/tokyocabinet/), and the remote interface to the NoSQL data-
base Kyoto Cabinet (http://fallabs.com/kyotocabinet/), which
currently offers the highest performance on computational clusters.
The output database can be accessed via a C API, but a number of
command-line utility scripts are available to convert the alignment

Table 3. Comparisons using the Evolver primates data set

Evolver primates simulation

Program Class

All Human

F1

Burn-in No burn-in Burn-in No burn-in

R P R P F1 R P R P

Cactus All 0.646 0.991 0.988 0.974 0.989 0.676 0.992 0.990 0.977 0.991
No repeats 0.646 0.991 0.988 0.974 0.989 0.676 0.992 0.990 0.977 0.991
Repeats 0.800 0.909 0.938 0.909 0.923 0.827 0.923 0.947 0.923 0.935
Near 0.682 0.991 0.990 0.975 0.991 0.714 0.992 0.991 0.978 0.992

Cactus (N.T.) All 0.632 0.998 0.983 0.997 0.990 0.664 0.998 0.985 0.998 0.992
No repeats 0.632 0.998 0.983 0.997 0.990 0.664 0.998 0.985 0.998 0.992
Repeats 0.806 0.978 0.945 0.978 0.961 0.831 0.982 0.952 0.982 0.966
Near 0.667 0.999 0.984 0.998 0.991 0.701 0.999 0.987 0.998 0.993

Pecan All 0.628 0.998 0.976 0.998 0.987 0.661 0.998 0.981 0.998 0.990
No repeats 0.628 0.998 0.976 0.998 0.987 0.661 0.998 0.981 0.998 0.990
Repeats 0.785 0.983 0.921 0.983 0.951 0.813 0.981 0.931 0.981 0.956
Near 0.662 0.998 0.978 0.998 0.988 0.697 0.999 0.983 0.999 0.991

TBA All 0.631 0.996 0.981 0.996 0.989 0.662 0.997 0.984 0.997 0.990
No repeats 0.631 0.996 0.981 0.996 0.989 0.662 0.997 0.984 0.997 0.990
Repeats 0.799 0.982 0.937 0.982 0.959 0.827 0.984 0.947 0.984 0.965
Near 0.666 0.997 0.983 0.997 0.990 0.699 0.998 0.986 0.998 0.992

TBA (ENCODE) All 0.641 0.981 0.983 0.968 0.982 0.683 0.969 0.987 0.943 0.978
No repeats 0.641 0.981 0.983 0.968 0.982 0.683 0.969 0.987 0.943 0.978
Repeats 0.805 0.937 0.943 0.937 0.940 0.833 0.904 0.954 0.904 0.928
Near 0.677 0.982 0.985 0.969 0.984 0.721 0.970 0.989 0.944 0.979

Multiz All 0.643 0.973 0.985 0.959 0.979 0.687 0.953 0.991 0.925 0.971
No repeats 0.643 0.973 0.985 0.959 0.979 0.687 0.953 0.991 0.925 0.971
Repeats 0.808 0.935 0.947 0.935 0.941 0.840 0.900 0.962 0.900 0.930
Near 0.679 0.974 0.987 0.960 0.980 0.726 0.954 0.993 0.926 0.973

pMauve All 0.621 0.994 0.966 0.994 0.980 0.654 0.996 0.972 0.996 0.984
No repeats 0.621 0.994 0.966 0.994 0.980 0.654 0.996 0.972 0.996 0.984
Repeats 0.784 0.972 0.919 0.972 0.945 0.811 0.979 0.929 0.979 0.953
Near 0.656 0.995 0.968 0.995 0.981 0.690 0.996 0.974 0.996 0.985

The format of the table is the same as in Table 2.
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into a standard format, such as MAF format (http://genome.ucsc.
edu/FAQ/FAQformat.html).

The source code, written in C and Python, is open source and
freely available from https://github.com/benedictpaten/cactus/
tree/genome_research_alignment_paper, with the exception that
certain third-party source code that is redistributed, with per-
mission, within the source tree has more restrictive license re-
quirements (see https://github.com/benedictpaten/cactus/blob/

master/externalTools/LICENSE.txt). Among other dependencies,
Cactus requires our open source cluster management software
Jobtree (https://github.com/benedictpaten/jobTree) and can be
made to work on a single machine, with multiple processors or
on a computer farm of separate machines. The source code in-
cludes a manual describing how to run the software to generate
a genome MSA of the type described here (see https://github.com/
benedictpaten/cactus/raw/master/doc/README.pdf).

Table 4. Comparisons using the Blanchette data set

Blanchette simulations

Program Class

All Human Mouse

R P F1 R P F1 R P F1

Cactus All 0.903 0.922 0.912 0.937 0.944 0.941 0.806 0.854 0.829
No repeats 0.903 0.922 0.913 0.937 0.944 0.941 0.806 0.854 0.829
Repeats 0.865 0.778 0.819 0.909 0.837 0.871 0.737 0.655 0.693
Near 0.933 0.952 0.942 0.958 0.965 0.961 0.862 0.913 0.887

Cactus (N.T.) All 0.912 0.937 0.924 0.943 0.956 0.949 0.812 0.874 0.842
No repeats 0.912 0.937 0.924 0.943 0.956 0.949 0.812 0.874 0.842
Repeats 0.875 0.796 0.833 0.916 0.852 0.883 0.747 0.681 0.713
Near 0.941 0.967 0.954 0.963 0.977 0.970 0.867 0.933 0.899

Pecan All 0.916 0.923 0.920 0.945 0.946 0.946 0.836 0.838 0.837
No repeats 0.916 0.924 0.920 0.945 0.946 0.946 0.836 0.838 0.837
Repeats 0.881 0.759 0.815 0.918 0.821 0.866 0.772 0.599 0.675
Near 0.948 0.957 0.953 0.967 0.969 0.968 0.901 0.904 0.903

FSA All 0.823 0.935 0.876 0.885 0.954 0.918 0.585 0.872 0.700
No repeats 0.823 0.935 0.876 0.885 0.955 0.918 0.585 0.872 0.700
Repeats 0.791 0.802 0.797 0.855 0.855 0.855 0.530 0.714 0.608
Near 0.854 0.971 0.909 0.908 0.980 0.942 0.626 0.934 0.750

TBA All 0.817 0.875 0.845 0.874 0.906 0.889 0.625 0.771 0.690
No repeats 0.817 0.875 0.845 0.874 0.906 0.890 0.625 0.771 0.691
Repeats 0.773 0.719 0.745 0.830 0.781 0.805 0.561 0.559 0.560
Near 0.847 0.908 0.877 0.896 0.930 0.913 0.677 0.837 0.748

Multiz All 0.730 0.884 0.800 0.856 0.916 0.885 0.379 0.752 0.504
No repeats 0.730 0.884 0.800 0.856 0.917 0.885 0.379 0.753 0.504
Repeats 0.690 0.735 0.712 0.816 0.801 0.808 0.297 0.498 0.372
Near 0.755 0.915 0.828 0.876 0.939 0.906 0.416 0.827 0.554

pMauve All 0.765 0.930 0.839 0.842 0.951 0.893 0.434 0.828 0.569
No repeats 0.765 0.930 0.839 0.842 0.951 0.893 0.434 0.828 0.570
Repeats 0.742 0.828 0.783 0.815 0.874 0.844 0.402 0.680 0.505
Near 0.793 0.965 0.871 0.864 0.976 0.917 0.472 0.904 0.620

Format similar to Table 2, except this simulation excludes any burn-in period, includes the FSA program (Bradley et al. 2009), and also features a Mouse
reference comparison.

Table 5. Comparisons of genic and exonic cross-species conservation between Cactus and Multiz using primate alignments

Primates genic and exonic cross-species conservation

Cactus Multiz

Conserved Non-conserved Total

Count Percentage Count Percentage Count Percentage

Gene Conserved 64 46.38% 13 9.42% 77 55.80%
Non-conserved 2 1.44% 59 42.76% 61 44.20%
Total 66 47.82% 72 52.18% 138 100.00%

Exon Conserved 1327 79.18% 75 4.47% 1402 83.65%
Non-conserved 11 0.65% 263 15.70% 274 16.35%
Total 1338 79.83% 338 20.17% 1676 100.00%

The ‘‘Conserved’’ and ‘‘Non-conserved’’ columns indicate conservation status inferred from Multiz. Similarly, the ‘‘Conserved’’ and ‘‘Non-conserved’’
rows show conservation status inferred from Cactus. There are four categories: Cactus conserved and Multiz conserved, Cactus conserved and Multiz non-
conserved, Cactus non-conserved and Multiz conserved, and Cactus non-conserved and Multiz non-conserved. The first section, ‘‘Gene,’’ shows the gene
statistics, and the second section, ‘‘Exon,’’ show the exon statistics. ‘‘Count’’ is the number of genes or exons that fall into each category. ‘‘Percentage’’ is
the relative metric of ‘‘Count,’’ which shows the percentage of the total genes or exons included in the analysis that fall into each category. The ‘‘Total’’
column shows the total counts (or percentages) of the row (Cactus) statistics, while the ‘‘Total’’ row shows the total counts (or percentages) of the column
(Multiz) statistics. Boldface entries denote the highest entry in each category.
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CAF parameters

To compute the alignment relation for the CAF algorithm, we use
Lastz (http://www.bx.psu.edu/miller_lab/dist/README.lastz-1.01.50/
README.lastz-1.01.50.html), which is also a requirement for running
Cactus. In computing the initial alignment relation, we prefer recall
over precision, as the CAF algorithm provides an effective filter. Lastz
is hence run with its default parameters, except that we use the pa-
rameter ‘‘–hspthresh=1800,’’ to lower the threshold for accepting
high-scoring segment pairs (HSPs) to the gapped extension stage.

End alignments

To construct the alignment for adjacency sequences incident with
an end, we use code adapted and ported to C from Pecan’s Java
code. By default, we use the same five state pair-HMMs described in
Paten et al. (2009), which features two pairs of affine gap states, to
compute pairwise posterior probabilities. For a set of sequences S
being aligned, let n=ð jSj

2
Þ be the number of unique pairwise com-

parisons. If n < 10 * |S|, we compute posterior probabilities for every
pair of sequences; else we compute a random sample of 10 * |S|
pairwise alignments and use this as the alignment relation ;;.
This logic therefore prevents the number of pairwise alignments
being computed from scaling quadratically with the number of
sequences while using all pairwise comparisons when practical.

To construct a poset MSA from ;; and S, we use the same
greedy ‘‘sequencing annealing’’ algorithm described in Schwartz
and Pachter (2007), creating our own C implementation of an
online topological order constraint algorithm described in the
supplement of Paten et al. (2009). The algorithm proceeds by
greedily constructing a series of alignments ø, ;;1, ;;2, . . ., ;;n.
For ;;i, let Ci be the set of columns (equivalence classes) defined
by ;;i. The next alignment relation ;;i+1 = ;;i [X 3 Y, where X
and Y are two columns in Ci such that the weight

poset ;;i [X 3 Yð Þ 1

Xj j Yj j+x2X+y2YP x;;y

� �

is maximal over all valid pairs of columns in Ci and where
poset(;;) is an indicator function that returns 1 if and only if
the ordering relation defined by the sequences in S on the columns
of ;; is a partial ordering. The sequence of alignments termi-
nates when no such pair of columns exists. It is easy to verify that
the sequence of merges has monotonically decreasing weight.

In a nutshell, the alignment therefore constructs a poset MSA
by greedily considering the members of ;; in an order that relates
to their posterior probabilities. The central difference between our
implementation and that of Schwartz and Pachter (2007) is that we
do not consider gap probabilities when merging columns. Instead,
we use a g parameter, a real number in the interval [0, 1], and return
the last alignment in the sequence that was produced by a merge of
two columns X, Y for which

1

Xj j Yj j+x2X+y2Y P x;;y

� �
$ g:

Evolver alignment simulations

The phylogenies and branch distances were based on the Human/
hg19/GRCh37 46-way multiple alignment (Fujita et al. 2011). The
simulated primate tree was ‘‘((simGorilla:0.008825,(simHuman:
0.0067,simChimp:0.006667):0.00225):0.00968, simOrang:0.0183
18).’’ The simulated mammal tree used was ‘‘((simCow:0.18908,
simDog:0.16303):0.032898,(simHuman:0.144018,(simMouse:0.08
4509, simRat:0.091589):0.271974):0.020593).’’

We generated a ‘‘root’’ genome by pulling the FASTA sequence
for Hg18 chromosome 6 positions 132,218,540–132,718,539 from

the UCSC Table Browser, along with the corresponding annota-
tions from UCSC Genes, UCSC Old Genes, CpG Islands, Ensemble
Genes, and MGC Genes (Fujita et al. 2011). We created a simple
Makefile to automate in-file set generation, following details
available from the Evolver manual.

We used a parameter set tuned for a mammalian ancestral
genome consisting of 23 chromosomes provided by Arend
Sidow (pers. comm.). We scaled the parameters related to inter-
chromosomal evolution (e.g., inter-chromosomal movement
rates [InterChrMoveRates] and inter-chromosomal copy rates
[InterChrCopyRates]), by the ratio of the size of our simulations’ root
genome (500,000 bp) to Hg18 (2,881,421,696 bp) for a conversion
factor of 1.7353 3 10�4.

We scaled parameters related to intra-chromosomal evolution
(chromosomal fusion rate [ChrFuseRate], chromosomal fission rate
[ChrSplitRate], reciprocal translocation rate [RecipTranslocRate], and
non-reciprocal translocation rate [NonRecipTranslocRate]), by the
ratio of the number of chromosomes in our simulations’ root ge-
nome to the approximate number of chromosomes in Hg18.

We used a mobile element library provided by Arend Sidow
(pers. comm.) as input to the burn-in simulation and allowed each
simulated genome to inherit the library from its parent genome
and to evolve the library for a short period before drawing mobile
elements in the standard method outlined in the Evolver manual.
Due to the short size of the region being evolved (500 kb) and the
fact that it originally contained only one gene, we turned off the
retroposed pseudogene feature in Evolver’s parameter file.

Following simulation, FASTA sequences were extracted for
leaf genomes and repeat masked using RepeatMasker. For the primate
simulation, we presented RepeatMasker with the mobile element
library of the MRCA genome, reasoning that this library was
a reasonable length from all the extant genomes and thus avoiding
making an unrealistically good repeat masking. For the mammal
simulation, we presented RepeatMasker with a library made up of
the mobile element libraries of both the MRCA and of the simu-
lated human–mouse–rat ancestor.

The simulations are available as raw sequences and MAF
alignments as part of the Supplemental Material.

External program parameters

All the tested programs were run with their default parameters and
using the latest versions available with the following exceptions. For
FSA we used the ‘‘–exonerate –softmasked’’ flags, which are advised
by the authors for longer, soft-masked sequences. For Multiz, after
consultation with the authors, we used their ‘‘roast’’ script with
human specified as the reference. For the ENCODE version of TBA
we added ‘‘+ E = human’’ flags to specify that human was the ref-
erence sequence. For Progressive-Mauve we used the latest nightly
snapshot (dated 2011-01-25), after consultation with the authors, to
work around known bugs that affect accuracy in the stable release.

Primate gene alignments

We chose the first 10 ENCODE pilot project regions for our em-
pirical analysis. The sequence coordinates were obtained from the
UCSC hg18 human assembly browser database (see Supplemental
Table S11). The Multiz alignments for each region were extracted
from the Multiz 44-way alignments obtained from the UCSC hg18
browser database.

To generate the Cactus alignments, we used the region co-
ordinates obtained above to obtain the human DNA sequences.
For the other species we used the Multiz 44-way alignments as
pointers to locate where on these species’ genome each ENCODE
region is mapped. We included all the sequence fragments of the
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species that were aligned to each ENCODE region. Fragments that
are within 1 Mb of each other were put together in one bin. We
then used the minimum and maximum coordinates (all co-
ordinates were converted to be on the positive strand) of the
resulting bins to pull out the corresponding raw sequences from
the appropriate assembly (see Supplemental Table S11). Cactus was
run with default parameters. The tree and branch distances for
the primates were extracted from the UCSC 44-way tree:
‘‘(((hg18:0.003731,panTro2:0.005501):0.02301,ponAbe2:0.02):0.
02,rheMac2:0.031571).’’

The Cactus alignments generated are available as MAF align-
ments as part of the Supplemental Material.
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