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Abstract

Mice are increasingly overtaking the rat model organism in important aspects of anxiety research,
including drug development. However, translating the results obtained in mouse studies into
information that can be applied in clinics remains challenging. One reason may be that most of the
studies so far have used animals displaying ‘normal’ anxiety rather than ‘psychopathological’
animal models with abnormal (elevated) anxiety, which more closely reflect core features and
sensitivities to therapeutic interventions of human anxiety disorders, and which would, thus,
narrow the translational gap. Here, we discuss manipulations aimed at persistently enhancing
anxiety-related behavior in the laboratory mouse using phenotypic selection, genetic techniques
and/or environmental manipulations. It is hoped that such models with enhanced construct validity
will provide improved ways of studying the neurobiology and treatment of pathological anxiety.
Examples of findings from mouse models of enhanced anxiety-related behavior will be discussed,
as well as their relation to findings in anxiety disorder patients regarding neuroanatomy,
neurobiology, genetic involvement and epigenetic modifications. Finally, we highlight novel
targets for potential anxiolytic pharmacotherapeutics that have been established with the help of
research involving mice. Since the use of psychopathological mouse models is only just beginning
to increase, it is still unclear as to the extent to which such approaches will enhance the success
rate of drug development in translating identified therapeutic targets into clinical trials and, thus,
helping to introduce the next anxiolytic class of drugs.
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From physiological to pathological anxiety

Anxiety and fear, along with happiness, sadness, anger and shame, are basic emotions
accompanying human beings throughout their whole life [1]. A clear delineation between
anxiety and fear has, in general, turned out to be difficult and often depends on the discipline
[2]. In the neurosciences, anxiety is defined as the response to an undetermined, potentially
dangerous situation, while fear is defined as the response to an explicit hazard [2].
Therefore, although anxiety and fear appear to be closely related, there is increasing
evidence that, qualitatively, trait fear and anxiety are two largely distinct emotions in terms
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of behavioral responses [2-3]. From an evolutionary perspective, anxiety is a reasonable and
useful effect, warning us about danger and initiating adequate somatic, cognitive, emotional
and behavioral responses in order to avoid harm and, thus, elevate the chances of survival.
Nowadays, most of the anxiety states we experience are acceptable providing that they
quicken our responses so that we can get through the situation, adequately cope with
stressful challenges and that they cease soon after. However, in some individuals, these
anxiety reactions may become persistent, uncontrollable, excessive and inappropriate, even
after the withdrawal of the stimulus, lacking any adaptive value, and negatively influencing
the quality of their everyday life [601]. Such reactions, which persist for at least 6 months,
characterize pathological anxiety [601]. Pathological anxiety can be described as either a
quantitative or qualitative variation of a normal state; which it is, however, still a matter of
debate [3-5]. What it is that causes the crossing from physiological to pathological anxiety is
a subject sparking intense research interest.

There is evidence that the simultaneous occurrence of various intrinsic and extrinsic factors
is important for the etiology of an anxiety disorder. Specifically, a 30-40% estimated
heritability across anxiety disorders suggests a moderate risk factor in the manifestation of
an anxiety dis order [6]. Moreover, environmental factors such as diverse (negative)
experiences, including early life stress, have been demonstrated to exert a critical impact on
the development of an anxiety disorder [7,8]. Interestingly, the individual’s susceptibility to
environmental factors is modulated by a diverse range of genes [9-10].

Today, anxiety disorders are the most common neuropsychiatric disorders in the USA and
Europe [11,12]. They represent some of the major health problems in the Western world in
terms of costs of healthcare, sick-leave from work, disabilities and premature mortality [13].
Anxiety disorders encompass a spectrum of disorders exhibiting a wide range of symptoms
and different degrees of severity, as well as variations in terms of age of onset, prevalence in
males and females, and treatment responses. In addition, many patients with an anxiety
disorder also suffer from other psychiatric disorders (e.g., 60% comorbidity with depression)
and/or physical or organic diseases, further complicating the syndrome pattern [7,14,15].
The categorical classification systems of mental illnesses [16], both the Diagnostic and
Statistical Manual of Mental Disorders (DSM-1V) [17] and the International Statistical
Classification of Diseases and Related Health Problems (ICD-10) [18], distinguish between
several human anxiety syndromes, including generalized anxiety disorder, social phobia,
specific phobias, panic disorder, post-traumatic stress disorder and obsessive-compulsive
disorder. Interestingly, these classification systems do not distinguish categorically between
anxiety and fear. These subdisorders have, in part, different sensitivities to anxiolytic
treatments [19,20] and it is thought that they differ in their underlying neurobiology (e.g.
[21,22]). However, there is also substantial comorbidity within these subcategories and what
they do all have in common is an irrationally intense, uncontrollable feeling of anxiety,
which suggests that these disorders have partly overlapping neurocircuitries (e.g., [21-23]).

Various classes of anxiolytic drugs are available for the treatment of anxiety disorders. The
benzodiazepines and selective serotonin reuptake inhibitors (SSRIs) are the current first-line
treatments in most anxiety disorders [19,20,24]. However, these drugs are far from being
ideal as SSRIs are characterized by partial nonresponse, a delayed onset of therapeutic
action, a considerable high rate of relapse and adverse side effects, while benzodiazepines
induce sedation and have a risk of drug dependence and tolerance, limiting their use mainly
to short-term treatment [19,20,24]. Therefore, within the last 20 years, both the
pharmaceutical industry and academia have put great efforts into anxiety research and have
invested heavily in it. To date, no novel anxiolytic class with an improved pharmacological
profile has progressed from its discovery, via preclinical and clinical trials, onto the market.
This fact suggests that the strategies followed so far are not optimal and, thus, need to be
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refined. In the course of drug development, the anxiolytic properties of substances are
initially detected using mostly rodents in screening tests assessing anxiety-related behavior
(see “The assessment of anxiety-related behavior in mice’). At the moment, it is still a matter
of debate as to whether these anxiety tests merely elicit physiological responses to an
anxiety-provoking situation rather than reflecting abnormal, pathological anxiety as
observed in clinically manifested anxiety disorders [25]. Therefore, another idea is to create
animal models that closely mimic clinically manifested forms of anxiety and that are
quantitatively and/or qualitatively superior to anxiety tests according to a proposed theory of
pathological anxiety [4]. In this respect, validated animal models of enhanced anxiety-
related behavior with face, construct and predictive validity (see ‘Validity of mouse models
of enhanced anxiety”) may be pivotal to an improved understanding of the neurobiological
and genetic mechanisms underlying anxiety disorders, allowing causal hypotheses to be
tested and, thus, leading to the discovery of new treatment targets. In this respect, the
laboratory mouse has become an invaluable preclinical tool.

From the human anxiety disorder to the mouse model organism

The mouse in anxiety research

Rodents have always played a central role in neuropsychiatric research. In particular, the rat
has been the species of choice for many years since the sampling of tissue and diverse fluids,
such as blood, can be relatively easily accomplished using appropriate invasive techniques
compared with the mouse. Furthermore, in behavioral pharmacology, rats usually perform
well in many cognitive and operant tasks. Nevertheless, over the last two decades laboratory
mice have become competitors of the rat in anxiety research and this appears to parallel the
increasing use of sophisticated molecular techniques such as gene targeting [26]. These
molecular techniques, which can be applied particularly to the mouse genome [27], allow
scientists to introduce genetic modifications at will in order to study the neurobiological
basis of an anxious phenotype [26,28] or to confirm identified genetic associations
underlying enhanced anxiety-related behavior at a functional level [29]. Therefore, the
laboratory mouse is recognized as the pre-eminent model for modern genetic research into
psychiatric diseases. Apart from this genetic aspect, mice offer some practical and economic
advantages over rats in terms of their small size (e.g., dosing) and their minimal requirement
of space and food.

The evolutionary relationship between humans & mice in anxiety regulation

Although the mouse and the human genome diverged approximately 75 million years ago,
they have similar gene functions and share a number of neuroanatomical, neurochemical and
behavioral commonalities. The mouse genome is smaller than the human genome, but there
are only a few cases, in which no mouse counterpart can be found for a particular human
gene [30]. Furthermore, in both humans and mice, the brain is structured into cerebral
hemispheres, with a forebrain, a diencephalon, a midbrain, a hindbrain and a cerebellum
[31]. While subcortical structures processing anxiety, such as the amygdala, the
hippocampus, the thalamus and the hypothalamus are well conserved between the two
species, the murine cerebral cortex is clearly reduced in comparison to that of man.
Nevertheless, it retains many features representing the fundamental principles of cortical
organization, function and development [32]. In this respect, the brain regions of humans
and mice implicated in the processing of anxiety, involving the prefrontal cortex, the
amygdala and the hippocampus, among others, are phylogenetically related [33-35]. Within
these structures the neurotransmitter/modulator systems involved in signaling anxiety-
related information are highly preserved, with considerable functional homology. Finally,
anxiety reactions are evolutionarily adaptive and, thus, generally highly conserved in
mammals [36]. Indeed, when species-specific inborn characteristics are taken into
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consideration, analogous physiological and behavioral changes can be observed in mice and
humans in response to an anxiety-provoking stimuli [33]. Typical anxiety features including
the fight/flight responses, avoidance, freezing, urination/defecation, attention/vigilance,
autonomic hyperarousal or muscular tension are present in both species.

The assessment of anxiety-related behavior in mice

In the laboratory mouse, an easily accessible behavioral readout, which is thought to reflect
the emotional component of anxiety such as avoidance, escape or freezing behavior may be
used as marker of a state of enhanced anxiety. Therefore, such behavior is often referred to
as ‘anxiety-related’ or ‘anxiety-like’ behavior rather than as anxiety per se. Accordingly,
numerous behavioral tests have been developed, originally in the rat, to assess the level of
anxiety-related behavior. However, with the increasing use of the mouse it has become
necessary to adapt these tests for the smaller species, and this has been done with varying
degrees of success (e.g. [26,37]). In the field, these tests are often referred to as ‘model’,
which can be misleading. As they elicit an acute emotional response, they are often
considered as tests revealing ‘state’ anxiety [38] as opposed to ‘model’, which is thought to
evoke pathology [39].

Tests of anxiety-related behavior can be roughly classified into unconditioned
(ethologically-based procedures) and conditioned (learned procedures) (soxes 1 « 2) [37,40].
While unconditioned paradigms utilize the natural or spontaneous reactions of a mouse to an
innate, aversive stimulus (e.g., avoidance of exposed, brightly lit spaces), conditioned
responses involve training sessions in which usually a neutral or rewarding stimulus is
paired with an aversive, mildly painful stimulus. Conditioning processes occur in the
etiology of many anxiety disorders, including phobias and post-traumatic stress disorder
[41,42]. The inhibition of the learned fear response is often disturbed in these disorders and
this can be investigated — for example, in extinction paradigms in both humans [43] and
animals demonstrating impaired extinction [44-46]. The key feature of all of these anxiety
tests is their predictive validity (see following section) since in these paradigms the anxiety-
related behavior can be reduced by the administration of clinically effective anxiolytics,
especially benzodiazepines (e.g., [24,47-49]). Only a few studies have applied
benzodiazepine-validated anxiety tests to investigate the anxiolytic effects of chronic
antidepressant treatment (more than 2 weeks of treatment) [50]. The hyponeophagia test, the
mouse defense test battery, stress induced hyperthermia and marble burying appear to be the
most reliable paradigms in detecting anxiolytic properties of SSRIs in a manner consistent
with the time-course of their effects in humans [48-52].

Anxiety tests are frequently used in both industry and academia to screen for potential
anxiolytic properties of compounds. Moreover, they fulfill face validity (see ‘Validity of
mouse models of enhanced anxiety’), as the avoidance of the feared stimulus is a hallmark
of many anxiety disorders. Indeed, these tasks are based on assumed analogies between
human and mouse symptoms of anxiety; however, it is thought that anxiety-related
measures, assessed in various tasks using mice as subjects, may reflect different features of
murine anxiety [4,53]. The procedures, peculiarities, pitfalls and validity of these tests are
discussed in detail in various excellent reviews and book chapters (e.g.,
[4,24,26,28,39,47-49,54]).

Anxiety tests can assess specific features of behavior, endocrinology or physiology that are
symptomatic in anxiety disorders [25]. Therefore, in the present article both conditioned and
unconditioned anxiety tests will be presented in terms of their behavioral characterization of
the described mouse models of enhanced anxiety. Specifically, we focused on studies where
the enhanced anxiety-related behavior of the mouse model was evaluated in tests of
unconditioned anxiety that include the open-field test, the light/dark test, social interaction,
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the elevated plus or zero maze, ultrasonic vocalization and holeboard test, and in tests of
conditioned anxiety that include the VVogel-conflict, fear-potentiated startle and conditioned-
fear tasks. It should be emphasized that altered fear expression in the latter paradigm does
not necessarily indicate altered fear but may be the result of changes in fear memory, and
this must be controlled in any mouse model of enhanced anxiety-related behavior prior to
further interpretation.

Mouse models of enhanced anxiety

A mouse model of enhanced anxiety-related behavior is aimed at reproducing the
pathophysiology of the human anxiety disorder by experimentally manipulating the
environment, the neurophysiology, the neurochemistry or the genetics (soxes 1 « 2) [25]. Such
mouse models are thought to reflect ‘trait’ anxiety — that is, a persistent and enduring
tendency of a genetically predisposed individual to demonstrate an increased anxiety
response irrespective of whether it reflects quantitatively and/or qualitatively abnormal
physiological anxiety [4]. Ideally, these murine models should be phenotyped using multiple
tests for unconditioned and conditioned anxiety-related behaviors in order to account for the
multifaceted nature of anxiety and, thus, for different forms of clinical anxiety. However,
since unambiguous measures of anxiety disorder subcategory-specific endophenotypes
correlated with neurobiological changes and/or biomarkers are not available, creating mouse
models reflecting anxiety disorder subcategories is currently difficult.

Interestingly, many of the listed studies only chose a limited number of anxiety tests, with
the majority focusing on anxiety-related behaviors related to exploration-avoidance conflict
—most likely because they seem to be the easiest to perform. Other forms of anxiety, such as
social conflict and learned fear (soxes 1 « 2), have been rarely considered. It should be noted
that in all mouse models described in this section, potential discrepancies in observed
anxiety-related traits may be explained by differences in the procedures prior to and/or
during testing, including use of animals from different breeders, use of different sex and
differences in the experimental setup as well as in the order in which the tests were carried
out (e.g., [55-57]). These confounding factors may, thus, reduce the comparability of the
results among different labs. In addition, the mouse models of enhanced anxiety-related
behavior may also display signs of enhanced depression-related behavior, mirroring the high
comorbidity between anxiety disorders and depression in humans [7,14]. Detailed discussion
of aspects of this comorbidity, however, is beyond the scope of the present article.

Mice with naturally occurring high trait anxiety

Specific groups of mice display (genetically/epigenetically induced) enhanced levels of
anxiety-related behavior. It may be that the anxious phenotype of a whole strain is elevated
in comparison with that of another one, or that only individuals within one population are
affected. This interindividual variability as a vulnerability factor for abnormal anxiety may
provide the basis for a simple selection strategy, as well as for a breeding strategy. Since
multiple genes (each with only little influence) are thought to contribute to the increased
emotionality that represents the genetic risk factor of human anxiety disorders, pairs of mice
exhibiting enhanced and normal anxiety-related behavior indeed form excellent models for
investigating the genetic complexity of enhanced (pathological) anxiety.

Inbred mouse strains

With more than 450 strains accessible, inbred strains of mice provide a large natural source
of a variety of genotypes as well as phenotypes for comparison [58]. A mouse strain is
considered inbred when brother x sister mating has occurred for 20 or more generations and
at least 98.6% homozygosity of the loci in each mouse is demonstrated [59]. The
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characteristic behavioral and physical phenotypes of inbred mice are very stable as they are

inherited by multiple genes. Inbred strains with a distinct behavioral trait are widely used in

neuroscience owing to various advantages, including allowing the possibility of overcoming
the problem of high genetic heterogeneity that is found in human studies [60,61].

Numerous studies have evaluated the inborn level of anxiety-related behavior of different
inbred mouse strains, mainly using unconditioned tests of anxiety including the elevated
plus or zero maze, and open-field and light/dark tests. Table 1 summarizes strains of mice
displaying enhanced anxiety-related behavior in comparison with C57BI1/6 mice. The C57BI/
6 strain was chosen as the comparator strain because it is the most popular common mouse
strain used in anxiety research [62]. Furthermore, C57BI/6 mice are categorized as a strain
with moderate naturally occurring levels of anxiety despite some minor differences between
the J and N subtypes [63]. Therefore, wherever it is possible, we use the correct name of
C57BI/6 mice. Any other mouse strain displaying modest anxiety-related behaviors, apart
from the C57BI/6 strain, may be used as the control group.

Signs of enhanced anxiety-related behavior have been reported in mice of the 129, A/J,
AKR/J, BALB/c, C3H/He and DBA/2J strains, when compared with the C57BI/6 strain, in
some — though not all — tasks assessing unconditioned and conditioned anxiety (see Table 1).
Of these, the BALBI/c, the A/J and DBA/2] strains display the strongest evidence of
increased emotionality in the elevated plus maze, open-field and light/dark tests compared
with C57BI/6 mice, while no differences and even lower levels of inborn anxiety have also
been described in BALB/c mice or in the other two strains compared with C57BI/6 mice that
have undergone the same tests (Table 1). For further phenotypic characterizations of
different mouse strains, the mouse phenome database may also be consulted, providing a
useful tool with which to judge and compare anxiety-related traits of mouse strains [602].
Moreover, inbred strains of mice also display altered responsiveness to anxiolytics, although
all strains seem to respond to the anxiolytic effects of benzodiazepines [4,64-67]. Despite
some discrepancies between studies, BALB/c, A/J and DBA/2J strains are suggested to
represent the best inbred mouse strain models for pathological anxiety [4,68].

In contrast to the mouse strains discussed so far, inbred 129P3/J mice initially show little
anxiety-related behavior towards an aversive environment compared with the anxious
BALB/c mice. However, repeated exposure to the environment does not cause a waning of
the behavioral responses in mice, rather, anxiety-related behavior increases in 129P3/J mice
compared with BALB/c mice [69]. Therefore, it is suggested that 129P3/J mice may be an
example of a mouse model of nonadaptive anxiety. However, this proposed model has yet to
be tested carefully before further conclusions can be drawn. Furthermore, C57BI/6N mice
have been suggested to represent a mouse model specific for post-traumatic stress disorder
[70]. Subjects of this strain display persistent and increasingly sensitized fear after exposure
to a single, brief electric footshock, which coincides with blunted emotionality in the
modified holeboard test and the social interaction [70]. This mouse model enables
vulnerable and resistant individuals to be distinguished for developing signs of post-
traumatic stress disorder in response to an aversive encounter, mimicking important aspects
of epidemiological observations in humans exposed to trauma [71].

Finally, crosses of phenotypically contrasting strains (e.g., of an anxious and a nonanxious
inbred strain, such as A/J and C57BI/6J) are the origin of recombinant inbred strains such as
the AXB/BXA or BXD strains [72-73] and recombinant congenic mouse strains such as the
AcB/BcA [72]. Intercrosses and backcrosses, together with inbred mouse and recombinant
mouse lines, are widely used for the genetic dissection of anxiety traits in the mouse — as, for
example, carried out within the scope of quantitative trait loci (QTL) mapping studies [74]
(see “Genetic underpinnings of the anxiety trait’). In all of these approaches, one has to keep
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in mind that inbred strains, while differing in trait anxiety, additionally differ in an unknown
number of other traits, which makes unambiguous interpretations of phenotype—genotype
associations difficult, if not impossible.

Selective breeding lines in mice

As an alternative approach to the uncontrolled inbreeding of mouse strains, selective
breeding strategies for a specific endophenotype within one strain have proved to represent a
powerful tool for investigating the genetic variability of complex, polygenetic traits such as
anxiety [75]. The principle idea is to cluster a specific trait around the extremes of the whole
spectrum typically observed in an outbred strain. The breeding protocol usually starts with a
heterogeneous population of an outbred mouse strain that is tested for the particular trait of
interest. Of those tested, individuals displaying the trait at the outermost ends of the
response curve are mated. Their offspring, also displaying the extreme trait phenotypes, are
further selectively bred. With every generation, the trait clusters more and more around the
‘high and low poles’ of the trait as demonstrated by the selective inbreeding of the high
anxiety-related (HAB) and low anxiety-related (LAB) mouse lines. A specific advantage of
selective breeding models is that they start from the same genetic background and any
difference in the genome is then very likely to underlie their extreme behavioral trait,
offering the possibility of investigating the heritability of this phenotype. While the
confounding phenomenon of genetic drift can not entirely be eliminated, it is reduced — /nter
alia— by the parallel breeding of multiple families within a given line.

In the mouse, only a limited number of selective breeding models displaying signs of
enhanced anxiety-related behavior are available (Table 2). At the Max-Planck-Institute of
Psychiatry in Munich, the HAB, LAB and NAB mouse lines were initiated by deliberate
selection and subsequent selective breeding of CD-1 mice for an extremely high, an
extremely low and a normal level of anxiety-related behavior, displayed on the elevated plus
maze (Figure 1 & Table 2). NAB mice thereby represent the population mean of unselected
CD-1 mice. The high-anxiety trait of HAB animals has been confirmed in several other tests
of anxiety including the light/dark, open-field and open-arm tests (Figure 1), as well as in
different laboratories indicating a very robust phenotype [76-78] that appears to be largely
independent of uterine environment, maternal care, sex and age [78]. Furthermore, HAB
animals also display enhanced fear learning in classical cued and contextual fear
conditioning paradigms suggesting that trait anxiety results in stronger fear memory and/or a
weaker ability to inhibit fear responses in the HAB line (Figure 1) [79,80]. The positive
association between learned (cued) fear acquisition and vulnerability to trait anxiety has
very recently also been observed in healthy humans [81] and in patients with anxiety
disorders [82]. The enhanced anxiety- and fear-related behavior of HAB mice is associated
with reduced heart-rate variability in comparison with NAB mice (Figure 1), demonstrating
that heart rate variability may be a sensitive, though not exclusive, biomarker for
distinguishing between a normal and a high anxiety trait [80]. Enhanced anxiety- and fear-
related behavior in HAB mice can both be reversed by anxiolytic drug treatment using either
a benzodiazepine [76,79] or the selective neurokinin-1 receptor antagonist (NK1R-A)
L-822,429 [79-80].

As with the HAB mouse line, the divergent short-term selective breeding of mice for
extremely high or low levels of fear conditioning results in two mouse lines that also differ
in terms of both the fear-potentiated startle paradigm and unconditioned tests of anxiety
(Table 2) [83], further supporting a relationship between high fear conditioning and greater
anxiety-like behavior. Very recently, another anxious mouse line was established based on
differences in the level of anticipatory anxiety displayed during a handling procedure [84].
Mice approaching the experimenter’s hand are the nonanxious NAX line while mice that do
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not volunteer themselves to be handled represent the anxious AX line. Relative to NAX
mice, AX animals show enhanced anxiety-related behaviors in the elevated plus maze, light/
dark and open-field tests (Table 2) [84].

As another example, the North Carolina (NC) lines are based upon differences in social
behavior [85,86]. Specifically, animals of the NC900 line carry out unprovoked attacks on
their social partners whereas NC100 mice rarely attack and become immobile in social
situations. Relative to NC100 mice, the highly aggressive line NC900 displays increased
anxiety-like behavior in the elevated zero maze and open-field test but not in the light/dark
test (Table 2) [87]. Although defensive aggression is not considered to be a general
symptom of anxiety disorders [17], it occurs in post-traumatic stress disorder [88-90] and
borderline personality disorder [91,92]. NC900 mice are less sensitive to the anxiolytic
effects of diazepam, which may be due to the reduced diazepam-sensitive binding in brain
areas known to be part of the anxiety circuitry [87]. In addition, some forms of anxiety-
related behavior seem to be increased in “mouse line 8’, selectively bred for high voluntary
wheel running in comparison with “control line 2’ (Table 2). Finally, the selection of mice
for high resistance to convulsive effects of the benzodiazepine receptor inverse agonist p-
carboline-3-carboxylate (B-CCM) [93] coincides with increased anxiety-related behaviors in
the light/dark and holeboard tests in comparison with the B-CCM sensitive line. Since
benzodiazepine receptor binding sites are reduced in the p-CCM resistant line [93], this
finding further supports a role played by benzodiazepine binding sites in the modulation of
anxiety-related behavior. The NC900 line, the high voluntary wheel running line and the -
CCM-resistant line nicely demonstrate that the deliberate selection for one selected trait
often results in changes in other behaviors, not necessarily directly associated with the
feature of interest that was chosen.

On-site selection of mice with enhanced anxiety-related behavior

Selective breeding approaches are, of course, tedious and time-consuming. Therefore, some
research groups opt for an acute selection (stratification) in terms of an enhanced emotional
reactivity in response to an anxiety-provoking situation. Like the successful selection
principle of the HAB and NAB mouse lines, the elevated plus maze was used to acutely
preselect animals with high, intermediate and/or low anxiety as a means for studying
variations in the anxiolytic effects of the benzodiazepine nitrazepam [94] and the relation
between trait anxiety and ethanol [95]. Similarly, C57BL/6 male mice can be classified into
high- or low-anxiety traits according to their latency to freely enter an unfamiliar arena from
their home cage [96]. On the other hand, C57BI/6J mice pre-selected for voluntary wheel-
running also exhibit an anxiogenic phenotype in the open-field, light/dark and elevated O-
maze tests compared with sedentary animals [97].

Mutants with enhanced anxiety-like behavior

In 1994 Stenzel-Poore described the first transgenic mouse with an anxiogenic phenotype
caused by targeted overexpression of corticotropin-releasing hormone [98]. Since then,
numerous genetically engineered mice in which a specific gene was either knocked-out,
knocked-in, overexpressed or replaced have been generated, resulting in increased anxiety-
related behaviors. Mutant mice with a relatively robust enhanced anxiety-related behavior
are summarized in Table 3 — we have excluded those models with approximately equal
numbers of reports describing an enhanced, unaltered or reduced anxious phenotype, such as
with the GAT1 transgenic mice [99,100] and the Fmr1 knockout mice [101-104], as well as
those where the evidence of an anxious phenotype was rather limited (e.g., [105,106]) —
though we cannot exclude the possibility that some may have been missed. Genetic
manipulation of many different systems, including monoamines, GABA, neuropepeptides or
molecules of the immune system was shown to result in increased anxiety-related behaviors
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suggesting that these systems contribute to the anxious phenotype observed. Interestingly,
the genetic background of the mutant seems to critically interfere with the genetic target and
this, in many cases, determines whether or not enhanced emotionality could be monitored.
This has been discussed in recent reviews [63,107].

Enhanced anxiety-related behavior observed in a mutant does not allow the final conclusion
to be drawn that the altered expression of that gene underlies anxiety-related behavior.
Anxiety disorders are complex mental diseases with a polygenetic etiology, while in mutants
in most cases only one gene is intentionally affected. However, genetic manipulation
performed in the laboratory usually induces large changes in gene function (e.g., the
complete loss of function in knock-out animals) and congenic footprint phenomena [108],
which may have potent effects on the anxiety phenotype. Therefore, the manipulation of
genes and, subsequently, of their products in mutant mice can only provide incomplete
information about their relation and contribution to anxiety and, potentially, to anxiety
disorders. On the other hand, this polygenetic characteristic of anxiety disorders is indeed
reflected by the large number of mutants displaying enhanced anxiety-related behaviors.
Although the use of mouse mutants has proved to be a powerful tool in the identification and
characterization of mechanisms controlling enhanced anxiety states, it must be considered
that a targeted mutation affects the transcription of the gene of interest throughout the whole
life of a mouse and, in particular, during its development. The mutation may thus trigger
compensatory adaptations in other neuronal systems in an effort to maintain homeostasis,
even if this proves to be unsuccessful. In both cases, it is not possible to ascertain whether
the increased anxiety-related behavior is the resultant compensation or whether it is related
to the function of the gene in terms of anxiety-related behavior.

As an alternative approach that overcomes many of these problems, conditional mutant mice
have more recently been introduced using either gene mutation strategies or RNA
interference (RNAI) techniques allowing temporal and regionally specific control of
expression of the gene of interest. For example, using RNAI, the knockdown of
phospholipase Cp4 in the medial septum [109] and of calcineurin A in the amygdala [110]
increased anxiety-like behavior in mice, while local knockdown of clock [111],
corticotropin-releasing hormone receptor 1 [112], protein kinase Ce [113] or glyoxalase 1
[29] caused a reduction in anxiety-related measures. Therefore, these data point towards
specific sites of action of target genes regulating emotionality, which may help to further
advance novel treatment strategies in anxiety disorders.

Environmental manipulations

Negative environmental influences have been demonstrated to be intimately linked to
vulnerability to neuropsychiatric disorders, including anxiety disorders [7,8].

Early life environment

Rearing conditions, including poor maternal care and adverse early-life events, are proposed
to be critically involved in the development of mental disorders, including anxiety disorders
(for review see [114,115]). While it is very difficult to control for differences in the human
environment, rearing conditions can be carefully controlled and manipulated in the
laboratory. Given that mother-pup interactions shape the emotional behavior of the pups
when they mature into adult rodents [116,117], maternal separation for longer periods of
time is used to model adverse early life events, negatively influencing emotional behavior in
the adult rodent [118,119]. By contrast, maternal separation for short periods of time (~15
min) is used to elicit opposite effects on anxiety-related behavior. The maternal separation
protocol has been successfully applied to the rat [116,118,119], while in the mouse the same
attempts to do so have turned out to be challenging.
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Following maternal separation, adult male mice have been shown to display increased
[117,120-122], unaltered [121,123-127] and even reduced [127,128] anxiety-related
behaviors using different established tests. Therefore, it seems that maternal separation does
not produce robust and reliable effects on murine emotionality in the strains tested,
including BALB/c, C57BI/6J, CD-1, 129Sv and DBA/2J mice [124,127] and, thus, it may be
necessary to modify current murine separation protocols. Indeed, in a first attempt to
accomplish this, George and coworkers [129] recently demonstrated increased anxiety-
related behavior as assessed in the open-field and elevated plus maze tasks in adult mice
following maternal separation in combination with early weaning. Early weaning per se may
be an example of a novel procedure that causes a persistent increase in anxiety-like and
aggressive behavior [130,131].

Chronic exposure to stress

It is not only early-life stress that has been associated with the manifestation of pathological
anxiety in humans: repeated stressful experiences during later life have also been linked to
this [7]. Therefore, mouse models of enhanced anxiety-related behavior may be generated
by the repeated exposure of animals to stressful situations. Although most studies so far
have been performed using rats, chronic stress usually results in some behavioral,
neuroanatomical and neurochemical changes resembling those found in patients with
anxiety disorders [132]. Various chronic stress procedures with different construct validity
(see “Validity of mouse models of enhanced anxiety’) are applicable to mice. As social
stressors are suggested to be very potent in enhancing the individual risk for developing
pathological anxiety in both humans and animals [7], various paradigms have been
developed taking into account this risk factor. Accordingly, increases in anxiety-related
measures have been reported in mice in response to repeated exposure to an aggressive,
dominant conspecific until attack and defeat occur [133-135], as a result of chronically
subordinate housing [136-138], or by housing mice in a highly unstable social and
hierarchical situation during their adolescence and young adult periods [139]. Indeed, the
continuous disruption of social networks results, reproducibly, in enhanced anxiety-related
behavior in adult male and female CD-1 mice, as assessed by the elevated plus maze and the
novelty suppressed feeding paradigms [140-142]. Given that mice are social animals, long-
term social isolation of mice is another chronic social stress model involving individual
housing of mice in the post-weaning period. However, this procedure has revealed varying
results in terms of anxiety-related behavior exhibited in the open-field, light/dark, social
interaction and holeboard tests, and on the elevated plus maze where increases
[122,134,143-145], no change [143-147] and even decreases [144,145,148] were observed.
On the other hand, crowded social housing has also been shown to cause long-term effects
in terms of increased anxiety-related behavior, depending on the strain involved [149].

In the unpredictable chronic mild stress paradigm animals are exposed to a choice of
environmental stressors such as an empty cage or a tilted cage, cold or a reversed light—dark
cycle and social stressors once per day for at least 2 weeks in a randomized, unpredictable
order. Unpredictable chronic mild stress has been demonstrated to increase anxiety-related
behavior in C57BI/6N mice [150-152], BALB/c mice [153-154] and DBA/2 mice [152,153]
as well as in some mutants [155], but not in C57BI/6J mice [152,153]. However, anxiolytic-
like effects of chronic mild stress have also been described in mice [152,156,157] and these
findings are generally interpreted as anomalous [158].

To summarize, mouse models that involve chronic adverse environments, irrespective of
whether they occur during early life or in adulthood, are of translational value in anxiety
research. However, the anxiogenic effects of all the stress paradigms presented are variable.
The inconsistencies may be due to methodological differences, such as duration and choice
of stressors, the mouse strains used and the tests applied for revealing anxiety-related
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behavior. An alternative explanation may involve the complex interactions between genetic
and non-genetic factors [159]. In contrast to these harmful surroundings, inanimate and
social stimulation by environmental enrichment has been demonstrated to reduce anxiety in
both mice with normal and enhanced levels of anxiety-related behavior (e.g.,
[112,160,161]). However, it has to be noted that, similar to adverse environments, the
positive effects of environmental enrichment are not always reproducible [162].

Nutrient-induced enhanced anxiety-related behavior in mice

There is increasing evidence of a link between alterations in nutrition and psychiatric
diseases [163,164]. Specifically, changes in values of diverse micronutrients, including
electrolytes and vitamins, have been linked to symptoms in psychiatric patients [165-167].
Influenced by these studies, mouse models of enhanced anxiety-related behavior have been
created utilizing this possibility.

Magnesium deficiency

Others

Magnesium (Mg) is an interesting candidate as it, among other actions, modulates NMDA
receptor activity and NMDA-mediated mechanisms are suggested to contribute to
(pathological) anxiety states [40]. An increasing number of clinical and preclinical studies
proposes that changes in Mg homeostasis are involved in affective disorders [168], while
relatively little is known about the influence of Mg on anxiety-related behavior. We have
recently shown that feeding C57BI/6J mice a low Mg-containing diet, providing
approximately 10% of the daily requirement [169], changes the expression of proteins
involved in NMDA signaling (amongst other processes) [170] and elicits enhanced anxiety-
related behavior in several animal tests of anxiety, including the open-field and the light/
dark tests (Figure 2) [171]. Confirming and corroborating these first findings, Mg-deficiency
has also been found to enhance anxiety-related behavior in C57BI/6N mice and the already
highly emotional BALB/c mice (Figure 2) [172, wanuscriernerer.]. The enhanced anxiety-
related behavior induced by Mg-deficiency can be reversed by treatment with either the
benzodiazepine diazepam, desipramine or hypericum perforatum (Figure 2) [171,172,

MANUSCRIPT IN PREP.] .

PubMed searches aimed at finding additional nutrient-induced mouse models of enhanced
anxiety-related behaviors proved fruitless. One potential candidate was zinc, which in a
similar way to Mg, mildly antagonizes NMDA receptor signaling (amongst other processes)
[173]. Mice fed a zinc-deficient diet were shown to display enhanced anxiety-related
behavior in the novelty suppressed feeding paradigm but not in other anxiety tests, such as
the elevated plus maze or light/dark tests [174]. Vitamin B is another suspect, since its
deficiency is suggested to contribute to functional decline. Although folate deficiency does
not seem to affect anxiety-related behavior in young adult BALB/c mice [175], the adult
offspring of mothers under prenatal folate deficiency, which is repleted at birth, can manifest
later with increased anxiety 9—12 weeks after birth [176]

Chemical & pharmacological manipulations

Acute challenge tests

In contrast to the mouse models of enhanced anxiety-related behavior discussed so far,
challenge tests using anxiogenic substances elicit states of acutely enhanced anxiety-related
behavior. These procedures are based, in part, on observations in human volunteers and/or
patients in whom diverse chemical agents, including sodium lactate, cholecystokinin,
caffeine, pentylenetetrazol, yohimbine and CO, inhalation, provoke anxiety- or panic-like

Future Neurol. Author manuscript; available in PMC 2011 September 05.



syduasnue|A Joyiny siapun4 JIAd adoin3 ¢

syduosnuelA Joyiny sispun4 DA @doing ¢

Sartori et al.

Page 12

reactions [177-179]. Many of these agents have been shown to engage and activate relevant
anxiety-related brain areas and circuitries centered on the amygdala [180-183]. Interestingly,
in regard to CO, stress, the amygdala has been identified as an important chemosensory site
that detects hypercarbia and acidosis and initiates CO,-induced fear responses [184]. The
same substances may be used to boost anxiety in the laboratory mouse. For example,
pentylentetrazole increases the anxiety-related behavior of various mouse strains, including
the CD-1, Swiss, DBA/2, and C57BI/6 mice, as displayed on the elevated plus maze or in
the light/dark test in a dose-dependent manner [185-191]. Similar effects have been
described in the mouse after application of the 5-HT2C receptor agonist meta-
chlorophphenylpiperazine (mCPP) [189,192-195], but see [196,197]). Other compounds,
such as cholecystokinin, sodium lactate, caffeine, yohimbine, CO, or the benzodiazepine
inverse agonist FG-7142, have not been widely applied to mice for the induction of
enhanced anxiety-related behavior.

The chronic corticosterone mouse model

On the basis of evidence of an association of some anxiety disorders with elevated
glucocorticoid levels (Table 4) [8], long-term exposure to exogenous glucocorticoids in
rodents is used to model chronic stress-induced changes in anxiety-related behaviors [198].
For that purpose, a low dose of corticosterone is administered via the drinking water to the
mouse for several weeks. Then, increases in murine anxiety-related behaviors postregimen
have been observed on the elevated plus maze [150,199] and in the open-field [150,200-202]
and light/dark tests ([203], but see [198]).

High anxiety-related behavior induced by drug withdrawal

The initial mood-enhancing effects of recreational drugs are often followed by withdrawal
symptoms with opposite effects on mood, including agitation, depression and anxiety and, as
such, they have been utilized in order to induce an enhanced anxiety state in mice. Indeed,
withdrawal of diverse psychostimulants after chronic administration has been shown to
increase anxiety-related behavior in mice in a number of anxiety tests, inlcuding the elevated
plus maze [204-206] and the light/dark test [205,207]. Specifically, (meth)amphetamine
(e.g., [204]), ethanol (e.g., [205,208,209]) and nicotine (e.g., [206,207]) are the preferred
substances used to induce a mouse model of prolonged enhanced anxiety after their removal.

N-ethyl-N-nitrosurea-induced random mutagenesis

The mutagen A-ethyl-Atnitrosurea (ENU) induces point mutations in murine genes at a high
rate [210]. Following the injection of ENU into male mice, premeiotic stem cells are
mutagenized, resulting in a large number of F1 animals carrying different mutations. ENU
mutagenesis is a powerful phenotype-driven approach that involves identifying mutants with
distinct behavioral patterns. In large-scale testing, pedigrees of ENU mutants have been
identified displaying altered anxiety-related behaviors on the elevated plus maze [211], in
the light/dark test [212], in fear conditioning [212-214], in the passive avoidance test [215]
or in the open-field test [212,214-216]. So far, no studies of offspring of mice treated with
ENU and displaying clear enhanced anxiety-related behavior have been published, but
increased avoidance behavior towards an unprotected area has been reported in ENU
pedigrees [217].

Validity of mouse models of enhanced anxiety

In 1984 Willner proposed three criteria, which valid animal models of any human
psychiatric disease, including anxiety disorders, have to meet [218]. First, the behavioral and
physiological responses observed in the model should reflect the hallmarks of the human
condition, representing face validity. Second, construct including genetic validity requires
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similarity between humans and animals in terms of the neurobiological mechanisms, as well
as in the analogy to the etiological causes underlying the behavioral changes. Third, the
behavioral changes displayed by the model should be reversed, or at least reduced, by
clinically effective pharmacotherapies, revealing predictive validity.

Of these criteria, true construct validity is probably the most difficult to fulfill for an animal
model of enhanced anxiety-related behavior. Nevertheless, most of the presented mouse
models meet construct validity quite well, reflecting that both genes and environment are
suggested risk factors in the development of an anxiety disorder [6,219] and that
neurobiological similarities between mouse models of enhanced anxiety and anxiety patients
can also be found (Table 4), although it must be emphasized that our knowledge about the
pathogenesis and pathophysiology of anxiety disorders is still incomplete in terms of
neuroanatomy, neurochemistry and neuroendocrinology (see ‘Conclusion’ and ‘Future
perspective’). Such models with enhanced construct validity could be well suited to be used
as translational models and it is hoped that they will provide improved ways to study the
neurobiology and treatment of pathological anxiety further.

Neurobiology of pathological anxiety: translational anxiety research

Genetic underpinnings of the anxiety trait

Both human and animal studies support the contribution of genes to the etiology of anxiety
disorders. While it is clear that anxiety disorders are polygenic mental diseases, the success
rate in identifying susceptibility genes of pathological anxiety is limited. Difficulties
involved with gene mapping in human pathological anxiety include sample size, genetic
heterogeneity, phenocopies as well as unknown genetic or haplotypic background. Many of
these problems can be reduced using mouse models of enhanced anxiety-related behavior.

In mice, chromosomal loci, genes and polymorphisms for a variety of behavioral phenotypes
relevant to humans have been identified, including anxiety and fear [220-224]. For example,
in QTL studies, a significant association between an anxiety-related score and a genetic
marker of known genomic location is drawn. Using recombinant inbred or congenic mice
[72], F2 intercrosses from mice selected for either high or low anxiety-related behavior
[225] and mice selected for high or low conditioned fear [83], small genetic effects
underlying anxiety, fear and emotionality have been located. Specifically, on mouse
chromosomes 1, 4, 5, 7, 8, 9, 10, 11, 13, 14, 18 and 19, loci contributing to multiple anxiety-
related traits have been identified using a wide variety of anxiety tests ([83,225-230]; for
review, see [231]). Considering the high homologies between mouse and human genotypes
and phenotypes (see ‘The evolutionary relationship between humans & mice in anxiety
regulation’), QTL analyses in mice with enhanced anxiety-related behavior may guide
linkage analysis studies in patients with anxiety disorders. For example, Smoller and
coworkers followed the results of murine QTL analysis studies in a large multiplex degree,
segregating panic disorder and agoraphobia [232]. Indeed, they report a linkage of panic
disorder and/or agoraphobia to a locus on chromosomes 12q13, while other loci on
chromosome 10g25-26 and on chromosome 1 were associated with severe anxiety
proneness [232]. Although these findings, unfortunately, did not reach genome-wide levels
of statistical significance, they nicely demonstrate the potential power of such targeted
genome screens. Nevertheless, translating mouse QTL data to humans turned out to be
difficult. The difficulties of QTL studies in general are discussed elsewhere [61,233].

Despite all the progress achieved, the genetic loci identified so far account for only a small
fraction of the total variation, and they rarely map to individual genes. The low contribution
of chromosomal loci and individual genes, respectively, to trait anxiety, together with the
fact that demonstrable genetic influences explain only a small fraction of estimated
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heritability in psychiatric conditions, indicates additional environmental/epigenetic effects
(see ‘Environmental stimuli and epigenetic mechanisms contributing to anxiety-related
behavior’). Obstacles in identifying genes that causally contribute to a given trait variation
include:

| Identification of potentially functional DNA polymorphisms between alternative
alleles of the candidate gene;

| Differences in mMRNA expression profiles between genotypes;

| Expression in brain areas thought to be relevant to the trait;

| Association between polymorphisms and trait variation in a freely segregating
panel;

| Replication in independent studies.

Candidates that ‘survive’ multiple testing are worth pursuing as potential biomarkers and
targets for psychotherapy.

The situation is further complicated by epistatic effects, occurring between closely linked
QTLs and even polymorphisms at a single locus, which often mask locus effects, and
pleiotropic effects with alleles simultaneously affecting multiple and often functionally
unrelated traits. Pleiotropy is probably the rule rather than the exception for many traits
[234,235]. QTLs typically contain multiple genes and disentangling coincidence of location
from pleiotropic action is difficult [236].

While genetic differences in trait anxiety help to identify candidates that contribute to
phenotypic variation, they approach causality at best. Therefore, similar to clinical studies,
we run association studies to test for causality between genetic and phenotypic variation,
which goes far beyond conventional two-group comparisons. For selectively- and
bidirectionally-inbred mice, the original population (i.e., outbred CD-1) or a freely
segregating F2 panel may be used to create and harness variations to the fullest possible
extent. Although such approaches are often hampered by confounding factors that a priori
limit success (e.g., reduced statistical power, owing to lower sample population compared to
that commonly used in clinical samples, where often thousands of subjects are included),
minor, though significant contributions of polymorphisms in the vasopressin and
TMEM132D genes could recently be demonstrated to corroborate human studies [224,237].
Then, based on reliable association studies, causality can further be tested by appropriate
approaches, including agonist/antagonist, RNAI, knockout and viral vector strategies.
Nevertheless, it remains a challenge to handle large numbers of potential loci, candidate
genes and polymorphisms and it is problematic to distinguish the genuine ones. It is of note
in this context that the anxiety phenotype is at least as variable as the genotype with all its
imponderabilities, including state versus trait, repeated testing, maternal influences and cage
hierarchy among others, further complicating or even masking potentially significant
associations.

Examples of bridging mouse & human neurogenetics

It is becoming widely accepted that the pathobiology of anxiety disorder — as that of
comorbid depression — relies beyond dysfunction of monoamine systems [238] and that
advances in the understanding of neurobiological underpinnings of anxiety can only be
made by focusing on those candidates that do not necessarily belong to the ‘usual suspects’.
For example, we have just begun to understand metabolic networks, for instance in
mitochondria, as contributing to anxiety phenotypes.

Future Neurol. Author manuscript; available in PMC 2011 September 05.



syduasnue|A Joyiny siapun4 JIAd adoin3 ¢

syduosnuelA Joyiny sispun4 DA @doing ¢

Sartori et al.

Page 15

One example, where the translational aspect from mouse to humans with pathological
anxiety was quite successful, is the discovery of the regulator of G-protein signaling 2
(Rgs2) gene in anxiety-related behavior. Evidence for its possible involvement arose in QTL
studies initially in mice and and then humans [226], suggesting RgsZ2 as an anxiety-
associated quantitative trait gene. Indeed, two polymorphisms in this gene, rs4606 and
rs3767488, have been associated with patients suffering from panic disorder ([239], but see
negative findings in a Japanese cohort [240]), post-traumatic stress disorders [241] and
general anxiety disorder [242], as well as with trait anxiety in general [243]. In further
support, Rgs2-knockout mice display enhanced anxiety-related behaviors [226,244]. These
findings arising from the mouse model organism, thus, suggest that Rgs2may play a role in
the development of a nxiety in humans.

Despite the lack of evidence from QTL studies, altered expression of the zinc metallo-
enzyme glyoxalase-1, which catalyzes the conversion of the highly reactive physiological
metabolite, methylglyoxal, seems to impact anxiety-related behavior in inbred mouse strains
[29] and in HAB mice selectively bred for high-trait anxiety [76,245], though in opposite
ways. While Hovatta ef a/. [29] demonstrated elevated glyoxalase-1 gene expression to be
linked to high anxiety levels, we described an inverse association, with HAB expressing less
than LAB mice [76,245]. Support for the former finding came from Williams et al. [246],
and for the latter from two recent papers. In the first, Fujimoto et a/. described a reduced
expression of glyoxalase-1 mRNA in mood disorder patients as compared with healthy
subjects, a difference that disappeared in a remissive state [247]. In the second study,
decreased levels of glyoxalase-1 were found in an inbred mouse strain selected for high
anxiety-related behavior [84], further supporting its potential as molecular biomarker.
Interestingly, an association between the Alal11Glu polymorphism of the glyoxalase-1 gene
and panic disorder without agoraphobia has been previously found in an Italian population
[248].

Evidence for another interesting candidate gene for anxiety phenotypes comes from a very
recent paper summarizing mouse and human studies. Using genome-wide case-control
association analysis in patients with panic disorder involving multiple psychiatric centers,
two SNPs in the intron regions of TMEM132D gene were identified [237]. Furthermore,
TMEM132D mRNA expression levels were found to be upregulated in the frontal cortex of
post-mortem brains with risk genotypes for panic disorder. In an interspecies approach, the
hypothesis that TMEM132D may be critically involved in the regulation of pathological
anxiety and fear was tested by expression and association analyses in HAB mice selectively
bred for high trait anxiety [76], confirming the human data. Indeed, TMEM132D mRNA
expression was upregulated in the cingulate cortex of HAB mice and, remarkably, the SNP
rs13478518, located in exon 9 of the TMEM132D gene, was significantly associated with
the level of anxiety in a freely segregating F2 panel generated from cross-breeding HAB and
LAB mice [237].

Another example for bridging mouse and human neurogenetics is the BDNF Met allele,
likely to play an important role in the development of anxiety disorders [84]. Relative to the
BDNF Val allele in humans and the wild-type gene in mice, the BDNF Met allele caused
enhanced anxiety and impaired extinction of the conditioned fear response in both mice and
humans (for review, see [249,250]). Using gene expression and MR, respectively, the
BDNF Met allele was further associated with decreased activity in the ventromedial
prefrontal cortex, which is known to be critical in fear extinction, and increased activity in
the amygdala, which is crucial for the acquisition and expression of fear conditioning.
Although, according to Hariri [251] and Groves [252], the findings in human studies are, at
best, inconclusive, this Met variant might determine how individuals respond to
environmental stress exposure. Interestingly, deficits in extinction have recently been linked
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to reduced dendritic complexity of neurons in the prefrontal cortex [253,254], to abnormal
processing in the prefrontal cortex [44-46] and to high trait anxiety [45,255, manuscrier ineree.].
Moreover, in HAB mice, signs of hypoactivated prefrontal cortex and hyperactivated
amygdala in response to mild anxiogenic stimulation were observed by Muigg et al. [77].

Together, data obtained independently in mice and humans suggest evolutionarily conserved
neuroanatomical, genetic and neurochemical mechanisms underlying the regulation of
anxiety-related behavior as well as their translational potential.

Alterations in functional neural circuits in pathological anxiety

Neuroimaging studies, in combination with symptom provocation, have revealed aberrant
neuronal activation patterns in a number of anxiety disorders in brain areas implicated in the
pathophysiology of anxiety disorders, including, for example, the amygdala, the prefrontal
cortex, the hippocampus and the hypothalamus [22]. Interestingly, exaggerated amygdala
reactivity is noted in social phobia, specific phobia and post-traumatic stress disorder [22].
Furthermore, an increased function of the dorsal anterior cingulate cortex is observed in
specific phobias, in post-traumatic stress disorder and in generalized anxiety disorder, while
diminished reactivity of the rostral anterior cingulate cortex may be specific to post-
traumatic stress disorder [22]. Nevertheless, the information gained in such imaging studies
is limited, owing to the presence of susceptibility artifacts and because of restricted spatial
resolution even with the best (fMRI) techniques. Therefore, even up-to-date technologies of
human imaging do not allow precise discrimination of small adjacent structures such as the
hypothalamic and amygdaloid subnuclei or brain-stem regions.

Given that important basic neurocircuitries mediating anxiety are highly conserved among
mammals [23,33-35], mouse models of enhanced anxiety-related behavior may be exploited
in order to identify neuronal correlates of pathological anxiety at a subnuclear level. In the
awake, freely-moving mouse neuronal activities can be measured, for example, by
electrophysiological recordings or optical recordings of photons [256] and calcium [257].
However, these methods are very sophisticated and, to our knowledge, have not, or have
only rarely, been exploited in mouse models of enhanced anxiety during emotional
challenges. Alternatively, neuronal activation may be indirectly visualized by functional
staining techniques of diverse neuronal activity markers whose expression has been
proposed to correlate with the functional activation of neurons providing great spatial, even
single-cell, resolution [23]. Such markers are, for example, immediate early genes, or
cytochrome oxidase [258]. Of these, the immediate early gene c¢-Fos appears to be a widely
used marker for neuronal activation in anxiety research [23].

Only a limited number of studies have addressed the question of where in the brain
activation patterns differ between mice with enhanced anxiety-related behavior and those
with normal anxiety-related behavior (Table 5). While in most of these studies, immediate
early gene mappings were focused on one or just a few brain areas known to be part of the
anxiety neurocircuitry, Muigg ef a/. provide a more complete picture through the rostro-
caudal extent of the mouse brain [77]. In part, similar patterns of both hyper- and hypo-
activation in specific brain areas have been revealed in different mouse models of enhanced
anxiety-related behavior in response to diverse emotional challenges (Table 5) which have
been previously shown to increase c-Fos expression in the normal rodent brain, though to
different levels (for review see [23]).

In mice with high trait anxiety compared with their ‘normal’ anxiety controls, c-Fos
induction in response to an anxiety-provoking stimulus is attenuated in the cingulate cortex
[77,259-261], which seems to correlate to the rostral anterior cingulate cortex of humans
[262], although determining exact homologies of cortical areas in humans and mice remains
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a difficult task [263]. Furthermore, in the dentate gyrus of the hippocampus, activation is
attenuated in high anxiety animals. By contrast, neuronal activation is facilitated in the
paraventricular hypothalamus, in the amygdala (in its central and medial parts in particular)
and in the dorsomedial periaqueductal grey [77,97,138,259,260]. While these observations
fit well with observations in humans with pathological anxiety (for review see [22]), there is
some inconsistency within the different mouse models (Table 5). As with variations in the
human data (for review, see [22]), discrepancies in neuronal activation patterns in mouse
models with enhanced anxiety levels may be explained by the different models and
challenge paradigms used, which, as it has been suggested, may all elicit specific facets of
anxiety that engage distinct parts of the anxiety circuitry [23]. For example, it was shown in
HAB rats that the open-arm challenge activates the central amygdala only slightly,
obscuring activation-processing differences between high- and low-anxiety animals in this
subarea [264]. If social defeat was used as a challenge, this difference became increasingly
evident [265]. Furthermore, in mutant mice, direct local effects of the altered gene product
must be considered.

Taken together, these findings support and corroborate the human data indicating that
dysregulations in specific brain areas that are known to play critical roles in anxiety [266]
and conditioned fear neurocircuitries [35,267], contribute to enhanced (pathological)
anxiety. In addition, to enable a better understanding of the pathophysiology of anxiety, this
approach can also be used for the screening of novel drugs by determining the ability of
therapeutics to reverse (normalize) aberrant activation patterns and neurochemical changes
associated with enhanced anxiety [268-271]. Attenuation of amygdala reactivity seems to be
important in humans [272-275] and animals [268]. So far, unfortunately, this strategy has
not been used in mouse models of enhanced anxiety.

Environmental stimuli & epigenetic mechanisms contributing to anxiety-related behavior

Gene—environment interactions in shaping the anxiety phenotype assume that multiple genes
influence susceptibility to environmental risk factors, including stress, and that the latter
finally cause psychopathology [276]. This complex interaction includes the fact that
exposure to stressful events does not always generate the disorder, this response
heterogeneity being under genetic control (for review, see [277]). While exposure to defined
environmental stimuli can easily be manipulated under experimental control, short-comings
of experimental gene—environment interactions must be acknowledged, as they do not
necessarily reflect naturally occurring conditions [278].

Animal models of genetic susceptibility versus resilience to environmental factors offer a
valuable window for studying the contribution of postnatal maternal factors [279] and the
effects of risk exposure on psychopathological processes. Male HAB mice, for instance,
seem to be largely resistant to classical antidepressant drug treatment and thus may mimic
endophenotypes typical of drug nonresponding, genetically predisposed patients. These
properties make them ideal for gene—environment interaction studies, as their genotype is
relatively well characterized beyond single genetic polymorphisms (FILIOU ET AL., UNPUBLISHED DATA).
The resultant changes in brain neurobiology that underlie and confer risks for anxious
behavior have been studied at multiple levels to confirm face and construct validity (i.e.,
they are related to human anxiety and do reveal mechanisms derived from theory). Only
with the focus on such complex interactions, the question can be approached as to why
different individuals exposed to the same environmental challenge or, vice versa, genetically
identical individuals, exposed to different environments, experience different levels of
anxiety.

One candidate gene that has been associated with trait anxiety encodes the serotonin
receptor 1A (5-HT1A) with a promoter polymorphism being related to anxiety-linked
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personality traits [280]. This receptor subtype provides an intriguing example of how
genetic—-maternal environmental risk may contribute to anxiety. In more detail, maternal
deficiency in the 5-HT1A receptor resulted in an offspring phenotype reminiscent of
psychopathology. More than the offspring’s own receptor deficiency, the genotype of the
mother seemed to be the prevailing mechanism in producing an anxious phenotype as
measured on the elevated plus-maze. However, in the absence of a maternal genotype effect,
the offspring’s own receptor deficit was sufficient to elicit the phenotype, pointing to two
different underlying mechanisms: one by inheritance of receptor deficiency and the other by
nongenetic transmission associated with receptor deficiency in the mother, raising the
possibility that maternal influences may increase the risk for anxiety via a nongenetic
mechanism. This model of dual transmission of risk factors indicates that the overall effects
of risk alleles can be higher than estimated by traditional genetic studies [280].

While epigenetic changes induced in the offspring remain to be elucidated, it becomes clear
that complex behaviors such as anxiety are driven by multiple mechanisms. For studying the
interaction between genetic and nongenetic factors in more detail, it might therefore be
useful to generate models in which the genetic underpinnings of trait anxiety or, at least, the
contribution of single polymorphisms or genes are well-described. Then, using a
combination of expression, genotypic and epigenetic approaches, one could try to examine
whether those genes are also prone to epigenetic modifications that either activate or silence
them.

Epigenetics refers to stable changes in chromatin and DNA via acetylation and methylation
that underlie long-lasting alterations in gene expression and that are not associated with
changes in the primary DNA sequence itself [281]. While it is generally accepted that such
phenomena may predispose an individual to anxiety disorders, in many cases methylation
and acetylation profiles are not determined. Nevertheless, the implication of
environmentally-induced behavioral alterations essentially suggests underlying mechanisms
that are epigenetic in nature [282].

Childhood maltreatment, including early abuse and neglect, are predisposing factors for the
development of psychopathology, leaving lasting imprints on mechanisms underlying
cognition and emotionality. Key mediators of such neural plasticity are detectable
particularly in the prefrontal cortex and hippocampus and include, among others, BDNF
protein levels and indices of synaptic long-term potentiation. In an elegant series of
experiments, Roth ef al. succeeded in demonstrating that infant rat maltreatment results in
reduced BDNF expression in the prefrontal cortex, owing to methylation of BONFDNA
through the lifespan to adulthood [283]. The epigenetic modification could be reduced with
chronic treatment of a DNA methylation inhibitor. Interestingly, rats that have experienced
adversity, mistreat their own offspring, with the latter also having significant DNA
methylation, further highlighting the dynamic role of methylation in both gene regulation
and transgenerational inheritance of phenotype. Along the same lines, Franklin et a/.
demonstrated that trait transmission in mice occurs through males, altering DNA
methylation in the germline, and affects the offspring in a sex-dependent manner [284]. It is
tempting to speculate that enriched environment might prove useful for reversing persisting
effects of traumatic experiences in early life.

The experimental data suggest that, beginning early in development, an individual’s genes,
including epigenetic events, induce distinct changes in expression profile that occur in
susceptible individuals only, shaping neural circuitry and neurometabolism characteristic of
trait anxiety. Epigenetic modification thus opens enormous combinatorial options upon
control of a wide range.
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Novel targets for potential clinical pharmacotherapeutics

Mice with targeted mutations in the GABA-A receptors provide the basis for the search for
novel anxiolytics targeting specific GABA-A receptor subunits only, as this was suspected
to result in a better side-effect profile [285]. However, although the further clincal
development of some a.2-subunit specific GABA-A receptor agonists such as MRK 409 or
TPAO023 was determined due to unexpected side effects, GABA-A receptor subtype
selective modulators are still considered as interesting non-sedative anxiolytics [286]. The
development of positive allosteric modulators of the mGIuR8 receptor and of mGIuR5, 5-
HT1A and 5-HT2C receptor antagonists as potential novel anxiolytics was promoted by
results in mouse models with enhanced anxiety-related behavior. Anxiolytic properties of
these antagonists/modulators have been demonstrated in various rodent anxiety tests (e.g.,
[287-294], for review see [295,296]) but, so far, they have not been processed into clinical
trials for the treatment of anxiety disorders. Here, we want to focus in more detail on two
novel targets as examples of how mouse models of enhanced anxiety related behavior
contributed to their identification and/or characterization.

Neuropeptide S: a potential novel anxiolytic

The neuropeptide S (PS) gene and the gene encoding its receptor (MVPSR) are two of the
promising candidates that are just at the start of extensive testing — and first results are very
promising (for review, see [297]). NPS consists of 20 amino acids [298] and it is known to
activate a G protein-coupled receptor elevating intracellular Ca?* and cAMP [297]. Whereas
the distribution of AMPS precursor mRNA is very restricted in the CNS [298,299], the NPSR
is expressed in many of its parts, particularly in the cortex, the thalamus, the hypothalamus
and the amygdala [299,300] — brain areas known to regulate stress responses and to be part
of the anxiety circuitry (see previous section).

In normal mice, NPS has anxiolytic effects in various unconditioned tests of anxiety
including the elevated plus maze test and the stress-induced hyperthermia test [298,301-303]
while also increasing wakefulness and arousal [298]. Recently, we could demonstrate that in
classical Pavlovian fear conditioning, NPS also reduced the exaggerated conditioned fear
responses in HAB mice to levels displayed by NAB mice [304]. This effect may be
mediated via the G-protein coupled NPSR, as knockout of this receptor enhances anxiety-
related behaviors ([305], but see [306]). Hence, the pharmacological spectrum of NPS is
quite unique in comparison with other transmitters or drugs that influence emotional
behavior in terms of anxiolysis and wakefulness. In humans, a single A-to-T SNP in the
NPSR gene resulting in a ten-fold higher receptor functionality /n vitro has been associated
with overinterpretation of fear reactions in humans [307], increased amygdala
responsiveness to fear-related stimuli [308] and panic disorder [309-311], providing further
evidence of the potential of the NPS system to impact anxiety. Although a gain in receptor
functioning in anxiety disorders, together with anxiolytic effects of NPS in mice, seems
paradoxical, it is speculated that NPS may have different qualities during developmental
stages with beneficial effects in adulthood [308].

In addition to its strong influence on stress-induced anxiety-related behavior, the NPS and
its NPSR have been shown to be involved in many other physiological and pathological
processes including depression-like behavior [306], drug seeking [312], food intake [313],
respiratory function [314], asthma/atopy [315-318] and inflammatory bowel disease [319].
Therefore, the role of the NPS/NPSR system in health and disease needs to be better
characterized in order to appraise its usefulness as a potential anxiolytic drug target.
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Neurokinin-1 receptor antagonists in clinical trials for anxiety disorders

Many different interesting therapeutic actions including anxiolytic, antidepressant,
antiemetic, antimigraine, antiaddiction, analgesic, anti-inflammatory, anti-cancer effects
have been attributed to NK1R-A [320]. Indeed, they have been investigated in clinical trials
for many years and, until now, the only US FDA approved NK1R-A is aprepitant
(Emend™, Merck Sharp & Dohme, USA) for the indication of postoperative and
chemotherapy-induced nausea. In neuroscience, following disappointing results in
depression trials, the focus moved to anxiety disorders, despite sparse evidence concerning
involvement of the substance P (SP) and NK1Rs in pathological anxiety (for review see
[321]). Indeed, in 2005 Furmark et al. [322] reported positive effects of NK1R-A in patients
with social phobia during a stimulus-provocation task; this, however, was not confirmed in
another study [323], while in patients with post-traumatic stress disorders, it was not found
to be superior to a placebo after short-term treatment [324].

These clinical anxiety trials are based on evidence from preclinical research demonstrating
that NK1R-A including the novel, potent compound vestipitant [325] exert anxiolytic (and
anti-depressant) effects in various species including rats, gerbils and mice (for review see
[326]). Since most of this evidence was obtained in ‘normal’ animals, we decided to use the
HAB mouse model for antagonist testing. Indeed, treatment of HABs with the selective
NK1R-A L-822,429 was found to attenuate exaggerated conditioned fear expression [79,80],
as well as their unconditioned anxiety response of HABS in the light/dark test (Figure 1)
[327]. In addition, the treatment also normalizes the reduced heart rate variability observed
in HABs to levels displayed by normal anxiety NABs (Figure 1) [80]. To gain insight into
the role of the SP system in pathological anxiety, we used molecular biological and
microdialysis approaches. It was found that HABs display enhanced 7acI gene expression,
as well as exaggerated stress-induced SP release in the amygdala, a key brain area in fear
and anxiety processing, suggesting dysregulated SP transmission as a result of genetic
selection for an extremely anxious phenotype [328]. Thus, using a psychopathological
mouse model that mimics important aspects of human anxiety disorders, we support and
corroborate the so far limited human evidence of neurobiological and genetic mechanisms of
SP (for review see [321]) underlying abnormal anxiety. This evidence derived from the use
of HAB mice further strengthens the hope that NK1R antagonism may be a promising
therapeutic approach for anxiety disorders, especially in individuals with a dysfunctional SP
system, despite mixed clinical results so far [322-324].

Conclusion

Over the last two decades, building on data from human and rodent studies, our knowledge
of the neurobiology of anxiety disorders has continuously increased, paralleling the
increasing use of the laboratory mouse in anxiety research. In the present article, we have
provided a summary of available mouse models of enhanced anxiety-related behavior and
discussed examples of how and where such models are employed to advance the
development of novel anxiolytic therapeutics (Figure 3). The discussed models mainly show
improved validity, and in particular, face validity — that is, they closely reflect important
symptomatology and they model aspects of human anxiety disorder endophenotypes. Of the
models described so far, mice with inborn enhanced anxiety such as the HAB mouse line
seem to meet translational value to a high degree, although it has to be noted that their
validity is still incomplete. On the other hand, although astonishing homologies exist
between mice and humans in terms of genes, brain mechanisms and anxiety-related
responses, it will never be possible to model all aspects of clinically manifested anxiety
disorders and even the most sophisticated mouse model of enhanced anxiety-related
behavior will remain a reductionistic replication of the human disorder. This is also due to
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the fact that the integrity of the murine model depends very much on our status of
knowledge about the disease itself.

Bypassing this dilemma to a certain extent, the mouse provides a specific model organism to
which partly unique (molecular) technologies can be applied in order to elucidate genetic
mechanisms underlying anxiety disorders. Indeed, the involvement of TMEM132D and of
the zinc metallo-enzyme, glyoxalase-1, in pathological anxiety represents two successful
examples of bridging mouse and human neurogenetics [29,76,237,245]. Furthermore, mouse
models of enhanced anxiety-related behavior are important for gaining insights into
neurobiological mechanisms underlying pathological anxiety. Here, novel technologies may
further help to limit brain regions to specific neuronal subpopulations modulating
emotionality as demonstrated by Tye and coworkers, who identified amygdala projection
neurons for reversible and bidirectional control of anxiety in mice by means of optogenetics
[329]. The novel information can then be further tested in patients, using the technology that
is available, such as imaging and post-mortem studies. For instance, an elevated expression
of TMEM132D in the frontal cortex was observed in both HAB mice, selectively bred for
high trait anxiety, and individuals with risk genotypes for panic disorder [237]. In addition,
mouse models of enhanced anxiety-related behavior will be important for studying
environmental stimuli and epigenetic modulations in the manifestation of an anxiety
disorder. The information gained already and in the future will help to further improve
subsequent mouse models of enhanced anxiety-related behavior (Figure 3). Using genetic
tools, the mouse organism has proved ideal for elucidating the neurobiological function of
identified susceptibility genes at specific loci in the brain. This has been, and will continue
to be, particularly important, when classical pharmacological studies reach their limits, for
example, when no selective ligands are available as demonstrated in the case of the GABA-
A receptor subunits. Once the function of interesting systems has been elucidated, novel
drug classes can be established (Figure 3).

Future perspective

It is clear that mouse models of enhanced anxiety-related behavior need to be refined
continuously to fully reveal the therapeutic potential of a broad range of (novel) compounds.
First, validation processes should be extended by means of objective, physiological readouts
(e.g., [80]) and, wherever possible, pharmacological validation of the anxious phenotype,
which may, however, interfere with the discovery of potentially novel targets. Thereby,
intense collaborations between researchers from both the clinical and preclinical sides will
be pivotal in order to improve the bidirectional characterization of patients and mouse
models of enhanced anxiety. In the (near) future this may result in a better classification of
anxiety disorders and may guide the development of mouse models of anxiety disorder
subcategories (see initial attempts for post-traumatic stress disorder [70] or panic disorder
[330,331]). Second, the mouse models described so far mostly reflect either genetic or
environmental manipulations rather than mimicking the interaction of these two risk factors,
though such interaction seems to be critical in the clinical manifestation of anxiety disorders
[7,159]. Therefore, it is expected that the real clinical situation can be better modeled in
mice by superimposing stressful environmental manipulations onto models with a well-
defined genetic predisposition towards enhanced trait anxiety. Unfortunately, to date there
have been only a limited number of such approaches whose findings have been published
(e.9., [124,277,280,332,333]). What determines vulnerability to develop an anxiety disorder,
together with treatment responses, may be causally addressed by genetic approaches in
mouse models of enhanced anxiety-related behavior, providing fundamental insights into the
construct of anxiety disorders. In the long run, clinical biological diagnostic tools will
eventually be developed. Markers based on neurobiological and neurophysiological
endophenotypes, as suggested for glyoxalase-1, could lead to a more precise classification
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and, thus, diagnosis of anxiety disorders, both of which at the moment are based on
symptoms specified in DSM-IV and ICD-10 [17,18]. Such adjustments will enhance the
models’ application for both the detection of novel targets with anxiolytic action and
improve our understanding of the underlying pathophysiology of anxiety disorders, which is
the basis for the development of novel anxiolytic drug classes with an improved
pharmacologic profile (Figure 3).

The integration of mouse models of enhanced anxiety-related behavior into the drug
discovery process will improve the screening for the drugs’ clear anxiolytic potential before
it advances into clinical trials. In parallel, these models may be used for distinguishing
responders to anxiolytic drugs from nonresponders in order to improve pharmacotherapy, as
this is still an unresolved area. In the future, the pharmacotherapy will be combined with
techniques recording changes in the brain, such as functional imaging or microdialysis. An
important aspect of using mouse models of enhanced anxiety-related behavior is to prove
whether normalization of specific brain activity alterations is necessary/sufficient for
successful treatment to take place, as this information can be obtained in humans in a very
crude manner only. In this respect, non-invasive imaging techniques with high temporal and
spatial resolution, which can be applied without inducing stress to awake, freely moving
animals, will need to be developed. Then, pinning down causality by targeting dysfunctions
in brain-activity processing in animal models of enhanced anxiety will guide the
development of novel anxiolytic pharmacotherapies.
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Executive summary
Pathological anxiety
| Anxiety disorders represent a quantitative and/or qualitative variation of
‘normal’ anxiety, which is still a matter of debate.
Pharmacotherapies used in anxiety disorders
| Despite intense research, no true novel anxiolytic class with an improved
pharmacotherapeutic profile has been introduced into therapy in the last four
decades.

| To date, after demonstration of its anxiolytic effects in preclinical trials, no
novel, improved anxiolytic has so far made it via clinical trials onto the
market. One explanation may be that their efficacy in animal testing was
observed in physiological rather than pathophysiological anxiety states.

| Animal models of enhanced anxiety-related behavior that mirror the
pathophysiology of the human anxiety disorder may prove more effective in
the development of novel anxiolytics.

Mouse models of enhanced anxiety-related behavior

| Enhanced anxiety-related behavior is a persistent and enduring characteristic
of animal models, reflecting trait anxiety.

| Experimental manipulations reflecting the risk factors of anxiety disorders,
including environmental and genetic manipulations, are used to induce
enhanced anxiety-related behaviors in mice.

| Mouse models of enhanced anxiety-related behavior demonstrate good face,
and increasing construct validity and are hoped to improve the discovery of
true novel anxiolytic drugs.

Translational anxiety research

| The identification of candidate genes underlying the enhanced anxiety-
related behavior of mouse models was successfully translated into
information that can be applied to humans. By this means, an involvement of
regulator of G-protein signaling 2, TMEM132D, glyoxalase-1 and BDNF in
anxiety patients was demonstrated.

| The demonstration in patients with anxiety of similar aberrant neuronal
activation to that found in mouse models of enhanced anxiety-related
behavior may be used for the screening of novel drugs by determining the
ability of therapeutics to reverse (normalize) these changes associated with
enhanced anxiety. So far, however, this strategy has not been used in mouse
models of enhanced anxiety.

| Mouse models of enhanced inborn anxiety-related behavior are ideal for
studying genetic/epigenetic mechanisms contributing to pathological anxiety.

Novel targets for potential clinical pharmacotherapeutics

| Mouse models of enhanced anxiety-related behavior have revealed
interesting targets for novel anxiolytics, including specific GABA-A receptor
subunits, the mGIuR8, mGIuR5, 5-HT1A, 5-HT2C and NK1 receptors as
well as neuropeptide S. Their anxiolytic efficacy has been demonstrated in
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Figure 1. Validity of the high anxiety-related mouse model of high trait anxiety

Outbred CD-1 mice were selectively bred according to their high, normal or low anxiety-
related behavior displayed on the elevated plus maze test (percentage of OA time), resulting
in the HAB, NAB and LAB lines [76]. The anxious phenotype of HAB mice is confirmed
by reduced time spent in the aversive, lit chamber of the light/dark test [327], by increased
marble burying as indicated by the number of points reflecting the number and extent of the
buried marbles (FRANK&LANDGRAF, UNPUBLISHED DATA) and by increased freezing levels in response toa
conditioned stimulus [79,80]. Physiological signs of abnormal anxiety-related behavior
reflecting construct validity are evident in terms of altered autonomic hyperarousal (as
indicated by an increased heart rate [in beats per min]) and reduced heart rate variability (in
RMSSD, with R being the peak of the QRS complex of the ECG wave) in response to
emotional trauma [80]. Predictive validity of the HAB mouse model is demonstrated by
attenuation of the enhanced anxiety- and conditioned-fear states after treatment with either a
BDZ or a selective NK1R-A in the ultrasonic vocalization test [76], the light/dark test [327]
and the conditioned fear test [79,80].

*:p < 0.05; **: p < 0.01; ***: p < 0.001 HAB versus NAB or LAB mice; #: p < 0.05; #: p <
0.01 drug versus vehicle-treated HAB mice. BDZ: Benzodiazepine; HAB: High anxiety-
related; LAB: Low anxiety-related; NK1R-A: Neurokinin-1 receptor antagonist; OA: Open
arm; RMSSD: Root mean square of successive R-R interval differences of the ECG signal.
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Figure 2. Validity of the magnesium-deficiency model as a mouse model of enhanced anxiety-
related behavior

Compared with control mice, mice fed a low magnesium-containing diet (10% of the daily
requirement) spend less time in the distal, aversive compartment of the open-arm exposure
test and display enhanced latency to eat a pleasurable food in the hyponeophagia test [172,
manuscriet inprer. ], @S Well as enhanced latency to enter the brightly lit compartment of the light/
dark test [171], indicating enhanced anxiety-related behavior. The anxious phenotype of
MgD mice is reduced by acute treatment with the classical benzodiazepine DZP [172,
manuscriet inerep. |, @S Well as by chronic treatment with either the tricyclic antidepressant, DMI
or HYP (St John’s wort) [171].

*: p < 0.05; **: p < 0.01 MgD versus control mice; #: p < 0.05; ##: p < 0.001 drug versus
vehicle-treated MgD mice.

DMI: Desipramine; DZP: Diazepam; HYP: Hypericum perforatum;

MgD: Magnesium-deficiency model.
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Figure 3. Strategy for translating resear ch from mice to humanswith the ultimate goal of
developing novel anxiolytic drugs

Mouse models of enhanced anxiety-related behavior, induced by genetic or environmental
manipulations and that closely resemble human symptomatology, increase the chances of
identifying candidate genes for human anxiety disorders by reducing the problems of genetic
heterogeneity and a variable environment. It is also important to study the involvement of
these candidate genes in patients. Subsequently, elucidating the function of the identified
gene using mouse models as well as the human population increases our knowledge of the
neurobiology of anxiety disorders, which, at the same time, is necessary to improve the
models. It is also necessary to test in mouse models the anxiolytic potential of possible novel
anxiolytic drugs prior to clinical test phases. Dashed lines in the diagram indicate those
aspects of anxiety research using mouse models of enhanced anxiety-related behavior that
are just beginning to attract scientific interest, including gene-environment interactions and
epigenetic modulations.
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Table 4
Comparison of neurobiological parameter s between patientswith anxiety disorder and
mouse models of enhanced anxiety-related behavior

PatientsT Mouse models
Neuroanatomical (volume) alterations
Anterior cingulate cortex 1 [492-498] - -
Orbitofrontal cortex V [497,499,500] - -
Hippocampus 1 [497,501-503] | [198,504]
Amygdala l [494,498,505] | [506]
Activity processing
Amygdala T(i)f [22] T(l)§ [54,119,224,305,309,362,363,364]
Prefrontal cortex T dACC [22] - -
N’trACC [221 M Cg [77,183,259,261,507]
Neurochemistry
GABA system y 211 [87,508,509]
NA system t [211 7 [136,510]
5-HT system Not clear - -
DA system Not clear - -
Neuropeptides T CRH [21] TCRH [511-514]
M NPY [21] Y NPY [209]
1 sp [515516] 1 SP [328]
Physiological parametersincluding autonomic arousal
Autonomic arousal 0 [517-518] 1 [80,385,519]
Sleep disturbance/insomnia  Yes [17,520,599] Yes [362,521,522]
Neuroendocrinology
CORT R [11 1t [136,140,511,512,514,523]

Page 62

2 Increased; V: Decreased; 5-HT: Serotonin; Cg: Cingulate cortex; CORT: Cortisol/corticosterone; CRH: Corticotropin-releasing hormone; DA:
Dopamine; dACC: Dorsal anterior cingulate cortex; NA: Noradrenaline; NPY: Neuropeptide Y; rACC: Rostral anterior cingulate cortex; SP:

Substance P.

fMainIy post-traumatic stress disorder or panic disorder.

’tBased on a very small number of studies.

§Increased activation mainly in the central amygdala (see. Table 5).
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