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Abstract
Photoacoustic tomography (PAT) is based on the generation of ultrasound waves by heating an
object with short light pulses. A three-dimensional image of the distribution of absorbed energy
within the object is reconstructed from signals measured around the object with either point like or
extended, linear sensors. Limited angle artefacts arise when the curve or surface connecting
neighbouring detectors is not closed around the object. For this case there exists a “detection
region” in which all boundaries of an object are visible in the reconstruction. All straight lines
passing through each point in this region intersect the detection curve or surface at least once.
Although for these points an accurate reconstruction is possible, direct back projection leads to
artefacts when some of the straight lines intersect the detection surface twice and others just once.
In this work special weight functions for direct, non iterative back projection are presented that
reduce these kinds of artefacts. A clear improvement of image quality is shown in simulations for
three-dimensional (3D) imaging with point detectors and for two-dimensional (2D) imaging using
line detectors compared to reconstruction without weight factors. For the 2D case also an
experiment is shown. The presented weight factors make commonly used back projection
formulas suitable for more accurate reconstruction of the initial pressure distribution in cases
where the detection aperture only covers a limited angle and the region of interest lies within the
detection region.
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1. Introduction
Photoacoustic or thermoacoustic tomography is an imaging technique to visualize structures
with contrast for electromagnetic wave absorption in semitransparent media (Xu and Wang,
2006). Short pulses of electromagnetic radiation from a laser or a pulsed radio frequency
(RF) or microwave source are directed at an object and cause a spatially varying temperature
rise. Due to the short heating time this results in a distribution of overpressure that is
proportional to the locally absorbed volumetric energy density. During relaxation of the
overpressure ultrasound waves are emitted that propagate to the surface of the object, where
they are measured with broad bandwidth ultrasound detectors. From the received signals the
distribution of absorbed energy density (or of initial pressure p0) is reconstructed. This
method has great potential in medical imaging because structures with strong optical
contrast like blood vessels are clearly seen in the energy density images. Moreover, by using
different electromagnetic frequencies also functional information such as blood oxygenation
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levels can be obtained (Laufer et al., 2005, Esenaliev et al., 2002, Wang et al., 2006). It is
common practice to use the term “photoacoustic tomography” (PAT) or “optoacoustic
tomography” (OAT) for the case of visible or near infrared excitation, whereas
“thermoacoustic tomography” is reserved for RF or microwave excitation. The findings of
the present study are valid for both cases because they only deal with ultrasound detection
and image reconstruction. For the sake of brevity the term “photoacoustic tomography”
(PAT) will be used throughout this article.

The practical implementations of photoacoustic tomography setups can be classified in three
categories, depending on the kind and distribution of ultrasound sensors (figure 1). In three-
dimensional (3D) PAT small, point like detectors are distributed on a surface surrounding
the object (Kruger et al., 2003, Kruger et al., 99). Two-dimensional (2D) PAT uses detectors
having the shape of a thin line, and signals are received by an array of such lines distributed
on a curve in a plane perpendicular to the line. The curve encloses the projection of the
initial pressure distribution in the object along the line direction. Due to the integrating
effect of the line the imaging problem is strictly two-dimensional (Burgholzer et al., 2005,
Paltauf et al., 2007b, Paltauf et al., 2007a) but can also result in a 3D image as will be shown
below. Finally, in quasi 2D PAT small detectors are distributed on a curve that surrounds a
3D object. Usually this curve lies in a plane and is a circle. To limit the imaging zone to a
slab close to the plane of the circle, the detector is equipped with a cylindrical lens that
narrows its directivity to the required zone (Wang et al., 2003). In each case either a single
scanning detector or a detector array is employed, or a combination of both where a small
array is scanned around the object. Image reconstruction differs for these three types of
setups. In 3D tomography the inversion of 3D wave propagation is achieved by a filtered
back projection algorithm that distributes the pressure measured at a point on the detection
surface at time t over the surface of a sphere with radius cst (where cs is the speed of sound)
and the point in the centre (Xu and Wang, 2005). From this algorithm a formula can be
derived for the 2D case employing line detectors (Burgholzer et al., 2007), where back
projection is performed over the area of a circle surrounding the detection point with a
radius dependent weight that peaks at the circumference of the circle. A similar formula was
found for the quasi 2D case, which is not governed by the inversion of the 2D wave
propagation but rather by inversion of the circular means operator (Finch et al., 2007). For
3D imaging also frequency-domain algorithms are known, giving an exact reconstruction for
either an infinite planar, cylindrical or a spherical distribution of point receivers (Kostli et
al., 2001, Xu et al., 2002, Xu and Wang, 2002, Xu et al., 2002). The algorithm for the planar
detection surface can be easily adapted to the 2D case, where it is valid for an infinite
detection line (Kostli and Beard, 2003, Paltauf et al., 2007a).

The 3D and the quasi 2D imaging configurations give the desired image information, the 3D
distribution of initial pressure p0 or the distribution of p0 in a slice, after applying the
suitable algorithm. The strict 2D case gives, for a defined orientation of the line detectors, an
image corresponding to a linear projection of p0 on a plane perpendicular to the line. A 3D
image can then be obtained by rotating the orientation of the line detectors relative to the
object and by taking a complete set of projections, from which a 3D image is obtained by
applying the standard inverse Radon transform (Paltauf et al., 2007b, Paltauf et al., 2007a,
Burgholzer et al., 2005).

The mentioned reconstruction algorithms are only exact if the detection surface or curve
completely surrounds the object. Any deviation from the ideal closed detection geometry
gives rise to what is called a limited view or limited angle problem for which limitations
exist concerning the exactness and stability of the reconstructions. Such deviations arise, for
example, in 3D imaging, if the receiving detection surface is a finite plane. Because of its
importance for breast imaging the image reconstruction from data measured on a half
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circular or hemispherical detector distribution has received much attention (Andreev et al.,
2002, Popov and Sushko, 2004). For partly closed detection geometry, where a part of the
reconstructed zone is enclosed by the detection surface or curve, it can be shown that
sufficient data for a stable reconstruction of all object boundaries are present in a “detection
region” (Louis and Quinto, 2000, Xu et al., 2004). The requirement for this region is that the
detection view angle, defined as the angle (or solid angle for 3D imaging) occupied by the
detection curve (or surface) when seen from the reconstruction point, should be at least π or
2π for 2D and 3D imaging, respectively. In other words, the detection region is enclosed by
the detection curve or surface in a way that all straight lines going through each point in this
region should intersect the detection curve or surface at least once.

In limited angle PAT the missing data leads to artefacts that can be categorized as follows:
(1) Missing information outside the detection region leads to locally varying blurring of
reconstructed images. (2) Points receiving different weight due to different detection view
angles are reconstructed with wrong relative amplitude. (3) Inside the detection region,
artefacts arise from duplicate directions. With “directions” we mean for a specific
reconstruction point the direction of the tangent (or tangential plane) of the back projection
circle (or sphere) that is centred at a detector and goes through this point. Duplicate
directions occur when directions from two detectors coincide at a detection point. This
happens in the detection region when two detectors are on opposite sides of the detection
curve or surface with respect to the reconstruction point. Since from a range of detectors
only one direction contributes to the reconstruction, there appears shading in the background
of the image. Artefacts (2) and (3) are both caused by the spatially varying detection view
angle and are therefore closely related. There have been attempts to regain missing
information using data completion (Patch, 2004, Patrickeyev I. and Oraevsky A.A., 2004).
The variable weight can be corrected by applying a posteriori a weight factor that is given
by the total detection view angle (2π or 4π for 2D and 3D imaging, respectively) divided by
the spatially variable actual detection view angle (Xu et al., 2004). Finally, the artefacts
arising from duplicate directions are in PAT reduced by the use of iterative reconstruction
techniques (Pan et al., 2003, Haltmeier et al., 2007, Xu et al., 2004, Paltauf et al., 2007a).
Recently, also a non-iterative algorithm was presented that is based on filter functions
precomputed for certain detector geometries (Kunyansky, 2008).

Inspired by the similarity to fan beam reconstruction (Kak, A. C. and Slaney, M., 88), we are
in this work seeking a method for direct, non iterative back projection reconstruction for
limited angle photoacoustic imaging. We propose appropriate weight factors that reduce
artefacts due to variable detection view angle and duplicate directions. In this study we will
concentrate on 2D and 3D imaging and the situation where all reconstruction points lie
within the detection region.

2. Back projection with weight factors
The photoacoustic tomography problem can be generalized for the 2D and 3D cases in the
following way. Detectors are distributed at positions r0 on a curve C0 or surface S0 for the
2D and 3D case, respectively, and receive time dependent signals p(r0,t). The universal back
projection formula established by Xu and Wang (Xu and Wang, 2005) gives an estimate of

the initial pressure  at point r,

(1)

where d = r − r0, d = |d|, cs is the speed of sound and the integration goes over the total solid
angle (or angle in 2D) Ω0 of the detection aperture. This formula states that the initial
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pressure can be obtained by back projecting a quantity b derived from the measured signals
with appropriate time delays, weighted with dΩ0, which is the (solid) angle of one detection
element with respect to the reconstruction point r. For the 3D case, b and dΩ0 are given by

(2)

where dS0 is the surface element on the detection surface and  is the normal unit vector
perpendicular to S0, pointing towards the photoacoustic source. For the 2D case these two
quantities are defined by

(3)

Now, dC0 is the line element on the detection curve and dΩ0 is an angle element. It could be
shown that the universal back projection (UBP) formula is exact for detection surfaces in the
shape of a sphere, an infinite cylinder or an infinite plane for 3D, and for a circle or an
infinite line in 2D (Burgholzer et al., 2007). For sphere and cylinder Ω0 = 4π, for infinite
plane and for circle Ω0 = 2π and for the infinite line Ω0 = π. If the detection aperture is
limited, e.g. for a hemisphere, different points r will see different total solid angles, which
will result in spatially varying weight and wrong relative amplitudes of reconstructed points.
A way to correct for this artefact is to use for each point the actual total angle Ω0(r) (Xu et
al., 2004). Since it only depends on the reconstruction point r, this weight factor can be
applied to the reconstructed image.

The effects of missing data for positions outside the detection region and of duplicate data
inside are illustrated in figure 2. Boundaries of an object outside the detection region will
appear blurred if they are located in the range of missing data because waves that propagate
perpendicularly to the boundary do not reach the detection aperture. The resulting distortion
of the object is demonstrated in figure 2b, showing a 2D image of two uniformly heated
spheres lying outside and inside the detection arc. The upper sphere is slightly smeared in
horizontal direction. Duplicate directions in reconstructions appear if Ω0(r) > π (2D) or
Ω0(r) > 2π (3D). All boundaries appear sharp but the simultaneous occurrence of single and
duplicate directions causes shading in the background (figure 2b).

We now concentrate on the reduction of artefacts in the detection region and show how
weight factors w(r, r0) can be defined that simultaneously correct for variable detection
view angle and duplicate data. These weight factors are multiplied with the integrand b(r0,t)
in equation (1). In an earlier work we used truncation of back projection arcs with a 1-0
window (Paltauf et al., 2007a) to avoid data overlap and could show that the smearing
artefacts can be reduced. In the case of an arc-shaped detection curve shown in figure 2 such
a window can be implemented by using only data from points in the detection curve below
the reconstruction point, leading to a “dynamic aperture length” (DAL) correction.
However, such truncation is known to induce high frequency artefacts and also does not use
all available data. A better solution is to use smooth weight functions that are defined in a
similar way as in limited angle fan and cone beam x-ray computed tomography (Kak, A. C.
and Slaney, M., 88). Appropriate filter functions for back projection should satisfy the
following two conditions: (1) Outside the zone of duplicate directions the detector signals
are back projected with weight 1. In the zone where duplicate directions exist, weight factors
are defined that complement each other to 1. (2) The functions defining the weight factors
should be smooth in the whole range, and should therefore be continuous and have
continuous first derivative.
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The following weight functions for 2D PAT fulfil these requirements. They are given as a
function of angle β, defined in figure 3a.

(4)

Data ranges A and B have overlapping information for the depicted reconstruction point and
receive complementary weight factors wA and wB, whereas no overlap is caused by data in
range C. It has to be noted that these weight factors do not depend on the actual shape of the
detection curve, but only on the angle β. The same factors could therefore also be used for
an open box as detection curve or for some other practically feasible shape.

Another strategy for finding weight factors satisfying the conditions above is to define a
smooth weight function w1 for detector points r0,1 lying above the reconstruction point r in
figure 3b. These points are defined by z0,1 < z, where z is the coordinate of the
reconstruction point and z0 the position on the detection surface. The detector points r0,2
lying on the opposite side of the detection surface with respect to r then receive the
complementary weight w2.

(5)

The factor 0.5 in front of sin2 leads to equal weight from opposite points for z = z0. This
kind of weight function is used for 3D imaging, where it is easier to implement than the
weight factors in equation (4).

3. Simulation
Simulations were performed with phantoms consisting of several uniformly heated spheres.
For this kind of photoacoustic source an analytical solution of the wave equation is available
for the 3D case (Diebold et al., 91), from which an analytical 2D solution can be obtained by
integration over a line. When simulating signals for the line detector, the 2D source is a
projection of the uniformly heated sphere in line direction. Figure 4 shows the 2D imaging
case for a half-circular detection curve (π-arc) with radius R = 10 and its centre at x = y = 0,
shown as dotted white line in figure 4(b) and (c). The source distribution is shown in (a).
The reconstruction using solely equation (1) but with varying total detection view angle
Ω0(r) is shown in (b), and a reconstruction employing the weight factors introduced in
equation (4) in image (c). Images (d, e) show profiles along horizontal (at y = −3.5) and
vertical (at x = 4) directions through the centres of the spheres. The rounded tops indicate
that the reconstructed sources are actually projections of uniformly heated spheres. The
typical artefacts for an open detection curve can be seen in (b), (d) and (e), namely vertical
streaks in the background and negative image values next to the spheres in horizontal
direction. Both effects, the vertical streaks and the negative areas have influence on
neighbouring objects such as the two smaller spheres, which appear with wrong amplitudes.
All these artefacts are reduced to a large degree after applying the appropriate weight
factors. The major effect is the extinction of the strong vertical streak artefact between the
spheres at position x = 4. The difference between reconstructed and original pressure is
plotted in Fig. 4(f), again as a profile at x = 4. Also included is a result obtained with the 1-0
window mentioned earlier (Paltauf et al., 2007a), which is more accurate than the 1/Ω0(r)
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weighted reconstruction, but slightly less accurate than the result obtained with smooth
weight factors.

Figure 5 shows the 3D results for a similar phantom as in the 2D case. The detection surface
is now a hemisphere with R = 10, centred at r = (0, 0, 0). Image (a) shows a section of the
3D source at y = 0, the plane containing the centres of the spheres. The image in (b) was
corrected a posteriori using the correct detection solid angle Ω0(r). The vertical streak
artefacts are clearly seen in this image and in the corresponding profiles in (d), (e). Also, the
small sphere next to the bigger one on the right hand side at position (4, 0, −3.5) is
reconstructed with wrong amplitude. In the reconstruction (c) with weight factors from
equation (5) not only the artefacts are strongly reduced but also the spheres appear with their
correct amplitudes. Note that in 3D imaging the original source is reconstructed. Spheres
appear therefore with sharp edges when displaying them as section image and the
corresponding profiles have rectangular shape, as opposed to the rounded shape in 2D
imaging.

4. Experiment
Testing of the proposed weight factors for experimental data was performed in a setup for
two-dimensional imaging, using a Mach-Zehnder interferometer as acoustic line detector as
described in detail elsewhere (Paltauf et al., 2007b). In brief, a focused laser beam forming
one arm of a Mach-Zehnder interferometer passes a water bath near the imaging object.
Photoacoustically excited sound waves crossing the light beam cause an optical phase
change that is converted into an amplitude modulation of the intensity after recombination of
the two beams. The signal received by a fast photodetector is proportional to the integral of
the acoustic pressure (the difference to ambient pressure) along the optical light path. This
integration gives rise to a strict two-dimensional imaging problem. In the vicinity of the
optical focus a temporal resolution of about 25 ns for the acoustic detector was achieved,
given by the optical beam diameter of 38 μm (full width at half maximum). In the present
experiments a phantom formed by black spheres embedded in light scattering gelatine was
used as imaging object. The spheres were droplets of Castor oil mixed with black pigment.
The gelatine was prepared by mixing 16% dry gelatine powder with 79% water and 5%
Intralipid 20, a soy bean emulsion containing 20% fat. The phantom had the shape of a
cylinder with a diameter of 13 mm and a height of 10 mm. Along its circumference the
gelatine cylinder was held by a transparent, thin plastic sheet. Laser pulses with a duration of
10 ns and a wavelength of 500 nm irradiated either side of the phantom in direction of the
line detector. Because the droplets were optically thick, only an outer shell was heated by
the laser radiation. The 2D projection along line direction should therefore appear as a solid
disk. The phantom was scanned in the water bath relative to the interferometer beam in
order to achieve data acquisition along a π-arc with 10 mm radius. Signals were acquired
with an angular increment of 2° at 91 positions along the scanning curve, using an average
over 10 laser pulses.

5. Results
Figure 6 shows the reconstruction of the phantom using the back projection algorithm from
equations (1), (3). In part (a) only the variable detection view angle Ω0(r) was used, whereas
part (b) shows a reconstruction employing weight factors from equation (4). Position (0, 0)
denotes the centre of the arc shaped detection curve with a total angle of π, covering the
range with negative y. The centre of the cylindrical phantom was below the centre of the π-
arc, approximately at position (0, −2). The main difference between the two reconstructions
can be seen in the region between the two spheres at positions (−0.5, −6) and (−0.5, −4.5).
Here the contrast between the objects and the background is reduced due to the strong streak
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artefact, which is also seen in the vertical profile at x = −0.5 mm (arrow in figure part (c)).
Artefacts are reduced to a large degree by use of the weight factors, as can be seen in figures
6(b) and (d).

6. Discussion
In limited angle PAT there is a fundamental difference between regions inside and outside
the detection region. Inside this zone where the detection view angle is larger than π or 2π
for 2D and 3D imaging, respectively, always a stable reconstruction of all object boundaries
is possible, outside not (Xu et al., 2004). This means that sufficient data is present to
reconstruct sharp boundaries of an object, since acoustic waves propagating in direction
perpendicular to the boundaries always hit the detection aperture in at least one direction of
propagation. The fact that reconstruction is possible does not mean that a certain algorithm
will work. Although it could be shown that the universal back projection formula gives an
exact reconstruction for a closed detection surface or curve (Xu and Wang, 2005), a
reconstruction from limited angle data suffers from artefacts caused by duplicate data. It
could be shown that such artefacts can be avoided by use of iterative methods, which means
in practice a greater computational effort since the same back projection procedure has to be
repeated for many iterations. The weight factors demonstrated in the present work, on the
other hand, enable a one-step, non iterative reconstruction by reducing the weight of parts of
the detection array that contain the duplicate data.

A very promising application of PAT is breast imaging for the detection of early cancer.
Due to enhanced vascularisation and differences in blood oxygenation in and around such a
tumour compared to normal tissue, a clear contrast for the detection of such lesions is
expected (Manohar et al., 2005, Andreev et al., 2000). This is also a typical example of a
limited angle problem. The limited accessibility leads to imaging configurations in the shape
of a hemisphere (Kruger et al., 99) or of an arc array (Andreev et al., 2000). One of the
strengths of PAT is its ability to provide the oxygen saturation of individual vessels from
small changes of image amplitudes with varying optical excitation wavelength. It is
therefore of great importance to obtain not only the correct position of the blood vessels but
also to reconstruct them with correct amplitude. As could be seen in the simulations, streak
artefacts due to duplicate data affect mainly structures located close to each other, causing
erroneous amplitudes of these structures. For example, in Fig. 4d the amplitude of the
projected sphere at x = −2.5 is underestimated by about 12%, whereas the sphere at x = 4
appears with about 60% too high amplitude. After applying the proper weight factors the
error relative to the original source could be kept below 4%. This demonstrated that it is
possible to obtain accurate results without the need for time consuming iterative algorithms.

The proposed weight factors are not applicable to planar or linear arrays, where no duplicate
directions exist. Because of the finite size of such arrays there always appear more or less
strong artefacts due to the missing data. A simple way to complement the data is to add one
or more additional arrays, for instance by adding data from two linear arrays arranged in an
“L” configuration for improved 2D imaging (Paltauf et al., 2007a). In such a configuration
there is again a range of duplicate data for which the proposed weight factors could be
applied.

In conclusion, weight factors for limited angle photoacoustic imaging can be simply
implemented in existing back projection algorithms and lead to a clear improvement of
imaging results without the need for time consuming iterative methods.
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Figure 1.
Common setups for photoacoustic tomography. Left: 3D imaging using a point detector
scanning over a surface enclosing the object. Middle: 2D imaging using a line detector
scanning along a curve around the object. Right: Quasi 2D imaging with a focused point
detector scanning along a curve in a plane, surrounding the object.
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Figure 2.
PAT with half circular or hemispherical detector distributions. (a) Waves originating at a
point and propagating in the indicated ranges are either not detected (missing data) or are
detected twice (duplicate data). (b) Simulation of 2D PAT with spherical sources lying
inside and outside the detection region. The arc shaped detection curve is indicated as a
dashed white line.
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Figure 3.
Smooth weight factors can be either defined (a) as a function of angle β denoting a direction
of propagation in the zone of data overlap or (b) of depths z and z0 in the detection region.
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Figure 4.
Simulation of 2D imaging. (a) Original phantom. Image reconstruction (b) with 1/Ω0(r)
weighting and (c) with smooth weight factors. The arc shaped detection curve is indicated as
a dashed white line. (d) Horizontal profile at y = −3.5. (e) Vertical profile at x = 4. Dotted
line: original, bold solid line: with 1/Ω0(r) weight, thin solid line: with smooth weight
factors. (f) Difference Δp0 between vertical profiles of reconstructed and original pressure
for y < 0. Bold solid line: 1/Ω0(r) weight, dotted line: 1-0-window, thin solid line: with
smooth weight factors.
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Figure 5.
Simulation of 3D imaging. (a) Original phantom. Image reconstruction (b) with 1/Ω0(r)
weighting and (c) with smooth weight factors. (d) Horizontal profile at z = −3.5. (e) Vertical
profile at x = 4. Dotted line: original, bold solid line: with 1/Ω0(r) weight, thin solid line:
with smooth weight factors.
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Figure 6.
Experimental 2D imaging of a phantom containing black spheres in light scattering gelatine.
(a) Reconstruction using 1/Ω0(r) a posteriori weighting. (b) Reconstruction using smooth
weight factors w(r, r0). (c) Vertical profile of image (a) at x = −0.5 mm. The arrow indicates
the streak artefact. (d) Vertical profile of image (b) at x = −0.5 mm.
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