Kim et al. Respiratory Research 2011, 12:108
http://respiratory-research.com/content/12/1/108

RESPIRATORY
RESEARCH

RESEARCH Open Access

Intratracheal transplantation of human umbilical
cord blood-derived mesenchymal stem cells
attenuates Escherichia coli-induced acute lung

injury in mice

Eun Sun Kim'", Yun Sil Chang'?", Soo Jin Choi, Jin Kyu Kim', Hey Soo Yoo', So Yoon Ahn', Dong Kyung Sung?,

Soo Yoon Kim?, Ye Rim Park? and Won Soon Park'?

Abstract

suppressing the inflammatory response.

Background: Human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuate hyperoxic
neonatal lung injury primarily through anti-inflammatory effects. We hypothesized that intratracheal transplantation
of human UCB-derived MSCs could attenuate Escherichia coli (E. col)-induced acute lung injury (ALl) in mice by

Methods: Eight-week-old male ICR mice were randomized to control or ALI groups. ALl was induced by intratracheal £.
coli instillation. Three-hours after £. coli instillation, MSCs, fibroblasts or phosphate-buffered saline were intratracheally
administered randomly and survival was analyzed for 7 days post-injury. Lung histology including injury scores,
myeloperoxidase (MPO) activity, and protein levels of interleukin (IL)-1a, IL-1B, IL-6, tumor necrosis factor (TNF)-a., and
macrophage inflammatory protein (MIP)-2 as well as the wet-dry lung ratio and bacterial counts from blood and
bronchoalveolar lavage (BAL) were evaluated at 1, 3, and 7 days post-injury. Levels of inflammatory cytokines in the
lung were also profiled using protein macroarrays at day 3 post-injury which showed peak inflammation.

Results: MSC transplantation increased survival and attenuated lung injuries in ALl mice, as evidenced by
decreased injury scores on day 3 post-injury and reduced lung inflammation including increased MPO activity and
protein levels of IL-1a., IL-1B, IL-6, TNF-a., and MIP-2 on day 3 and 7 post-injury. Inflammatory cytokine profiles in
the lungs at day 3 post-injury were attenuated by MSC transplantation. MSCs also reduced the elevated lung water
content at day 3 post-injury and bacterial counts in blood and BAL on day 7 post-injury.

Conclusions: Intratracheal transplantation of UCB-derived MSCs attenuates £. coli-induced ALl primarily by down-
modulating the inflammatory process and enhancing bacterial clearance.
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Background

Acute respiratory distress syndrome (ARDS), a severe
form of acute lung injury (ALI), is an acute respiratory fail-
ure in critically ill patients [1]. The mortality of ARDS/ALI
remains unacceptably high because of the lack of effective
treatments [2]. Infection is the most common cause of
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ARDS/ALI and results in a higher mortality rate than non-
infectious ALI [3,4]. The inflammatory process plays a key
role in the pathogenesis of both infectious and noninfec-
tious ALI and the degree of acute inflammation is strongly
correlated with outcome [5].

Recently, transplantation of various stem or progenitor
cells such as bone marrow (BM)-derived mesenchymal
stem cells (MSCs) or endothelial progenitor cells was
reported to reduce mortality and attenuate ALI induced
by endotoxins or sepsis in a rodent model [6-8]. This
attenuation was associated with moderation of the
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inflammatory reactions that accompany ALI, with variable
anti-bacterial effects [9,10]. These studies indicate that
MSC treatment could be a new therapeutic modality for
the treatment of ALL. Among the various sources of stem
cells, human umbilical cord blood (UCB) provides readily
available MSCs with low immunogenicity [11-13]. There-
fore, human UCB-derived MSCs are regarded as a viable
candidate source for cell therapy; however, this has yet to
be studied in an in vivo ARDS/ALI model. We previously
demonstrated that intratracheal transplantation of human
umbilical cord blood (UCB)-derived MSCs attenuates
hyperoxic lung injury in newborn rats through anti-
inflammatory effects rather than direct regeneration
[14,15].

We thus hypothesized that intratracheal transplantation
of human UCB-derived MSCs could attenuate Escherichia
coli (E. coli)-induced ALI in adult mice, and if so, the pro-
tective mechanism might be primarily mediated by anti-
inflammatory effects. In this study, we used a clinically
relevant mouse model of infectious ARDS/ALI with
Gram-negative bacterial pneumonia and sepsis induced by
intratracheal instillation of E. coli [16]. We examined the
effects of intratracheal delivery of human UCB-derived
MSCs on survival, histology, and lung inflammation in
mice with E. coli-induced ALI Histological injury scores
and myeloperoxidase (MPO) activity in lung homogenates
were evaluated. Interleukin (IL)-1a, IL-1pB, IL-6, tumor
necrosis factor (TNF)-a, and macrophage inflammatory
protein (MIP)-2 protein levels in lung homogenates were
measured serially by ELISA. Mouse lungs showed peak
inflammation three days after injury, at which time they
were profiled using protein macroarray analysis. We chose
this high-output proteomics approach for identifying pro-
teins of interest in an effort to elucidate the potential
mechanisms by which human UCB-derived MSCs modu-
late inflammatory responses. The wet-dry lung ratio and
bacterial concentrations in bronchoalveolar lavage (BAL)
and blood specimens after UCB-derived MSC transplanta-
tion were also examined.

Methods

Cell preparation

This study was approved by the Institutional Review
Board of Samsung Medical Center and by Medipost, Co.,
Ltd, Seoul, Korea. UCB is the most promising source of
MSCs because of its easy availability and the low immu-
nogenicity of the cells; MSCs from UCB can be adminis-
tered between HLA-incompatible individuals due to
these cells’ immune-modulatory properties, without
alloreactive lymphocyte proliferative responses [11-13].
In the present study, MSCs were isolated and cultivated
from human UCB as previously reported [14,15]. UCB
was collected from umbilical veins after neonatal delivery
with informed consent from pregnant mothers. The cells
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were shown to express CD105 and CD73 (99.6% and
96.3%, respectively) but not CD34, CD45, or CD14 (0.1%,
0.2%, and 0.1%, respectively). The cells were positive for
HLA-AB (96.8%) but not HLA-DR (0.1%). Human UCB-
derived MSCs differentiated into various cell types such
as respiratory epithelium, osteoblasts, chondrocytes and
adipocytes upon specific in vitro induction stimuli [15].
We confirmed the differentiation potential and karyoty-
pic stability of the human UCB-derived MSCs up to the
11" passage [15]. In this study, 5™ passage human UCB-
derived MSCs from a single donor were used for the
transplantions.

Human fibroblasts (MRC-5; Korean Cell Line Bank
No0.10171) were obtained from the Korean Cell Line
Bank (Seoul, Korea) and cultured in a-MEM medium
supplemented with 10% fetal bovine serum.

Bacterial preparation

We used E. coli as the source of infection because it is a
common cause of gram-negative bacterial lung infection
[16]. The E. coli strain E69 was generated by Pl transduc-
tion of the E. coli K12 outer membrane protein A (Omp
A) gene into an Omp A™ mutant of RS 218, isolated from
the CSF of a newborn with E. coli meningitis (a gift from
Dr. Kwang Sik Kim, Johns Hopkins Hospital, Baltimore,
MD, USA) [17]. E. coli was cultured overnight in 10 mL of
brain heart infusion broth (BHI, Difco Laboratories,
Detroit, MI, USA) at 37°C. The bacteria were then diluted
in BHI media and grown for 1 h to mid-logarithmic phase.
The suspension was centrifuged for 10 min at 5,000 g and
washed in phosphate-buffered saline (PBS). Optical density
was measured, and the bacteria samples were adjusted to
the desired concentration. The final E. coli preparation
contained 107 colony forming units (CFUs) in 0.05 mL
PBS [18].

Animal model

All of the experimental protocols were approved by the
Institutional Animal Care and Use Committee of Sam-
sung Biomedical Research Institute. The study followed
the institutional and National Institutes of Health guide-
lines for laboratory animal care.

Eight-week-old male ICR mice were purchased from
Orient Co. (Seoul, Korea) and housed in individual cages
with free access to water and laboratory chow. Animals
were divided into four groups: sham control (S, n = 57),
E. coli-induced ALI control (E, n = 125), ALI with fibro-
blast transplantation (F, n = 58), and ALI with human
UCB-derived MSCs transplantation (M, n = 104).

To induce ALI, mice were anesthetized with an intra-
peritoneal injection of a mixture of ketamine and xyla-
zine (45 mg/kg and 8 mg/kg, respectively). Briefly, each
mouse was restrained at a 70° angle against a plastic
wall, an otoscope was employed to visualize the vocal
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cords, and intubation was performed with a 20-gauge
central catheter (Leader Cath 20 G x 8 c¢cm; Vygon,
Paris, France). E. coli at 10’ CFUs in 0.05 mL PBS was
administered, followed by 2 cm H,O-pressure air infla-
tion to ensure an even bacterial distribution. After the
E. coli instillation procedure, which was completed
within 30 sec for each mouse, the catheters were
removed and the animals were allowed to recover and
subsequently returned to their dams.

For cell transplantation, 1 x 10° cells (MSCs in M or
fibroblasts in F) in 0.05 mL PBS were administered
intratracheally three hours after the E. coli instillation.
Mice in groups S and E received the same volume of
PBS intratracheally. For intratracheal transplantation,
the animals were anesthetized and the catheter was
placed as described above. After intratracheal transplan-
tation, the catheter was removed and the mice were
allowed to recover and subsequently returned to their
dams.

Intraperitoneal antibiotics (ceftriaxone, 100 mg/kg
once a day) were administered for three consecutive
days after the injury. Mice were sacrificed at post-injury
days 1, 3 and 7, and each animal was allocated to a
morphometric or biochemical group. Survival rates were
assessed for seven days after injury in the 7-day experi-
mental groups.

Tissue preparation

Lung tissue was prepared from surviving animals at
post-injury days 1, 3 and 7. The mice were anesthetized
with sodium pentobarbital (100 mg/kg), and the lungs
and heart were exposed via thoracotomy, followed by
transcardiac perfusion with ice-cold PBS.

The lungs were fixed by tracheal instillation of 4% for-
maldehyde with a constant inflation pressure of 20 cm
H,O. The trachea was ligated, and the lungs were removed
and immersed in 4% formaldehyde overnight at room
temperature. Both lungs were embedded in paraffin, and
transverse serial sections (4 pm thick) were prepared for
morphometric analyses. For the biochemical analyses,
the lungs were excised, frozen in liquid nitrogen, and
homogenized.

Morphometric analyses

Four-micrometer-thick sections were stained with hema-
toxylin and eosin. Two sections per mouse were ran-
domly chosen for the analysis, and three random
microscopic fields of the distal lung were evaluated by a
blinded observer. Lung injury was scored according to
the following four categories: alveolar congestion, hemor-
rhage, neutrophil infiltration into the airspace or vessel
wall, and alveolar wall thickness/hyaline membrane for-
mation. Each category was graded on a five point scale:
0 = minimal injury, 1 = injury up to 25% of the field, 2 =
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injury up to 50% of the field, 3 = injury up to 75% of the
field, and 4 = diffuse injury [19].

Myeloperoxidase (MPO) activity assay

MPO activity in the homogenized lung tissues was mea-
sured as described by Gray et al [20]. One unit of MPO
activity was defined as the quantity of enzyme needed to
degrade 1 pmol of peroxide/min at 25°C.

Enzyme-linked immunosorbent assay (ELISA)

The frozen lungs were homogenized in cold buffer
(50 mM Tris-HCI, pH 7.4) with 1 mM EDTA, 1 mL
EGTA, 1 mM PMSF, 42 mM KCl, and 5 mM MgCl,.
The samples were centrifuged at 8,000 g for 20 min at
4°C to remove cellular debris. The protein content in
the supernatant was measured using the Bradford
method with a bovine serum albumin (Sigma-Aldrich,
St. Louis, MO, USA) standard. Lung interleukin (IL)-1a,
IL-1B, IL-6, tumor necrosis factor (TNF)-a, and macro-
phage inflammatory protein (MIP)-2 levels were mea-
sured using the Milliplex MAP ELISA Kit according to
the manufacturer’s protocol (Millipore, Billerica, MA,
USA).

Protein macroarray

Each lung lysate was analyzed using a mouse cytokine
array kit (Proteome Profiler™; R&D Systems, Minneapolis,
MN, USA). A total of 250 pg of lysate was incubated in
the nitrocellulose membrane array overnight at 4°C. After
washing away the unbound protein, the array was incu-
bated with a cocktail of phospho-site-specific biotinylated
antibodies for 2 h at room temperature, followed by strep-
tavidin-HRP for 30 min. Signals were visualized with
chemiluminescent reagents (Amersham Biosciences, Pitts-
burgh, PA, USA), and recorded on X-ray film. The arrays
were scanned, and optical densities were measured using
Image J software (NIH) and compared among the experi-
mental groups.

The protein macroarray analysis included inflammatory
cytokines of interest, including complement 5a (C5a), the
soluble form of intercellular adhesion molecule (SICAM)-
1, IL-1a, IL-1pB, IL-6, IL-16, interferon-inducible protein
(IP)-10, the murine analogue of monocyte chemoattrac-
tant protein (MCP)-1 (JE), MCP-5, MIP-1a, MIP-1§3,
MIP-2, regulated upon activation normal T-expressed and
presumably secreted (RANTES), tissue inhibitor of metal-
loproteinase (TIMP)-1, TNF-a, and triggering receptor
expressed on myeloid cells (TREM)-1.

Wet-dry lung ratios

The lungs from each animal were removed, placed into
a microtube, and weighed. The lungs were then dried at
60°C for 72 h and weighed again. The wet lung mass
divided by the dry lung mass represented the wet-dry
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lung ratio, which indicates the fraction of wet lung
weight due to water.

Bacterial quantification

Bacterial concentrations were measured in BAL fluid
and blood from the E, F, and M groups at post-injury
days 1, 3 and 7. Mice were anesthetized, thoracotomy
was performed as described above, and intracardiac
blood was obtained aseptically, followed by transcardiac
perfusion with PBS. BAL fluids were obtained via an
aseptic saline irrigation.

Bacteria CFU levels in BAL fluids and blood were
measured at dilutions of 10°~10° plated on BHI agar
after overnight incubation at 37°C.

Assessment of direct inhibition of bacterial growth by
MSC:s or fibroblast was done by counting CFUs in vitro.
Dulbecco’s modified Eagle’s medium (DMEM) was used as
a control medium and human fibroblasts (MRC-5; Korean
Cell Line Bank No0.10171) were used as a control cells. In
brief, each 3 well-plates of DMEM, fibroblast, and MSCs in
12-well plates (10° cells per well) in BHI media were
infected with 10°> CFUs E. coli and incubated for 6 hours in
humidified CO, incubator, then aliquots of culture med-
ium were taken from each well, serially diluted with sterile
PBS, and plated on agar plates. Colonies were counted
after overnight incubation at 37°C.

Statistical analyses

The data are expressed as the mean + SEM. Survival rates
were compared using the Kaplan-Meier analysis followed
by a log rank test. For continuous variables with a normal
distribution, the groups were compared using a ¢-test with
a Bonferroni correction. Continuous variables that were
not normally distributed were analyzed using the Wilcoxon
rank test with a Bonferroni correction. All data were ana-
lyzed using SPSS version 12.0 (SPSS Inc., Chicago, IL,
USA). Values of p < 0.05 were considered statistically
significant.

Results

Survival rate

Despite antibiotic treatment, E. coli-induced ALI (E) sig-
nificantly reduced the survival rate (79%, 42/53 mice sur-
viving) at post-injury day 7 compared to the 100%
survival rate (22/22) of the sham control group (S). The
reduced survival rate observed in E (p < 0.05 vs. S)
improved with MSC treatment (M) (95%, 36/38 mice
surviving; p > 0.05 vs. S and p < 0.05 vs. E), but not with
fibroblast treatment (F) (p < 0.05 vs. S, p = 0.91 vs. E)
(Figure 1).

Lung histology, injury scores, and MPO activity
Representative photomicrographic lung histology in
group E showed increased congestion and cellular
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Figure 1 Survival Rates. Survival rates determined using the
Kaplan-Meier analysis followed by a log rank test. S, sham group; E,
E. coli-induced ALl control group; F, fibroblast transplant ALl group;
M, human UCB-derived MSC transplant ALI group.

infiltration at post-injury days 1, 3 and 7, with peak
inflammatory activity observed at day 3 compared with
that of S (Figure 2). To quantify the differences, lung
injury was scored according to the degree of alveolar
congestion, hemorrhage, neutrophil infiltration, and wall
thickening (Figure 3).

Group E showed significant increases in all injury scores
at post-injury day 1 (p < 0.01 vs. S for alveolar congestion
and leukocyte infiltration; p < 0.05 vs. S for alveolar
hemorrhage and wall thickening) and day 3 (p < 0.01 vs. S
for all scores) but not at day 7 (p > 0.05 vs. S in all scores).
MSC transplantation (M) significantly attenuated the ALI-
induced increases in injury scores at post-injury day 3 (p <
0.01 vs. E for alveolar congestion and leukocyte infiltra-
tion; p < 0.05 vs. E for alveolar wall thickening), except for
alveolar hemorrhage (p > 0.05 vs. E), while fibroblast
transplantation (F) did not attenuate and even aggravated
the injury scores for alveolar hemorrhage and leukocyte
infiltration (p < 0.01 vs. E) at post-injury day 3.

MSC transplantation (M, p < 0.01 vs. E), but not
fibroblast transplantation (F, p > 0.05 vs. E), significantly
attenuated ALI-induced increases in lung MPO activity
(an indication of neutrophil accumulation) (E, p < 0.01
vs. S) at post-injury day 3 (Figure 4).

Proinflammatory cytokines

The protein levels of IL-1a, IL-1B, IL-6, TNF-a, and
MIP-2 measured by ELISA in lung homogenates were
significantly higher in group E compared to S at post-
injury days 1 and 3 (E, p < 0.01 vs. S for all), and to a les-
ser extent at post-injury day 7 (E, p < 0.01 vs. S for IL-1a,
IL-1B, TNF-a, and MIP-2; p < 0.01 vs. S for IL-6). This
ALI-induced increase in cytokine levels was significantly
attenuated by MSC transplantation (M) but not by fibro-
blast transplantation (F) at post-injury days 3 (M, p <
0.01 vs. E), and 7 (M, p > 0.05 vs. S) (Figure 5).
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Figure 2 Gross Histologic Evaluation. Photomicrographs of hematoxylin and eosin staining of each group at three time points. (Scale bar = 25

Lung cytokine profiles

Lung homogenates at post-injury day 3 were used for a
mouse macroarray experiment to profile various inflam-
matory cytokine proteins involved in the peak inflamma-
tory reactions induced by ALI with E. coli instillation.
Protein levels of inflammatory cytokines from lung
homogenates, including C5a, sSICAM-1, IL-1a, IL-1f,
IL-6, IL-16, IP-10, JE, MCP-5, MIP-1a, MIP-13, MIP-2,
RANTES, TIMP-1, TNF-a, and TREM-1, were signifi-
cantly elevated in E (p < 0.01 vs. S, except for TNF-a: p
< 0.05 vs. S). MSC transplantation reduced the levels of
C5a, MIP-2, RANTES, and TNF-a to S levels (M, p >
0.05 vs. S), markedly reduced the levels of IL-16, MCP-
5, MIP-1a, MIP-1f, and TREM-1 (M, p < 0.01 vs. E),
and significantly reduced the levels of IL-1a, IL-1p,
IL-6, IP-10, and JE (p < 0.05 vs. E). Fibroblast transplan-
tation did not attenuate this increase for any cytokine
(F, p <0.01 vs. S; p > 0.05 vs. E) (Figure 6).

Lung water content

E. coli-induced ALI (E) increased lung water content
expressed as the wet-dry lung ratio, which suggested
increased permeability compared S at post-injury. The
increase in lung water content was marked at day 3 (E,
p < 0.01 vs. S) and to a lesser extent at day 7 (E, p <

0.05 vs. S). MSCs transplantation (M, p < 0.05 vs. E) but
not fibroblast transplantation (F, p > 0.05 vs. E) reduced
lung water content significantly at post-injury day 3
(Figure 7).

Bacterial counts

To evaluate the bacterial burdens, the number of colony
forming units (CFUs) was counted in BAL fluids and
blood from animals in the E, F, and M groups at post-
injury days 1, 3, and 7. Bacterial counts in both BAL
and blood were significantly lower in M compared to E
at post-injury day 7 (M, p < 0.01 vs. E); however, bacter-
ial counts did not different between F and E at post-
injury day 7 (Figure 8A-B).

Bacterial growth depending on the presence of MSCs
was evaluated in vitro. Six hours after incubation, bacter-
ial growth was significantly inhibited by MSC (M, p <
0.01 vs. E and F), but not by fibroblast (F, p > 0.05 vs. E)
(Figure 8-C).

Discussion

A major risk of ALI/ARDS is infection, such as severe
sepsis or pneumonia, which causes most cases of mortal-
ity [2-4,21]. Lipopolysaccharide (LPS)-induced lung
injury has been used as an animal model to mimic
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Figure 3 Lung Injury Scores. Lung injury scores according to each category. Data: mean + SEM, n = 6, 10, 4 and 10 in S, E, F, and M groups at
day 1, respectively; n =5,9,4 and 8in S, E, F, and M groups at day 3, respectively; n =7,9,4and 8in S, E, F, and M groups at day 7,
respectively; ** p < 0.01 vs. S group; * p < 0.05 vs. S group; ## p < 0.01 vs. E group; # p < 0.05 vs. E group; t1 p < 0.01 vs. F group; t p < 0.05
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infectious human ALI and to stimulate host inflamma-
tory responses [19,22-24]. However, LPS-induced ALI
causes endothelial or epithelial injury that is less severe
than that seen in human ALI [22]. In contrast, instillation
of E. coli into mouse lungs resulted in ALI with a presen-
tation similar to that of human AL, including severe
pneumonia and sepsis resulting in bilateral lung edema,
alveolar hemorrhage, leukocyte infiltration, and alveolar
wall thickening with severe inflammatory responses.
Severe inflammatory responses were evidenced by lung
MPO activity that was 20-fold greater than that of LPS-
induced lung injury [25], a surge of inflammatory

cytokines in lung homogenates, and increased water con-
tent in the lungs corresponding to an increased wet-dry
lung ratio that peaked at post-injury day 3. Furthermore,
the mortality rate in E. coli-induced ALI mice was about
30% with antibiotics treatment, which is consistent with
infection related-ARDS mortality in clinical settings [4].
Overall, these findings suggest that E. coli-induced ALI
resulting in severe inflammation is the most clinically
relevant model to date.

In this study, intratracheal transplantation of human
UCB-derived MSCs into E. coli-induced ALI mice signifi-
cantly increased survival and attenuated lung injuries.
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The protective effect of MSCs was evidenced by
decreased injury scores at post-injury day 3 and attenu-
ated lung inflammation, including a reduction in MPO
activity and inflammatory cytokine protein levels, at post-
injury days 3 and 7. MSC transplantation also reduced
the elevated lung water content at post-injury day 3 and
bacterial counts in blood and BAL fluid at post-injury
day 7 in vivo as well as in vitro. Thus, our results support
the potential use of human UCB-derived MSCs as a new
therapeutic modality for E. coli-induced ALL

Although the mechanism underlying the therapeutic
effect of MSCs on ALI has yet to be elucidated, the
anti-inflammatory properties of MSCs may contribute to
their protective role in ALI [7,8]. Recent ALI studies
using BM-MSCs have also suggested their anti-inflam-
matory effects as the main protective mechanism
[9,19,26,27]. Moreover, in previous studies, we success-
fully xenotransplanted human UCB-derived MSCs into
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Figure 6 Protein Macroarray Data for Each Group at Day 3. Densitometric histograms for C5a, sSICAM-1, IL-1a,, IL-1B, IL-6, IL-16, IP-10, JE,
MCP-5, MIP-Ta, MIP-18, MIP-2, RANTES, TIMP-1, TNF-at, and TREM-1. Data: mean + SEM, n =4, 4,4 and 4 in S, E, F, and M groups, respectively; **
p < 001 vs. S group; * p < 0.05 vs. S group; ## p < 0.01 vs. E group; # p < 0.05 vs. E group; t1 p < 0.01 vs. F group; t p < 0.05 vs. F group.

immunocompetent newborn rats and demonstrated
their efficacy in reducing hyperoxic lung injury, mainly
through anti-inflammatory effects [14,15]. Here, we
demonstrate attenuated lung MPO activity, which is an
indicator of neutrophil accumulation or activity, result-
ing from intratracheal human UCB-derived MSC trans-
plantation into ALI mice. The study also investigated
inflammatory cytokine levels from lung homogenates as
possible direct markers of lung inflammation. Protein
levels of pro-inflammatory cytokines including IL-1a,
IL-1B, IL-6, TNF-a, and MIP-2 were consistently
reduced by MSC transplantation in ALI mice. These
results clearly indicate an association between the
attenuation caused by human UCB-derived MSCs in E.
coli-induced ALI and these anti-inflammatory effects of
these cells.

We used a protein macroarray to analyze lung inflam-
matory cytokines to elucidate the possible mechanism
underlying the down-modulation of inflammation by
MSCs in ALI mice. MSC transplantation showed

suppressed pro-inflammatory molecules (IL-1a, IL-1f,
IL-6, TNF-a), down-modulated the chemotactic effects
of neutrophils, immature dendrocytes, and natural killer
cells (MIP-1a, MIP-1f, RANTES), and decreased the
chemotactic effects of T-cells (IP-10). These results indi-
cate an overall decrease in Toll-like receptor (TLR) sig-
naling [28-30]. TLRs are common immune molecules
that recognize bacterial pathogens in acute lower respira-
tory bacterial infections [28]. Moreover, TLRs are pattern
recognition receptors that control lung homeostasis and
play a key role in both infectious and sterile lung inflam-
mation [31]. Thus, human UCB-derived MSCs may mod-
ulate TLR signaling to attenuate the inflammation caused
by E. coli-induced ALI Another innate immune protein
class that can either amplify or dampen TLR-induced sig-
nals is triggering receptor expressed on myeloid cells
(TREM) [32]. TREM-1 is a well-known inflammatory
amplifier [31]; thus, MSCs might also modulate the
TREM-1 pathway that cross-reacts with TLR signaling.
Other lung proteins attenuated by human UCB-derived
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Figure 7 Lung Water Content (Wet-Dry Lung Ratio). Lung water
content (wet-dry lung ratio) in mice treated with human UCB-derived
MSCs, human fibroblasts, or PBS after ALl induction by intratracheal £.
coli instillation. Data: mean = SEM, n =7, 14,6 and 15in S, E, F, and M
groups at day 1, respectively;n = 5,17, 5and 18in S, E, F, and M
groups at day 3, respectively; n = 10, 15, 12and 13in S, E, F, and M
groups at day 7, respectively; ** p < 0.01 vs. S group; * p < 005 vs. S

group; # p < 0.05 vs. E group.
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MSCs, such as MCP-1 (JE), MCP-5, IL-16, and TIPM-1,
participate in inflammatory processes by T cell activation
and cell migration. Although the proteins presented in
this study do not form a clear pathway network, down-
regulation of E. coli-induced ALI by intratracheal trans-
plantation of human UCB-derived MSCs was clearly
associated with the control of complex inflammatory
interactions.

Human UCB-derived MSCs seem to have an impact on
endothelial and epithelial homeostasis in ALI. The
increased wet-dry lung ratio in ALI implies lung edema
which is primarily due to disrupted alveolar barrier integ-
rity maintained by both the lung endothelium and epithe-
lium. In this study, treatment with human UCB-derived
MSCs improved the wet-dry lung ratio in ALI mice, sug-
gesting that UCB-derived MSCs might have a role in
repairing alveolar barrier integrity. The epithelial sodium
channel (ENaC) and Na-K ATPase in type II pneumocytes
have been postulated as candidate sites important for
modulation by MSCs [33], probably by paracrine effects
such as keratinocyte growth factor (KGF) [23]. Endothelial
permeability modulation may be another mechanism
of action of MSCs, and KGF and angiopoietin-1 are
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potentially important molecules involved in this effect
[7,34-36]. Although MSCs have been shown to uniformly
improve wet-dry lung ratios in ALI models [23,24,26], the
precise action of MSCs on alveolar barrier integrity needs
to be further investigated.

In this study, human UCB-derived MSC transplantation
reduced bacterial concentration in bronchoalveolar spaces
and blood of E. coli-induced ALI mice, and in vitro data
also support an inhibiting effect of bacterial growth by
human UCB-derived MSCs, not by fibroblasts, which is
consistent with the study by Mei et al. in a sepsis model
[9]. Recently, a study using BM-MSCs in a bacteria-
induced ALI model suggested a paracrine effect by an
antibacterial peptide from MSCs [10]. Because inflamma-
tory cells contain many antibacterial peptides, MSCs
might augment the antibacterial activity of those cells or
secrete antibacterial peptides directly. Because little is
known about the antibacterial activities of MSCs, addi-
tional in vivo and in vitro studies should be conducted to
confirm the utility of MSCs in the treatment of bacterial
diseases.

As a limitation of the study, we performed tissue
examinations only in surviving animals at post-injury
days 1, 3, and 7. Thus, this method may contribute to
the lack of a difference at day 7, possibly resulting in an
under-estimation of the therapeutic effect of MSCs.

Nevertheless, this study is unique in establishing the
E. coli induced acute lung injury animal model and testing
the protective anti-inflammatory and bactericidal effects of
local intra-tracheal xeno-transplantation of human UCB
derived MSCs . E. coli induced ALI animal model is essen-
tial for further studies to elucidate the mechanism of pro-
tective anti-inflammatory and bactericidal effects of
human UCB derived MSCs observed in the present study
in the near future.

Conclusions

This study suggests that intratracheal transplantation of
human UCB-derived MSCs into mice with E. coli-
induced ALI significantly improves survival and attenu-
ates ALI, primarily through anti-inflammatory mechan-
isms. Moreover, it is thought that human UCB-derived
MSCs might have additional beneficial effects on E. coli-
induced ALI such as alveolar epithelial barrier repair
and bacterial clearance. UCB is a clinically promising
source of MSCs and our findings suggest human UCB-
derived MSCs transplantation as a new therapeutic
modality for reducing the high mortality and morbidity
of human ALL
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