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Abstract Following vessel wall injury, platelets adhere to
the exposed subendothelium, become activated and release
mediators such as TXA2 and nucleotides stored at very high
concentration in the so-called dense granules. Released
nucleotides and other soluble agents act in a positive
feedback mechanism to cause further platelet activation and
amplify platelet responses induced by agents such as
thrombin or collagen. Adenine nucleotides act on platelets
through three distinct P2 receptors: two are G protein-
coupled ADP receptors, namely the P2Y1 and P2Y12

receptor subtypes, while the P2X1 receptor ligand-gated
cation channel is activated by ATP. The P2Y1 receptor
initiates platelet aggregation but is not sufficient for a full
platelet aggregation in response to ADP, while the P2Y12

receptor is responsible for completion of the aggregation to
ADP. The latter receptor, the molecular target of the
antithrombotic drugs clopidogrel, prasugrel and ticagrelor,
is responsible for most of the potentiating effects of ADP
when platelets are stimulated by agents such as thrombin,
collagen or immune complexes. The P2X1 receptor is
involved in platelet shape change and in activation by
collagen under shear conditions. Each of these receptors is
coupled to specific signal transduction pathways in
response to ADP or ATP and is differentially involved in
all the sequential events involved in platelet function and
haemostasis. As such, they represent potential targets for
antithrombotic drugs.
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Introduction

The main role of blood platelets is to ensure primary
haemostasis, which means the maintenance of blood vessel
integrity and the rapid cessation of bleeding in the event of
loss of vascular integrity. They are also responsible for the
formation of pathogenic thrombi at sites of rupture or
erosion of an atherosclerotic plaque, promoting athero-
thrombotic diseases including acute coronary syndromes,
ischaemic stroke and peripheral artery disease [1]. Platelets
also play an important role in inflammation and can
influence the phenotype of other blood and vascular cells,
thereby contributing to many other non-haemostatic dis-
orders, from cystic fibrosis and arthritis to diabetes,
atherosclerosis and cancer [2–7].

Extracellular nucleotides and their receptors are impor-
tant components of the cardiovascular system and regulate
a broad range of physiological processes like the control of
vascular tone, smooth muscle cell proliferation and platelet
activation [8]. Adenosine 5′-disphosphate (ADP) plays
crucial roles in the physiological process of haemostasis
and in the development and extension of arterial thrombosis
[9]. As compared to strong agonists such as thrombin or
collagen, ADP is, by itself, a weak agonist of platelet
aggregation inducing only reversible responses. However,
ADP, stored at a very high concentration in platelet dense
granules and released upon activation at sites of vascular
injury, constitutes an important so-called secondary agonist,
which greatly amplifies most of the platelet responses and
contributes to the stabilization of the thrombus.
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Addition of ADP to washed platelets results in shape
change, reversible aggregation at physiological concentra-
tions of calcium (2 mM) and finally desensitization [10,
11]. Transduction of the ADP signal involves a transient
rise in free cytoplasmic calcium, due to mobilization of
internal stores, secondary store-mediated influx and a
concomitant inhibition of adenylyl cyclase activity [12].
ATP induces an extremely rapid influx of calcium from the
extracellular medium associated to platelet shape change
[13, 14].

Starting from the concept of a unique P2T receptor (T for
thrombocyte) originally postulated on the basis of pharma-
cological data [15], a model of three platelet P2 receptors
progressively emerged [16]. These are the P2X1 cation
channel, which is activated by ATP and two G protein-
coupled receptors, P2Y1 and P2Y12, both activated by ADP.
Each of these receptors has a specific function during
platelet activation and aggregation, which naturally has
implications for their involvement in thrombosis.

The respective roles of the three platelet P2 receptors
during platelet activation

The P2Y1 receptor

The P2Y1 receptor is widely distributed in many tissues
including heart, blood vessels and blood cells, neural tissue,
testis, prostate and ovary (Fig. 1) [17]. About 150 P2Y1

receptor-binding sites are expressed per platelet [18, 19],
which is very low as compared for instance to the TP

receptors or the thrombin receptor PAR-1 (1,000 to 2,000
sites per platelet). As it is coupled to Gαq, the P2Y1

receptor triggers the mobilization of calcium from internal
stores, which results in platelet shape change and weak,
transient aggregation in response to ADP [20–22]. The
P2Y1 receptor is absolutely required for ADP-induced
platelet aggregation. Its pharmacological inhibition or
genetic deficiency results in complete absence of platelet
aggregation and shape change in response to ADP. As a
consequence, at the intracellular level, the calcium signal is
abolished, while the ability of ADP to inhibit cAMP
formation is preserved [20, 23]. The P2Y1 receptor also
participates in the aggregation response to collagen and
plays a key role in collagen-induced shape change when
TXA2 formation is prevented [23, 24]. Overall, the P2Y1

receptor mediates weak responses to ADP but is neverthe-
less a crucial factor in the initiation of the platelet activation
induced by ADP or collagen.

Several selective antagonists of this receptor have been
described [25], namely the adenine nucleotide analogues
A2P5P, A3P5P or A3P5PS [26]; MRS2179 (N6-methyl-2′-
deoxyadenosine-3′,5′-bisphosphate) [18, 27–30]; MRS2279
[31] and MRS2500 (2-iodo-N6-methyl-(N)-methanocarba-
2′-deoxyadenosine-3′,5′-bisphosphate) [19, 29, 32]. The
latter displays the highest affinity for P2Y1 and constitutes
to date the most valuable tool to investigate the role of the
P2Y1 receptor in platelet function (for review, please see
Kenneth A. Jacobson, same issue).

Besides platelets, the P2Y1 receptor is also expressed on
endothelial cells, where it contributes to nucleotide-induced
relaxation [33, 34], and was recently shown to be involved
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in endothelial cell migration [35]. It is also expressed on
leukocytes, where its role is less well established, although
a role in the phagocytic activity of macrophages has
recently been highlighted [36].

The P2Y12 receptor

The P2Y12 receptor, despite being well known and
characterized on the basis of both pharmacological and
genetic evidence, was the last platelet P2 receptor to be
cloned [37, 38]. Its tissue distribution is very limited,
although not entirely restricted to platelets as it is also
present in brain [37], glial cells [39] and possibly in
vascular smooth muscle cells, where it could contribute to
vessel contraction [40, 41]. This receptor is defective in
patients with selective defects in platelet activation by ADP
[42] (for review, please see Marco Cattaneo, same issue).
ADP is the natural agonist of this receptor, while ATP and a
wide range of its triphosphate analogues behave as
antagonists [43, 44]. It is the molecular target of the
antiplatelet drugs clopidogrel and prasugrel, two thienopyr-
idine compounds that covalently bind to the receptor, and of
ticagrelor (AZD6140), cangrelor (AR-C69931MX) and
elinogrel (PRT060128), which are competitive antagonists
of the receptor [42, 45]. The P2Y12 receptor is responsible
for completion of the platelet aggregation response to ADP
initiated by P2Y1 [46] and for the ADP-dependent
amplification of platelet aggregation induced by other
agents such as Gq-coupled serotonin receptors [22], Gq

and G12/13-coupled TXA2 and PAR-1 receptors [47, 48],
immune complexes [49, 50] or when platelets are activated
by collagen through GPVI/tyrosine kinase/PLCγ2 pathway
[51]. The P2Y12 receptor is also responsible for the ability
of ADP to restore collagen-induced aggregation in Gαq-
deficient mouse platelets [52]. The P2Y12 receptor is also
involved in potentiation of platelet secretion independently
of TXA2 generation and macroaggregate formation [53, 54]
and mediates the stabilization of platelet aggregates induced
by thrombin [55–57] or TXA2 [58]. The requirement of this
receptor for completion of aggregation in response to ADP
but also for the ADP-dependent amplification of aggrega-
tion induced by other agents was confirmed in P2Y12

−/−

mice [37, 59]. The bleeding time is markedly prolonged in
these mice [37, 59], as it is in patients with severe P2Y12

deficiency [42], as well as in animals treated with high
doses of clopidogrel or other P2Y12 antagonists.

The P2Y12 receptor is coupled to inhibition of adenylyl
cyclase activity through activation of a Gαi2 G protein
subtype [60, 61], which is a critical component of the
signalling pathway for integrin αIIbβ3 activation [61, 62].
However, adenylyl cyclase inhibition and lowering cAMP
levels are not sufficient to cause platelet aggregation [63–
65]; thus, other signalling events are required for full

activation of the αIIbβ3 integrin and subsequent aggrega-
tion [66]. One important intracellular pathway which
regulates Gi-dependent integrin αIIbβ3 activation is con-
stituted by phosphoinositide 3-kinase (PI 3-K) [56, 67–70].
PI 3-K isoform p110β regulates integrin activation through
a classical lipid kinase-dependent mechanism, involving the
small GTPase Rap1 and/or the serine-threonine protein
kinase B/Akt (PKB/Akt) [71–76], whereas p110γ appears
to regulate integrin principally through a non-catalytic
signalling mechanism [77, 78]. Whether other PI3K class
I isoforms such as the p110α or PI3K class II or III
isoforms, which are highly expressed in blood platelets,
play a role in integrin αIIbβ3 activation remains to be
determined. Another way by which P2Y12 could contribute
to modulate aggregation through Gαi2 may involve
inhibition of the cAMP-dependent protein kinase (PKA)-
mediated phosphorylation of the vasodilator-stimulated
phosphoprotein (VASP), an intracellular actin regulatory
protein that is a negative modulator of αIIbβ3 integrin
activation [79].

Co-activation of the P2Y1 and P2Y12 receptors is
necessary for normal ADP-induced platelet aggregation
since separate inhibition of either of them with selective
antagonists results in a dramatic decrease in aggregation
[22, 46, 80]. The P2Y1 and P2Y12 receptors are differen-
tially involved in platelet aggregation induced by other
agonists, with the P2Y1 playing only a minor role, except in
the case of collagen-induced activation, while P2Y12

supports amplification of these responses. This is also the
case in the procoagulant activity of platelets. While both
receptors are indirectly involved through their role in
platelet P-selectin exposure and in the formation of
platelet-leukocyte conjugates leading to leukocyte tissue
factor exposure [81, 82], the P2Y12 receptor is also directly
implicated in the exposure of phosphatidylserine at the
surface of platelets [81, 83, 84].

The P2X1 receptor

The third component of the platelet P2 receptors is P2X1, a
ligand-gated cation channel responsible for a fast calcium
entry induced by ATP [14, 85]. Although unable to trigger
platelet aggregation by itself, the P2X1 receptor induces
transient shape change [13] and participates in collagen-
and shear-induced aggregation [86–88]. A comprehensive
review of its role in platelet function is provided by Martyn
Mahaut-Smith (this issue).

Desensitization

An important phenomenon in controlling thrombus growth
is the regulation of platelet reactivity after stimulation, and
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receptor desensitization is one general mechanism used by
cells to adapt their responsiveness. It has long been known
that after being exposed to ADP, platelets become unre-
sponsive to a second stimulation with ADP with a resultant
loss of shape change and aggregation. This so-called
refractory state of platelets to ADP is transient and,
depending on the experimental conditions, lasts 15 to
30 min provided an enzymatic system degrades ADP in
the medium. In the absence of such a system, platelets do
not recover responsiveness to ADP. The molecular mech-
anisms of this phenomenon have been studied in detail, but
consensus has not been reached, and two different views
have not yet been reconciled. On the one hand, it is thought
that the phenomenon of platelet refractoriness to ADP is
due to selective desensitization and internalization of the
P2Y1 receptor, while the P2Y12 receptor remains functional
with the ability of ADP to induce amplification of the
platelet aggregation induced by other agonists [89–91].
Desensitization of the P2Y1 receptor has been shown to be
dependent on receptor C-terminal phosphorylation sites, β-
arrestin-2 interaction and protein kinase C (PKC) activity
[92, 93]. The in vivo consequence is that under conditions
of platelets refractory to stimulation by ADP, the P2Y12

receptor remains functional and able to promote their
reactivity at sites of injury, thus preventing loss of
haemostatic function. On the other hand, it is reported that
both P2Y1 and P2Y12 receptors undergo desensitization,
and that P2Y12 desensitization is mediated by G protein-
coupled receptor kinases (GRK) [93, 94]. Further studies
are required to solve the apparent contradiction of these
reports.

Finally, the P2X1 receptor is also desensitized, and this
occurs very quickly and requires lower concentrations of
nucleotides than for the metabotropic receptor P2Y1 [95,
96]. The physiological implications of P2X1 desensitization
are still not well understood but might be related to the need
to confine thrombus growth to the site of a lesion and
prevent uncontrolled extension of the platelet aggregates.

Genetic polymorphisms of the P2Y receptors

Apart from the P2Y12 receptor defects in patients with mild
to severe haemorrhagic diathesis (reviewed by Marco
Cattaneo, this issue), P2Y1 and P2Y12 have been shown
to display gene sequence variations, which have been
proposed to be associated with increased platelet respon-
siveness to ADP. In P2Y12, the polymorphisms are in the
intronic part of the gene and have no obvious impact on the
coding sequence. Two haplotypes have been identified,
designated as H1 and H2, the latter being proposed to be
linked to enhanced platelet reactivity to ADP [97] and to a
diminished response to clopidogrel [98] and associated with

increased risks for peripheral arterial disease [99] and
coronary artery disease [100]. However, these results were
not confirmed in latter studies [101–103]. It thus appears
that polymorphisms of the non-coding region of the P2Y12

receptor gene do not have any impact on the receptor
function nor on the individual responsiveness to clopidog-
rel. Concerning the P2Y1 receptor, a silent polymorphism
was identified at position 1622 (A/G) of the coding
sequence, which led to increased platelet aggregation in
response to a low concentration of ADP (0.1 μM) in
subjects carrying the G allele [104]. Again, these results
were not confirmed in a large population of CAD patients
treated with clopidogrel [105]. Overall, whether polymor-
phism of the P2Y1 and P2Y12 receptors exists, which have
an impact on the platelet physiology or in clinical
pharmacology, probably requires further studies.

The platelet P2 receptors as molecular targets
for antithrombotic drugs

The P2Y12 receptor

Long before its molecular cloning, the pharmacological
importance of this receptor in haemostasis and thrombosis
was well recognized. This was due to the fact that the potent
antithrombotic thienopyridine compounds ticlopidine and
clopidogrel, of which an active liver metabolite selectively
and irreversibly targets the P2Y12 receptor, were used as
molecular tools to characterize platelet responses to ADP and
the role of the latter in thrombosis [106]. The thienopyridine
compounds are prodrugs which have to be metabolized by
the liver in order to generate active metabolites. The active
metabolite of clopidogrel [107] covalently binds cysteine
residues of the P2Y12 receptor, thus precluding the binding
of ADP [108–110]. Moreover, it has been recently reported
that clopidogrel's active metabolite disrupts homopolymers
of the P2Y12 receptor expressed in lipid rafts and partitions
them out of lipid rafts [111], pointing to the importance of
oligomerization and membrane localization on the function
of this receptor. Further studies are however required to
confirm these findings.

Clopidogrel treatment leads to a dose-dependent inhibition
of platelet aggregation in response to ADP with conserved
shape change and transient weak aggregation driven by P2Y1.
At the intracellular level, P2Y12 blockade results in the
inhibition of the ability of ADP to inhibit cyclic AMP
production while calcium signalling is preserved [46].
Platelet aggregation in response to strong activators is also
strongly inhibited through the effect on released ADP.

Large-scale clinical trials have demonstrated the benefi-
cial effects of thienopyridines in the prevention of major
cardiac events after coronary artery stent insertion and in
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the secondary prevention of major vascular events in
patients with a history of cerebrovascular, coronary or
peripheral artery disease [106, 112].

Prasugrel (CS-747, LY640315) is a third-generation thie-
nopyridine compound which has higher efficacy and faster
onset of action than clopidogrel. This is due to a slightly
different metabolic pathway and better rate of active metab-
olite generation as compared to clopidogrel [113]. A large-
scale clinical trial, TRITON-TIMI 38, including 13,609
patients planed for percutaneous coronary intervention
(PCI) demonstrated the overall superiority of prasugrel
(60 mg loading dose followed by 10 mg maintenance
dose) in comparison to clopidogrel (300 mg loading
dose, 75 mg maintenance dose) with a total of 19%
reduction of ischemic events with, particularly, 52%
decreased stent thrombosis [114], but with a 32% increase
of major bleeding, including fatal bleeding. Although not
really surprising, these results had an important impact in
the practises of interventional cardiologists [115].

Competitive P2Y12 antagonists cangrelor (AR-C69931MX)
and ticagrelor (AZD6140) are in various phases of
development, the latter being orally active while cangre-
lor requires intravenous administration [45, 116, 117].
Theoretically, use of such molecules would have an
advantage mainly in acute situations like myocardial
infarction, where fast blockade of the ADP receptor
should be beneficial as compared to the delayed action
of thienopyridine compounds. The rapid cessation of
activity would also be beneficial in terms of safety. A
second theoretical advantage of using competitive P2Y12

antagonists could be if there is less inter-individual
variability in the response to the treatment. Cangrelor
underwent two phase III trials (CHAMPION-PCI and
CHAMPION-PLATFORM) which were stopped early for
lack of efficacy over placebo or clopidogrel, respectively,
in patients undergoing PCI. Cangrelor is still being studied
as a bridge for patients on clopidogrel who need to go off
of drug to undergo surgery [118]. Ticagrelor was in a
phase III trial (PLATO) assessing whether this agent has
clinical efficacy superior to clopidogrel in the management
of ACS. Ticagrelor demonstrated improved cardiovascular
outcomes, including a reduction in myocardial infarctions
and vascular events as compared to clopidogrel. The main
adverse events with ticagrelor are bleeding and dyspnoea,
the latter of which is of unclear aetiology and of unknown
long-term clinical concern [119, 120]. For a complete
review, please see Collet et al. (this issue).

The P2Y1 receptor as a target for new antiplatelet
compounds

A consideration of the role of P2Y1 in platelet aggregation
and experimental thrombosis provides the rational for

suggesting this receptor to be a relevant target for new
antiplatelet compounds. P2Y1 knockout mice display
resistance in various models of thrombosis such as the
systemic thromboembolism induced by infusion of a
mixture of collagen and adrenaline [23, 121] or of tissue
factor [84] or in localized thrombosis after ferric chloride-
or laser-induced injury of mouse mesenteric arteries [122].
Similar protection is observed in animals treated with
selective P2Y1 antagonists such as the adenine nucleotide
analogues MRS2179 [18, 27, 84] or MRS2500 [123].
However, due to their limited bioavailability for long-term
treatment, new P2Y1 receptor antagonists with improved
pharmacokinetic profile will need to be developed. Several
non-nucleotide antagonists of this receptor have been
described such as tetrahydro-quinolinamine inhibitors
[124], aryl-urea inhibitors [125] and benzofuran-
substituted urea derivatives [126] which display however
lower affinity for the receptor. Whether these compounds
fulfil these latter criteria and are effective in vivo remain to
be investigated.

Moreover, a combination of P2Y1 deficiency or inhibi-
tion and clopidogrel treatment has been found to confer
better thromboresistance than either condition alone, sug-
gesting that a combination of P2 receptor antagonists could
improve antithrombotic strategies [122, 123]. It is worthy to
note that inhibition of the P2Y1 receptor results in only
moderate prolongation of the bleeding time, which could be
advantageous in terms of safety. Additional advantages of
targeting the P2Y1 receptor rely on its role in vascular
inflammation [127] and in atherosclerosis [128] (see
below). As a consequence, this receptor could represent
an attractive and original target for drugs with multiple sites
of action in atherothrombosis and beyond in other inflam-
matory diseases.

The P2X1 receptor as a target for new antiplatelet
compounds

P2X1-deficient mice have in fact no prolongation of their
bleeding time as compared to the wild type, indicating that
they conserve normal haemostasis. In contrast, they display
resistance to the systemic thromboembolism induced by
injection of a mixture of collagen and adrenaline and to
localized laser-induced injury of the vessel wall of
mesenteric arteries [88]. Since in vitro the P2X1 receptor
plays an important role in thrombus formation only under
high shear conditions, it might represent the ideal target for
an antithrombotic drug. Conversely, increased systemic
thrombosis has been reported in mice overexpressing the
human P2X1 receptor [129]. Moreover, the P2X1 antagonist
NF449 [130] has an inhibitory effect on platelet activation
ex vivo and thrombosis in vivo [131]. These results clearly
indicate that the P2X1 receptor should also be considered as
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a potential target for antiplatelet strategies, with the
interesting feature that P2X1 antagonists should be effective
only at sites of severe stenosis where shear forces are very
high, without having a deleterious effect on normal
haemostasis. However, further work is required to conclu-
sively establish this point.

The platelet P2 receptors beyond haemostasis (Fig. 2)

Vascular inflammation plays a central role in both the
progressive and acute components of atherothrombotic
disease. It is now appreciated that activated platelets
contribute to inflammation since platelets are an important
source of inflammatory mediators, compounds with trophic
activity such as PDGF, expose P-selectin, CD40 and CD40
ligand (CD40L) which allow interaction with leukocytes
and subsequent leukocyte activation and release of a range
of inflammatory cytokines and exposure of tissue factor [4].
Thus, the clinical efficacy of antiplatelet drugs might also
be related to blockade of the contribution of platelets to
inflammation [132]. The role of the P2Y12 receptor not
only in platelet aggregation but also in the activation of
multiple inflammatory and trophic processes may be
expected to result in its direct involvement in the
progression of atherosclerosis and restenosis, which has
been reported recently in rabbit and in mice [133–137].

Concerning P2Y1, its role in platelet function and its
presence in all cell types and tissues involved in inflam-
mation and atherosclerosis questioned its involvement in
these diseases [138, 139]. Using P2Y1

−/− mice crossed with
ApoE−/− mice, a role of the P2Y1 receptor in the

development of atherosclerosis was demonstrated [128].
Interestingly, bone marrow transplantation experiments
showed that the platelet receptor is not involved in this
process, suggesting a possible role of the P2Y1 receptor
expressed in endothelial cells [128]. We recently reported
that the P2Y1 receptor contributes to the upregulation of
adhesion molecule (P-selectin, VCAM-1 and ICAM-1)
exposure in TNFα-stimulated ECs by a mechanism
involving p38 MAP kinase signalling pathway, which in
turn facilitates recruitment of monocytes and their transmi-
gration. In addition, we found that the endothelial P2Y1

receptor contributes to TNFα-induced leukocyte recruit-
ment in experimentally inflamed arteries in a mouse model
in vivo [127]. Thus, the P2Y1 receptor might be an original
target for new anti-inflammatory strategies.

In addition to vascular inflammation, through their
capability of interacting with many other cells, platelets
are involved in many physiological and pathological
processes which we will not all cover here but will just
point some of these. Platelets play a role in allergic asthma
[140]. They are necessary for lung leukocyte recruitment in
a murine model of allergic inflammation, and platelet-
leukocyte aggregates are formed in circulating blood of
patients with asthma after allergen exposure [141]. It has
been reported that the P2Y12 receptor is required for
proinflammatory actions of the stable abundant mediator
LTE4 in allergic asthma and has been suggested to be a
novel potential therapeutic target for asthma [142]. The
specific contribution of the platelet P2 receptors in this
disease warrants further studies as the P2Y1 receptor has
also been proposed to have a role in airways inflammation
[143].
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Platelets are strongly involved in cancer and especially
in metastatic dissemination [144, 145] through complex
mechanisms including the ability to mask tumour cells to
the immune system and to contribute to tumoural angio-
genesis. In particular, tumour cells release nucleotides
which, among other stimuli, activate platelets. Here too,
animal models and clinical trials should be undertaken to
evaluate existing P2 receptor targeting drugs as adjuvant
anticancer therapies.

Finally, platelets are also involved in innate immunity
[146, 147]. In particular, platelets play a critical role in the
pathogenesis of malarial infections. However, recent work
suggests that they are also involved in protection against
this infection and that killing of parasite-infected erythro-
cytes was dependent on platelet activation via the P2Y1

receptor, but not P2Y12 [148]. Whether the platelet P2
receptors display specific roles in diseases where platelets
are involved requires further studies.

Conclusions

All the effects of nucleotides on platelets appear to lay on
three distinct receptors, namely two ADP receptors P2Y1

and P2Y12, and one ATP receptor P2X1. They mediate
selective transduction pathways responsible for the different
function of platelets. Each of these receptors plays also a
role in thrombosis. The P2Y12 receptor is an established
target for antithrombotic drugs. The challenge for the future
will be to determine whether the two other nucleotide
receptors P2Y1 and P2X1 constitute solely or in combina-
tion with P2Y12, attractive target for new antithrombotic
drugs. Roles of blood platelets beyond haemostasis also
involve the platelet P2 receptors, which should now be
studied in more details.
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