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Abstract Platelets contain at least five purinergic G
protein-coupled receptors, e.g., the pro-aggregatory P2Y1

and P2Y12 receptors, a P2Y14 receptor (GPR105) of
unknown function, and anti-aggregatory A2A and A2B

adenosine receptor (ARs), in addition to the ligand-gated
P2X1 ion channel. Probing the structure–activity relationships
(SARs) of the P2X and P2Y receptors for extracellular
nucleotides has resulted in numerous new agonist and
antagonist ligands. Selective agents derived from known
ligands and novel chemotypes can be used to help define the
subtypes pharmacologically. Some of these agents have
entered into clinical trials in spite of the challenges of drug
development for these classes of receptors. The functional
architecture of P2 receptors was extensively explored using
mutagenesis and molecular modeling, which are useful tools
in drug discovery. In general, novel drug delivery methods,
prodrug approaches, allosteric modulation, and biased ago-
nism would be desirable to overcome side effects that tend to
occur even with receptor subtype-selective ligands. Detailed
SAR analyses have been constructed for nucleotide and non-
nucleotide ligands at the P2Y1, P2Y12, and P2Y14 receptors.
The thienopyridine antithrombotic drugs Clopidogrel and
Prasugrel require enzymatic pre-activation in vivo and react
irreversibly with the P2Y12 receptor. There is much

pharmaceutical development activity aimed at identifying
reversible P2Y12 receptor antagonists. The screening of
chemically diverse compound libraries has identified novel
chemotypes that act as competitive, non-nucleotide antago-
nists of the P2Y1 receptor or the P2Y12 receptor, and
antithrombotic properties of the structurally optimized
analogues were demonstrated. In silico screening at the
A2A AR has identified antagonist molecules having novel
chemotypes. Fluorescent and other reporter groups incorpo-
rated into ligands can enable new technology for receptor
assays and imaging. The A2A agonist CGS21680 and the
P2Y1 receptor antagonist MRS2500 were derivatized for
covalent attachment to polyamidoamine dendrimeric carriers
of MW 20,000, and the resulting multivalent conjugates
inhibited ADP-promoted platelet aggregation. In conclusion,
a wide range of new pharmacological tools is available to
control platelet function by interacting with cell surface
purine receptors.

Keywords Purines . GPCR . Ion channel . Structure–
activity relationship .Molecular modeling .Mutagenesis

Introduction: subtypes of P2X and P2Y receptors

Extracellular nucleotides activate cell surface P2 receptors
which are widely distributed and participate in the
regulation of nearly every physiological process, including
in the immune, inflammatory, cardiovascular, muscular, and
central and peripheral nervous systems [1, 2]. Closely
related to these processes are the adenosine receptors
(ARs), all four subtypes of which are G protein-coupled
receptors (GPCRs). The P2 receptors are divided into two
distinct families: fast P2X receptors (ligand-gated ion
channels) and P2Y receptors (GPCRs). The P2Y receptors
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respond to various naturally occurring adenine and uracil
mono- and dinucleotides. The P2X receptors are more
structurally restrictive in native ligand selectivity than P2Y
receptors and are activated principally by ATP. These
extracellular nucleotides are produced in response to tissue
stress and cell damage during neurotransmitter release and
as a result of hemichannel formation. The concentration of
extracellular nucleotides that act as P2 receptor agonists can
vary dramatically depending also on the aforementioned
circumstances. Thus, the state of activation of these
receptors can be highly dependent on the stress conditions
or disease states affecting a given organ or tissue.

The P2X receptors consist of seven subtypes that are
numbered P2X1 through P2X7. Activation of P2X receptors
leads to an influx of cations such as sodium and calcium,
which depolarize excitable cells and activate cytosolic
enzymes, respectively. The P2X7 receptor, in addition to
forming the usual cation channel, and upon prolonged agonist
exposure, also opens a large pore which can pass organic
cations and dye molecules. The active ligand-gated ion
channels of the P2X receptors are composed of trimeric
aggregates of subunits. Both heterotrimers and homotrimers
have been characterized [3], and the homotrimers and
heterotrimers of a given subtype may have entirely different
structural requirements for agonists or antagonists. For
example, the P2X1 receptor can form heteromers with the
P2X2, P2X4, and P2X5 receptors [4–7].

The eight human P2Y receptor subtypes are numbered
P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and
P2Y14, which leaves some gaps due to premature assign-
ment of numbers to certain putative P2Y receptors that
were later shown to be either species homologs or entirely
different types of GPCRs. The structures of representative
native adenine and uracil (1–4 and 23–25 in Fig. 1)
nucleotides that activate P2Y receptors are shown, and
each of the native nucleotides may activate one or more
P2Y receptor subtypes. In some cases, the same nucleotide
might activate one subtype and antagonize another. The
adenine nucleotide ATP 2 is a full agonist at two human
P2Y subtypes (P2Y2 and P2Y11 receptors), and the
corresponding diphosphate ADP 1 activates three different
subtypes (P2Y1, P2Y12, and P2Y13 receptors). The uracil
nucleotide UTP 24 activates two subtypes (P2Y2 and P2Y4

receptors), while UDP 23, previously thought to activate
only a single subtype (P2Y6 receptor), is also now known
to activate P2Y14 receptors along with the originally
designated native agonist UDP-glucose 25 [8]. The naturally
occurring dinucleotide Ap3A 3 and its homologues, including
uracil derivatives, also activate various P2 receptors [9, 10].
Efforts have been made to identify other naturally occurring
nucleotides that interact with known P2Y receptors and to
deorphanize related GPCR sequences that have not yet been
assigned a native agonist [2, 11].

Platelets contain at least five purinergic GPCRs, e.g., the
ADP-activated P2Y1 and P2Y12 receptors, the P2Y14

receptor (pyrimidine-selective), and A2A and A2B ARs, in
addition to the ligand-gated P2X1 ion channel (Table 1).
Co-activation of P2Y1 and P2Y12 receptors is required for
the aggregatory effect of ADP [12]. The P2Y12 receptor is
the site of action of the important thienopyridine antiplatelet
drugs Clopidogrel 29 and Prasugrel 32 (Fig. 2). Activation
of the P2X1 receptor by ATP is also pro-aggregatory, but
only transiently and under high shear stress conditions [13].
Antagonists of the P2X1 receptor inhibit the platelet shape
change induced byα,β-meATP 5 [80]. A P2Y14 receptor was
also detected in platelets, but its role is undetermined [14].

The first purine receptor detected in platelets was the Gs-
coupled A2A AR, at which adenosine has an anti-aggregatory
function [15]. The SAR of AR ligands will be covered only
briefly in this review. There are a number of excellent
reviews of A2A AR ligands [16, 17]. Recently, a novel role in
platelet aggregation was proposed for the Gs-coupled A2B

AR [18], which is expressed at low levels in mouse platelets
[19]. This subtype is upregulated in platelets under injury or
stress conditions in vivo, and it downregulates the expression
and function of the P2Y1 receptor by raising cyclic AMP.

Structure and regulation of purine receptors
that are expressed in platelets

The knowledge of P2X receptor structures was recently
advanced with the X-ray crystallographic determination of
the P2X4 subunit [20]. However, the crystal form did not
contain a bound ligand, so predicting the orientation of ligands
in the extracellular loop (EL) region of the P2X receptors is
still subject to modeling. The X-ray structure of the P2X1
receptor in platelets has not yet been determined, but the
structure–function relationships of various P2X subtypes have
been probed using site-directed mutagenesis [21].

The structure, signaling, and regulation of P2Y receptors
have been explored pharmacologically. Two subfamilies of
P2Y1-like (five members: P2Y1, P2Y2, P2Y4, P2Y6, and
P2Y11 receptors) and P2Y12-like receptors (three members:
P2Y12, P2Y13, and P2Y14 receptors) have been defined.
The P2Y1 receptor was first cloned from chick brain in
1994 [22], and the platelet P2Y12 receptor was first cloned
in 2001 [23]. These subfamilies constitute two distinct groups
based on signaling pathways and similarities in the function of
key amino acid residues, but not on ligand structure [24, 25].

�Fig. 1 Nucleotide derivatives that activate P2X and P2Y receptors,
with emphasis on agonist ligands for studying these receptors in
platelets. a Adenine nucleotides. b Uracil nucleotides. Phosphate
derivatives would exist predominantly in an ionized form under
physiological conditions

306 Purinergic Signalling (2011) 7:305–324



OHHO

O

N

N

N

NH2

N

HO OH

O

N

N

N

NH2

N

O O
P
O

OH
n

3 n = 3
4 n = 4

14 MRS2365
EC50 (P2Y1) 0.4 nM

HO OH

O
P

HO

O

OH
2

N

N

N

NH2

N SCH3

HO OH

O

10  X = H
11  X = Cl

O
P

CX2
P

HO

O

OH

O

OH
2

N

N

N

NH2

N SCH3

HO OH

O

1  n = 1
2 n = 2

O
P

O
P

HO

O

OH

O

OH
n

N

N

N

NH2

N

HO OH

O
O

P
CH2

P
O

O

OH

O

OH
2

N

N

N

NH2

N
H

5 HO

O
O

P
HS

O

OH
n

OH

N

N

N

NH2

N

RO OR

O
O

P
O

P
HO

O

OH

O

OH
2

N

N

N

NH2

N

COCO

6  n = 2
7  n = 3

22 Bz-ATP

, H

OHHO

O

N

N

N

NH2

N

HO OH

O

8  n = 1
9  n = 2

O
P

O
P

HO

O

OH

O

OH
n

N

N

N

NH2

N SCH3

HO OH

O

12

O
P

O
P

HO

O

OH

O

BH3
2

N

N

N

NH2

N SCH3

HO OH

O
O

P
CH2

P
O

O

OH

O

OH
2

N

N

N

NH2

N

13

SCH3

H3CS

R =

O
P

CH2
P

O

O

OH

O

OH
2

N

N

N

NH2

N

16 β,γ-me-(N)mc-ATP

15

HO OH

O
P

HO

O

OH
3

N

N

N

NHCH3

N SCH3

H

HO OH

17 HEADP
HO OH

O
O

P
HO

O

OH
2

N

N

N

NH2

N

(CH2)4 CH3

20HO OH

O
O

P
HO

O

OH

N

N

N

NH2

N S(CH )4

HO OH

O
O

P
O

OH

OHHO

O O

2

N

N

N

NH2

N

N

CONH2

+

HO OH

O
O

P
O

OH
2

N

N

N

NH2

N
O

H3C

NO2H3CO

H3CO

19

18

HO OH

O
O

P
HO

O

OH
3

N

N

N

NH2

N S

(CH2)6CN

21

SCH3

2
CH=CH2

-

A

O
O

OHHO

HO

HO

HO OH

O
O

P
CF2

P
HO

O

OH

O

OH

HN

N

O

O

HO OH

O
O

P
O

P
HO

OH

O

OH

HN

N

O

O

n

O

23  n = 1
24  n = 2

HO

O
O

P
O

OH

HN

N

O

S

2

OH

O
O

OHHO

HO

HO

HO

O
O

P
O

OH

HN

N

O

O

2

OH

HO OH

O
O

P
CH2

P
HO

O

OH

O

OH

HN

N

O

S

26 MRS2690
EC50 (P2Y14) 11 nM

27 MRS2802
EC50 (P2Y14) 63 nM

25  UDP-glucose
EC50 (P2Y14) 400 nM

28 MRS2905
EC50 (P2Y14) 0.92 nM

B

Purinergic Signalling (2011) 7:305–324 307



N

S Cl

H

N

S Cl

H

O

N

Cl

H

O

HO

HS

N

Cl

H

SS

29 Clopidogrel 30 2-oxo derivative of Clopidogrel

31 Active metabolite of Clopidogrel
(racemic, mixture of 2 thiols)

P2Y12  receptor

N

S

N

HS

SS

32 Prasugrel (CS-747) 33 Active metabolite of Prasugrel 
(R-138727 is racemic, mixture of 4 thiols)

P2Y12  receptor

CH3COO

N

A

B

FF

F

O O

O

OCH3

O

OCH3

O

OCH3

O

OCH3

O

CYP oxidation

1) hydrolysis by esterase
2) CYP oxidation

O

HO

O

HO

O

HO

CYP oxidation

P2Y12  receptor

Fig. 2 Thienopyridines as non-nucleotide antagonists of the P2Y12 receptor that require activation in vivo. Enzymatic formation of the active
metabolites precedes the formation of the disulfide bond with the target P2Y12 receptor on platelets. CYP cytochrome P450

308 Purinergic Signalling (2011) 7:305–324

Table 1 Subtypes of platelet purine receptors and their representative ligands (potency at the human homologs, unless noted r=rat)

Receptor Main distribution Agonists (native in bold, pEC50) Antagonists (pIC50)

P2Y1 Brain, epithelial and endothelial cells,
platelets, immune cells, osteoclasts

MRS2365 9.4 > 2-MeSADP 8.2 >>
ADPβS 7.0> ADP 5.1 >ATP

MRS2500 9.0> MRS2279 7.3>
MRS2179 6.5

P2Y12 Platelets, brain (glial cells), microglial
cells

2-MeSADP 7.9 ≥ ADP 7.2 AR-C69931MX 9.4 > AZD 6140 7.9,
INS 50589 7.8 > RB2 7.6 (r) >
2-MeSAMP 4.0

P2Y14 Placenta, mast cells, adipose tissue,
stomach, intestine, discrete brain
regions

MRS2905 8.7 > MRS2690 7.3 > UDP 6.8,
UDP-glucose 6.5 > UDP-galactose 6.2

Compound 80 8.7

P2X1 Smooth muscle, platelets, cerebellum,
dorsal horn spinal neurons

BzATP 8.7 > ATP 7.3, 2-MeSATP 7.3,
α,β-MeATP 6.7 (rapid desensitization) >>
CTP 4.4

NF 449 9.5 > Ip5I 8.8 > TNP-ATP 8.2 >
Ro 0437626 > NF 279 7.7

A2A Striatum, platelets, lymphocytes CGS21680 7.6 > adenosine 6.5 ZM241385 8.8 > SCH442416 8.4 > CSC
7.3 > theophylline 5.6 > caffeine 4.6

A2B Colon, fibroblasts, endothelial cells,
astrocytes, bronchial smooth muscle,
intestinal epithelial cells, mast cells,
platelets

BAY 60-6583 8.0 > adenosine 4.8 PSB603 9.3 > MRS1754 8.7 >
MRE2029-F20 8.3 > theophylline
5.0 > caffeine 4.5



Thus, both adenine and uracil nucleotides are found as
agonists in each P2Y subfamily.

The signaling pathways of P2Y receptors have been
extensively characterized. The preferential coupling of the
first subfamily of P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11

receptors is to Gq, leading to the activation of phospholipase
Cβ and to a rise in intracellular calcium. The P2Y11 receptor
alternately couples to Gs. The second subfamily of P2Y12,
P2Y13, and P2Y14 receptors couples to Gi, resulting in the
inhibition of adenylyl cyclase to decrease production of
cyclic AMP. Therefore, activation of the P2Y1-like receptors
leads to a rise in intracellular calcium. The amino acid residues
R333 and R334 in the carboxy terminal region of the human
P2Y1 receptor were found using site-directed mutagenesis to
be crucial for Gq coupling [26]. Activation of the P2Y1

receptor can inhibit ion channels, such as the M-type K+

current in hippocampal neurons [27].
Desensitization of P2Y receptors in response to prolonged

agonist exposure has been studied pharmacologically
[28, 29]. In platelets, which express two ADP-responsive
P2Y subtypes, the P2Y1 receptor desensitizes more rapidly
than the P2Y12 receptor. The P2Y1 receptor is desensitized
mainly through protein kinase C-dependent processes, and
the P2Y12 receptor is a good substrate for the GPCR kinases
leading to arrestin binding.

Factors that affect the localization of P2Y receptors
within the cell have been studied. In kidney cells, the role
of residues on the cytosolic C-terminal domain of the P2Y1

receptor in basolateral sorting has been probed [30].
Deletion of this sorting signal that contains nine charged
residues or alteration of the total number of charges caused
a redirection of the receptor to the apical membrane. A
P2Y1-like receptor response in calcium transport has been
detected on mitochondrial membranes [31].

Dimerization of GPCRs is a general phenomenon that
can lead to major effects on the pharmacology of a given
receptor subtype. Homodimerization of the P2Y1 receptor
expressed in human embryonic kidney (HEK)-293 cells
was detected using fluorescence resonance energy transfer
donor photobleaching analysis [32]. In membranes prior to
agonist exposure, 44% of the P2Y1 receptors existed in the
dimeric state; upon exposure to agonist, a reversible rise to
85–100% dimerization was observed. Both monomeric
P2Y1 receptors and constitutive dimers were fully active.
The terminal 19 amino acids of the cytosolic terminal
region were essential for both dimerization and internaliza-
tion, but activation by agonists was not reduced until >39
amino acids were removed from this region. Various
heterodimers of P2Y receptors with other P2Y and non-
P2Y GPCRs have been proposed. For example, a dimer of
the A1 AR and the P2Y1 receptor was characterized [33].
The internalization of the P2Y11 receptor is dependent on
the co-expression of the rapidly desensitizing P2Y1 recep-

tor, suggesting the occurrence of P2Y1/P2Y11 receptor
heterodimers [34].

Molecular recognition in the P2Y1 and P2Y12 receptors,
i.e., ligand binding and activation functions, has been
extensively explored using mutagenesis [35–37]. Homology
modeling of the P2Y receptors based on bovine rhodopsin or
one of the more recent template structures followed by small
molecule docking has provided insight into the possible
ligand-binding modes. Comparisons of the structural char-
acteristics and functionally important amino acid residues
within the family have been described. Molecular models of
these two subtypes are compared in Fig. 3. In each of the
subfamilies, specific cationic, anionic, aromatic, and other
residues in the helical transmembrane (TM) region and on
the ELs have conserved functions in coordinating the bound
nucleotide [25].

The homology model of the P2Y1 receptor has been
constructed using a two-template strategy, as described in
de Castro et al. [38]. In particular, our experimentally
supported rhodopsin-based P2Y1 homology model [24] was
used for the construction of almost the entire receptor,
while the newly reported A2A adenosine receptor structure
(PDB ID: 3EML) [39] was used as the template for the
conformation of the portion of second extracellular loop
(EL2) downstream of C202, the conserved Cys that links
EL2 to the third TM domain (TM3). The remaining portion
of the loop, for which the published crystal structures of
GPCRs suggest a greater variability among the receptors,
was instead modeled without the use of a template. By
using this approach, we obtained a model that closely
resembles our previous one [24], but with a more solvent-
exposed EL2. Receptor–ligand interactions were refined
through Monte Carlo conformational searches, starting
from our published experimentally supported binding
modes [24].

Mutagenesis of the P2Y1 receptor has concentrated on
the identification of residues involved in reversible binding
of agonist and antagonist ligands and its regulation.
Figure 3a, b shows the human P2Y1 receptor in complex
with a selective antagonist (MRS2500) and a selective
agonist ((N)-methanocarba-2-MeSADP, MRS2365), respec-
tively. The residues shown are those that, when mutated,
lead to a decrease of potency of 20 times or higher of
nucleotide agonists. The main differences between models
of the antagonist-bound and agonist-bound complexes are
shown. When the agonist is bound, K280 rotates counter-
clockwise and the salt bridge between R128 and D204
breaks. The P2Y1 homology model indicated that the ribose
moiety of nucleotide ligands was situated in a hydrophilic
pocket between TM3 and TM6. The studies also indicated
that the adenine ring of the ligands interacts with residues
from TM7 and points in the direction of TM1. Q307(7.36)
(using Ballesteros numbering for each TM) [40] was found
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to form a critical H-bond with the N6-amino group for both
agonists and antagonists. The three critical cationic residues,
i.e., R128(3.29), K280(6.55), and R310(7.39), appeared to
form ionic interactions with both the bisphosphate chains of
the antagonist and the diphosphate chain of the agonists. In
particular, in the antagonist-bound complex, R128 interacted
with the 5′-phosphate, K280 with both the 3′ and the 5′-
phosphates, and R310 with the 3′-phosphate. Two of these
interactions underwent significant rearrangement upon agonist
docking. In particular, R128 interacted with the α- and β-
phosphates, causing the disruption of the salt bridge with D204
(in EL2) that was found in the antagonist-bound complex,

while K280 interacted with the β-phosphate, undergoing a
significant rotation in the counterclockwise direction, when
observed from the extracellular side. Instead, R310 underwent
only a minor movement to interact with the α-phosphate
group.

Mutagenesis of the P2Y12 receptor has concentrated on the
identification of residues involved in binding of agonist and
antagonist ligands, covalent binding of thiol-reactive ligands,
and desensitization. The residues R256(6.55), Y259(6.58),
and, possibly, H253(6.52), as well as K280(7.35), are
required for the activation of the human P2Y12 receptor
[37]. R256(6.55) is involved in the recognition of nucleotide

P2Y1-MRS2500

K2806.55

R3107.39

Q3077.36

C1243.25

C202EL2

Y203EL2

C296EL3

C42NT 
R287EL3

E209EL2

R1283.29

D204EL2

H2776.52
S3147.43
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P2Y1-(N)-mc-2MeSADP (MRS2365) 

K2806.55

R3107.39

Q3077.36

C1243.25
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Y203EL2

C296EL3

C42NT 
R287EL3

E209EL2

R1283.29
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H2776.52 S3147.43

B
P2Y12-PSB-0739

D

P2Y12-2MeSADP 

C

Fig. 3 a, b Molecular model of the human P2Y1 receptor based on
the structure of the β2-adrenergic receptor. The P2Y1 receptor is
shown in complex with a selective antagonist (MRS2500) (b) and a
selective agonist (MRS2365) (a). The residues shown are those that,
when mutated, lead to a decrease of potency of 20 times or higher.
The helices are color coded as TM1 (red), TM2 (orange), TM3
(yellow), TM4 (light green), TM5 (dark green), TM6 (cyan), and TM7
(purple). c, d Molecular model of the human P2Y12 receptor based on
the structure of the A2A adenosine receptor. The P2Y12 receptor is
shown in complex with a nonselective agonist (2-MeSADP) (c) and a

selective non-nucleotide antagonist (PSB-0739) (d). The helices are
color-coded in a progression from TM1 (red) to TM7 (yellow). Two
disulfide bridges and a salt bridge give rigidity to the extracellular
domains of the P2Y1 and P2Y12 receptors. In the antagonist-bound
state of the P2Y1 receptor, a salt-bridge between R128 and D204
provides an additional link between TM3 and EL2. Our models suggest
that agonist binding causes a disruption of this additional bridge as well
as a counter-clockwise rotation (when observed from the extracellular
side) of Lys280(6.55). Molecular modeling of these receptors was
reported previously [24, 25, 35, 36, 38, 40, 41, 67, 89, 117]
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agonists and the non-nucleotide antagonist Reactive Blue-2,
but not the nucleotide antagonist AR-C69931MX (Cangrelor).
Hoffmann et al. [41] studied the recognition of the compet-
itive non-nucleotide antagonist PSB-0739 at the human
P2Y12 receptor. The residue R256 is involved in the
interaction of this and other antagonists derived from
Reactive Blue-2 with the human P2Y12 receptor.

The mutations F104S and S288P significantly increased
agonist-induced receptor function without affecting the
inhibition by AR-C69931MX [42]. R256 in TM6 and
R265 in EL3 are more important for antagonist recognition
than for agonist-induced activation. Compared to the wild-
type P2Y12 receptor, R256T/Q and/or R265W mutations,
which have been detected in a patient with congenital
bleeding, significantly increased the sensitivity to AR-
C69931MX. Both the cytosolic side of TM3 and the
exofacial side of TM5 are critical for P2Y12 receptor
function, which differs from the P2Y1 receptor. R256 in
TM6 and R265 in EL3 appear to play a role in antagonist
recognition rather than receptor activation.

Figure 3c, d shows the human P2Y12 receptor complexes
with the agonist 2-MeSADP and the selective and compet-
itive antagonist PSB-0739. Amino acid residues that were
mutated corresponding to those in Fig. 3a, b are shown
[43]. The three-dimensional structure of P2Y12 was built by
means of comparative modeling using the crystal structure
of the A2A adenosine receptor [39] as the template. The
disulfide bridge between the N terminal and EL3, which is
conserved in the P2Y family but is absent in the A2A

receptor structure, was created on the P2Y12 model between
C17 and C270. The extracellular loops were further refined.
Molecular docking and Monte Carlo conformational studies
were conducted with agonists and antagonists of the P2Y12

receptor to understand and possibly to explain the involve-
ment of the residues in the binding site of P2Y12 receptor in
the ligand recognition process.

The binding pocket for agonists and antagonists within
the P2Y12 receptor model is formed by residues located in
TM1, TM2, TM3, TM6, and TM7. The negatively charged
groups of 2-MeSADP and PSB-0739 are located in the
extracellular part of the binding cavity of the P2Y12

receptor, and they are surrounded by positively charged
residues, including R256 in TM6 and K280 in TM7, and
polar residues, including Y259 in TM6. In the complex
with 2-MeSADP, the guanidinium group of R256 interacts
with both phosphate groups of the agonist. The hydroxyl
group of Y259 contributes to coordinate the α-phosphate
group, while K280 binds to the β-phosphate group of 2-
MeSADP. The residue S288(7.43) in TM7 engages in a
favorable interaction with the thiomethyl group of 2-
MeSADP at the bottom of the binding pocket. In the
complex with the selective antagonist PSB-0739, R256
interacts directly with both the sulfonic acid groups. The

sulfonic group attached to the anthaquinone moiety
interacts also with the side chain of K280. The side chain
of Y259 is in proximity to the ligand, but does not
interact directly with the negatively charged groups. The
bottom of the binding pocket of the P2Y12 receptor is
characterized by a network of aromatic residues, among
which are the residues H253(6.52) and F104(3.32), that
embed the agonist and the antagonist molecules with
favorable interactions. The S101(3.29) side chain is
located in the binding pocket close to the ligands, but it
is not engaged in direct interactions with either 2-
MeSADP or PSB-0739.

In a direct analogy to an ionic bridge between EL2 and
EL3 detected in the P2Y1 receptor [35, 36], the P2Y12

modeling suggested an ionic interaction between E181 in
EL2 and R265 in EL3 that is present in both the agonist-
bound and the antagonist-bound complexes. However, the
question of a bridge between EL2 and TM3 is inconclusive
because position 3.29 in the P2Y12 receptor is S101, not an
Arg as in the P2Y1 receptor, and in EL3, the residue F177
occupies the position of D204 of the P2Y1 receptor.

Chimeric constructs of P2Y receptors have helped
establish the basis for ligand recognition, activation, and
regulation. For example, a chimeric hemagglutinin-tagged
human P2Y12 receptor in which the cytosolic carboxy
terminal region was replaced by the corresponding sequence
of the P2Y1 receptor exhibited a high level of constitutive
activity [44].

Ding et al. [45] compared the differential reactivity of
P2Y1 and P2Y12 receptors toward thiol reagents. Although
both subtypes are encoded on the same chromosome and
have similar agonist activation profiles, the thiol-reactive p-
chloromercuribenzene sulfonic acid and the irreversibly
binding metabolites (e.g., 31 and 33) of the antiplatelet
drugs Clopidogrel (Plavix©) 29 and Prasugrel (Effient©)
32 (Fig. 2) inactivated the P2Y12, but not the P2Y1 receptor.
The two enantiomers of Prasugrel are similar in activity and
also rapidly racemize; therefore, it is used in its racemic
form. The interaction of these thiol-reactive metabolites
with specific Cys residues on the human P2Y12 receptor
was probed by site-directed mutagenesis. There are four
Cys residues in the extracellular region of the P2Y12

receptor—at positions 17, 97, 175, and 270—which
presumably form two disulfide pairs. It was speculated that
the active metabolites of the thienopyridines 31 and 33,
which themselves are reactive thiols, formed disulfide
bridges in this extracellular region, thus inactivating the
receptor. The sites of covalent modification of the P2Y12

receptor were suggested to be at C17 and C270 in the
N-terminal domain and in EL3, respectively [45]. Algaier et
al. [46] reached different conclusions about which Cys
residues of the ELs of the P2Y12 receptor are involved in the
thiol reactivity of the active metabolite of Prasugrel, R-
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138727 (2-[1-[2-cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl]-
4-mercapto-3-piperidinylidene]acetic acid, mixture of 4 ster-
eoisomers) 33 [47, 48]. The mixture of (R,S) and (S,R)
isomers, which is more potent than R-138727, is designated
R-99224. Irreversible antagonism by R-138727 of the
inhibition of forskolin-stimulated cyclic AMP production
mediated by 2-MeSADP 8 was observed for both the wild-
type P2Y12 receptor and C17A/C270A mutant receptors. This
eliminated C17 and C270 as sites for covalent modification.
However, C97A and C175A constructs lost the ability to be
inhibited by R-138727. These proposed sites of action of
R-138727 at C97 (top of TM3) and C175 (EL2) would be
closer to the ligand-binding site in the TM region of the
P2Y12 receptor than those thiol sites proposed by Ding et al.
[45].

Mutagenesis and molecular modeling of A2A AR has
concentrated on the identification of residues involved in
the binding of agonist and antagonist ligands [49, 50]. The
X-ray structure of A2A AR was reported in 2008 [39]. This
advance has enabled the structure-based discovery of novel
ligands of this GPCR independently by Abagyan and
coworkers and by Shoichet and coworkers [51, 52]. In
silico screening based on virtual docking at the A2A AR of
molecules that distantly resemble other AR ligands has
identified antagonist molecules having novel chemotypes.
Fluorescent and other reporter groups incorporated into
high-affinity ligands can enable new technology for
receptor assay and imaging. A fluorescence polarization
assay of binding at the A2A AR in HEK-293 cell
membranes was reported [53]. This could serve as a model
for the development of fluorescence polarization assays for
other purine receptors that avoid the use of radioisotopes in
ligand screening. The assay can be performed in real time
in a well plate format.

Macromolecular conjugates of ligands for platelet purine
receptors were recently introduced. The A2A agonist
CGS21680 (2-[p-(2-carboxyethyl)phenyl-ethylamino]-5′-
N-ethylcarboxamidoadenosine) and the P2Y1 receptor
antagonist MRS2500 ((1′R,2′S,4′S,5′S)-4-(2-iodo-6-methyla-
mino-purin-9-yl)-1-[(phosphato)-methyl]-2-(phosphato)-
bicyclo[3.1.0]hexane) 38 were derivatized for covalent
attachment to (polyamidoamine) dendrimeric carriers of
MW 20,000, and the resulting multivalent conjugates inhibited
ADP-promoted human platelet aggregation [38, 54]. High
affinity at the receptor was maintained in the A2A AR agonist
conjugates, but the multivalent conjugate of MRS2500 38
was less potent than the parent antagonist monomer.
Structural modification of these dendrimer conjugates is in
progress to improve their pharmacological properties.

The mouse P2X1, human P2Y1, and human P2Y12

receptors have all been purified to homogeneity using
combinations of affinity chromatography and other column
purification [55–57].

Selective ligands for the P2Y and P2X receptors
in platelets

New selective agonists and antagonists have recently been
identified for the P2 receptors that occur in platelets. The
structures of representative nucleotide (34–54 in Fig. 4) and
non-nucleotide (55–81 in Figs. 5 and 6) antagonists of the
platelet P2 receptors are shown. Selective antagonist
ligands for these receptors have been reported as a result
of the systematic conversion of agonists into antagonists,
the careful structural modification of known non-selective
ligands, and, more recently, the screening of structurally
diverse chemical libraries.

A recurrent issue in the use of typical P2 receptor ligands
is the lack of specificity for a single subtype among
multiple P2 receptors. Often, the complete P2 receptor
selectivity profile of a given ligand is unknown. Also, many
of the ligands display low bioavailability due to high
molecular weight or multiple charged groups, such as
phosphates and sulfonates, present in the molecules.
Another drawback of many of the currently used ligands
is their lability in biological systems. The use of P2 receptor
ligands is also complicated by the presence of ectonucleo-
tidases that degrade both native agonists and, often, the
synthetic nucleotides that are used as agonists or antago-
nists [58]. Adenine nucleotides are progressively converted
enzymatically to AMP and finally to adenosine, which
activates its own family of four ARs. Selective inhibitors of
ectonucleotidases that can serve as modulators of receptor
function are being explored [59, 60]. Moreover, many P2
receptor agonists and antagonists are known to inhibit
ectonucleotidases at comparable concentrations. The trans-
formation of nucleotides can also proceed in the other
direction, for example in the conversion of 5′-diphosphates
to 5′-triphosphates by extracellular nucleoside diphospho-
kinase [61]. The purity of commercial preparations of
nucleotides isolated from natural sources is variable. Thus,
ATP might contain ADP and other nucleotides as contam-
inants. The use of synthetic and rigorously purified
nucleotides minimizes this ambiguity. Finally, many of the
early P2 antagonists have been found to interact intracel-
lularly with other signaling mediators, such as G proteins at
concentrations similar to those needed at P2 receptors. For
example, suramin and its analogues inhibit G proteins [62].
Recently, a known P2X1-selective antagonist (NF449, 64)
was found to inhibit signaling from the fibroblast growth
factor receptor 3 [63]. In general, novel drug delivery
methods, prodrug approaches, allosteric modulation, and
biased agonism would be desirable to overcome side effects
that tend to occur even with receptor subtype-selective
ligands.

Generally, radioligand binding serves as a primary
research tool for the screening of new ligands at a given
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GPCR, but most of the P2 receptors do not have viable
radioligands yet. Fortunately, the platelet purine receptors,
i.e., P2Y1, P2Y12, P2X1, A2A, and A2B receptors, have such
high-affinity radioligand tools [17, 64–67]. Nevertheless,

much of the drug discovery at these subtypes has relied on
functional assays, for example, the activation of phospholi-
pase C by nucleotides acting at the P2Y1 receptor expressed
in 1321N1 astrocytoma cells [68].
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Fig. 4 Nucleotide derivatives that have been useful as antagonists in the study of the P2X and P2Y receptors in platelets. Phosphate derivatives
would exist predominantly in an ionized form under physiological conditions
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P2X1 receptors

Novel P2X receptor ligands have been introduced for use as
pharmacological probes and as potential therapeutic agents.
Selective P2X receptor antagonists are of interest in pain
control, depression, urinary incontinence, rheumatoid arthritis,
chronic inflammation, and other conditions [69].

Non-selective P2X ligands

ATP 2, but not UTP 24, activates P2X receptors, and its
EC50 at the various subtypes varies from the low nanomolar
to the high micromolar [70]. Purified ADP 1, AMP, and
adenosine are inactive at P2X receptors. 2-Methylthio-
adenosine 5′-triphosphate (2-MeSATP, 9) is a potent agonist
at multiple P2X receptors, for example, P2X1 (EC50=
54 nM) and P2X3 (EC50=350 nM) receptors. α,β-
Methyleneadenosine 5′-triphosphate (α,β-meATP, 5) acti-
vates the P2X1 receptor, but not the P2X2 receptor, and its
ability to rapidly desensitize the P2X1 receptor allows it to

be used in functional pharmacological experiments in place
of an antagonist. A wide variety of ATP derivatives were
compared in the inhibition of specific binding of [3H]α,β-
meATP at the rat urinary bladder P2X1 receptor [66].
Among analogues with a substituted adenine ring,
2-(6-cyanohexylthio)-ATP 21 displayed a potent pIC50

value of 7.24. Various nucleotide derivatives were assayed
functionally at P2X receptors expressed in astrocytoma
cells and oocytes [71, 72]. For example, 2′, 3′-O-(4-
benzoylbenzoyl) adenosine 5′-triphosphate (BzATP, 22),
which is the most potent known agonist of the P2X7
receptor, was also found to potently activate the P2X1
receptor. The same nucleotide also acts as an antagonist of
the P2Y12 receptor with an IC50 of 116 μM [45].

Until recently, the only antagonists of the P2X1 receptor
were highly charged compounds. Various negatively
charged organic dyes, such as Reactive Blue-2 59
(Fig. 5), act as non-selective and weak P2X antagonists.
Reactive Blue-2 was also shown to be a potent antagonist
of the P2Y12 receptor with a pKB of 7.6 [73]. The
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polysulfonated biphenyl derivative Evans Blue (structure
not shown) acts as a P2X receptor antagonist, but it also
affects other channels and amino acid binding sites [74].
Another polysulfonated derivative that has been widely
used as a nonselective P2 receptor antagonist is the
antiparasitic drug suramin 61. The aryldiazo-bridged
pyridoxal phosphate derivative PPADS 55 was found to
inhibit P2 receptors, and its potency and selectivity have
been increased by chemical modification [75]. Typically,
such compounds are relatively non-subtype-selective P2X
antagonists that also block some P2Y subtypes [76]. Later,
a positional isomer, iso-PPADS 56, was introduced and
found to be more potent than PPADS at P2X receptors. The
p-carboxylate analogue MRS2159 57 is somewhat selective
for the P2X1 receptor, but also antagonizes the P2X3

receptor. The pyridoxal phosphate derivative lacking an
aryldiazo moiety MRS2219 58 is a weak potentiator of
P2X1-mediated responses [77].

A few nucleotide derivatives have been found to block
P2X receptors. For example, the dinucleotide Ip5I 53
potently antagonizes the P2X1 receptor [78]. TNP-ATP 54
is a potent P2X antagonist that is selective for several
subtypes [79]. It antagonizes P2X1, P2X3, and heteromeric
P2X2/3 receptors with IC50 values of 6, 0.9, and 7 nM,
respectively, and displays 1,000-fold selectivity for homomeric
P2X3 over P2X2, P2X4, and P2X7 receptors.

P2X1 antagonists of greater selectivity have been
reported in compound classes both related to the known,
nonselective antagonists, and to novel chemotypes. For
example, the suramin analogue NF 023 62 is a moderately
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selective, competitive P2X antagonist with IC50 values of
0.21 and 28.9 μM at human P2X1 and P2X3 receptors,
respectively, and is inactive at the P2X2 and P2X4
receptors [80]. Another analogue NF 157 (not shown) was
found to be a P2X1 antagonist, but it is not absolutely
specific because it also blocks the P2Y11 receptor [81]. The
P2X1 potency selectivity in the suramin series of antagonists
improved in later structural iterations. Other suramin deriva-
tives that act as selective P2X1 antagonists include PPNDS,
NF 279 63, and the more highly selective P2X1 antagonist
NF 449 64 [82, 83]. An additional high-affinity antagonist in
this series is NF864 65 (8,8′,8″,8′″-(carbonylbis(imino-5,1,3-
benzenetriyl-bis(carbonylimino)))tetrakis-naphthalene-1,3,5-
trisulfonic acid-dodecasodium salt. The ability to inhibit the
platelet P2X1 receptor displayed the following order (pA2 in
shape change): NF864 (8.49) > NF449 (7.61) > or = NF110
(7.22) > NF023 (6.11) = MK-HU1 (5.98, structure not
shown) = suramin (5.76) [84]. In the series of benzimidazole
derivatives introduced by Roche, a 2-carboxamide derivative
Ro 0437626 66 was found to be a selective P2X1 antagonist
(IC50=3 μM) that displays >30-fold selectivity over P2X2,
P2X3, and P2X2/3 receptors (IC50>100 μM) [85].

P2Y1, P2Y12, and P2Y14 receptors

Selective agonist and antagonist ligands for P2Y receptors
are in preclinical development for pulmonary diseases,
thrombosis, and other conditions [86]. The rapidly acceler-
ating progress in this field has already resulted in new drug
candidates for pulmonary diseases, dry eye disease, and
thrombosis. There is much activity in the pharmaceutical
industry to identify novel antagonists of the P2Y12 receptor,
with the success of the antithrombotic Clopidogrel 29,
which acts as a prodrug of an irreversibly binding P2Y12

receptor antagonist [87]. The P2Y1 receptor might also
prove to be a useful target for antithromobotic drugs [88].
Detailed analyses of SAR have been performed on the pro-
aggregatory P2Y1 and P2Y12 receptors, for which selective
nucleotide ligands have been reported. Because nucleotide
analogues generally have limited bioavailability and stability
in vivo, selective non-nucleotide antagonists of the P2Y1 and
P2Y12 receptors are also being developed as potential
antithrombotic agents. Structurally diverse chemical libraries
have been screened to identify novel chemotypes to act as
competitive, non-nucleotide antagonists of these subtypes,
which may be optimized for selectivity and potency.

P2Y1 receptor

ADP activates the P2Y1, P2Y12, and P2Y13 receptors and
therefore is of limited use in characterizing subtype-specific
effects. 2-MeSADP 8 (EC50=6 nM) is a more potent
agonist at the P2Y1 receptor than ADP (EC50=8 μM). 2-

MeSATP 9 and its 2-thioether congeners have also been
shown to activate the P2Y1 receptor, although depending
on conditions where 5′-triphosphates might appear to be
less than full agonists. ATP, itself, has been characterized as
an agonist, a partial agonist, or an antagonist at the P2Y1

receptor, depending on the model used and the level of
spare receptors expressed. N6-methyl adenine nucleotides
also potently activate the P2Y1 receptor, but larger
substituents on the exocyclic amine reduce potency,
consistent with a small hydrophobic pocket surrounding
the N6-position within the binding site of the P2Y1 receptor.
For example, N6-(2-phenylethyl)-ATP is inactive at the
P2Y1 receptor [89]. N6-Disubstituted ATP derivatives are
inactive at the P2Y1 receptor and have found application as
inhibitors of ectonucleotidases, such as ARL 67156 [59].

The conformation of the ribose moiety has been the
focus of recent studies of P2 receptor agonists. By
comparing two isomeric conformationally restricted (i.e.,
rigid) equivalents of the ribose moiety in nucleotide
derivatives (i.e., methanocarba ring system containing fused
cyclopropane and cyclopentane rings), the favored ribose
ring conformation at the P2Y1 receptor was established
[90, 91]. The North (N)-methanocarba analog of 2-
MeSADP (MRS2365, 14) displayed an EC50 of 0.4 nM
as an agonist of the P2Y1 receptor [92] and did not activate
appreciably the P2Y12 and P2Y13 receptors. Addition of the
(N)-methanocarba ring system to N6-methyl-ATP in 15
enhanced its potency at the turkey P2Y1 receptor by >200-
fold [91]. The preference for the (N)-methanocarba over the
isomeric (S)-methanocarba nucleotide analogues was also
demonstrated for the activation of the P2X1 receptor [93].
However, this conformational preference does not apply to
all of the P2Y receptors; the P2Y12 receptor is not activated
by the (N)-methanocarba analogue of 2-MeSADP 14 [92].

Extension of the 2-methylthio ether on adenine nucleotides
to longer alkyl and arylalkyl chains was one of the first classes
of favorable modifications identified to preserve or enhance
P2Y1 receptor potency. Extended groups such as the p-
aminophenylethylthio ether were tolerated at platelet P2Y
receptors [94, 95]. Thio ethers (RS-) were found to be
superior P2Y1 receptor agonists in comparison to the
corresponding oxygen ethers (RO-) or amines (RNH-) at
the 2 position [96].

The presence of a (N)-methanocarba ring system greatly
improved the stability of the phosphate ester of the AMP
derivative toward hydrolysis by an ectonucleotidase [91],
and the phenomenon occurred to a lesser degree for ADP
and ATP derivatives. Another means of improving hydrolytic
stability is the introduction of a borano group within the
phosphate moiety of P2Y receptor agonists [97]. Phosphonate
groups have been included in the phosphate chain to increase
the stability of the nucleotide analogues. β,γ-methylene-ATP
5 itself is inactive at the human P2Y1 receptor, but when
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combined with the conformationally constrained (N)-meth-
anocarba modification, the resulting analogue 16 is a potent
agonist at this subtype [91]. Analogues of 2-MeSATP 9 that
contain either a β,γ-methylene modification 10 or an α-
borano group 12 are more stable toward hydrolysis than 9
[98]. They activate the human P2Y1 receptor with EC50

values of 80 nM and 17.2 μM, respectively, and are inactive
or only weakly active at the P2Y2, P2Y4, and P2Y6

receptors. 2-MeS-β,γ-CCl2-ATP 11 activates the P2Y1

receptor with an EC50 value of 80 nM and is resistant to a
30-min treatment with alkaline phosphatase [99].

Adenine dinucleotides, specifically diadenosine poly-
phosphates, are naturally occurring in secretory granules of
nerve terminals. In a series of dinucleotides of varying
lengths (two to six phosphates), Ap3A 3 was found to have
the highest potency at the human P2Y1 receptor expressed in
1321N1 astrocytoma cells (pEC50=7.5), and the potency was
similar to ADP [100]. The compound also displayed >1,000-
fold selectivity over the human P2Y2 receptor. However,
Ap3A was also reported to activate rat P2X1 and P2X3
receptors [9]. The homologue Ap4A 4, which is a constituent
of platelet dense granules, was the most potent agonist in the
series at the P2Y2 receptor, but was inactive as an agonist at
the P2Y1 receptor. Chemically synthesized Ap4A of high
purity was recently found to inhibit human platelet aggrega-
tion by antagonizing the P2Y1 receptor (fully) and the P2Y12

receptor (partially) [101]. Ap4A was also found to be a full
agonist of the P2X1 receptor and a partial agonist of the
P2Y12 receptor. However, a modified analogue, di-(2-MeS)-
adenosine-5′,5″-P1,P4,α,β-methylene-tetraphosphate 13 was
found to activate the human P2Y1 receptor with an EC50

value of 0.42 μM and was 2.5-fold more stable in human
blood serum than ATP, with a t1/2 of 12.1 h [102].

Other naturally occurring nucleotides have been found to
interact with the P2Y1 receptor. For example, ADP-ribose
at micromolar concentrations can act as an endogenous
agonist the P2Y1 receptor [103]. Also, extracellular
nicotinamide adenine dinucleotide (NAD+) 18 was shown
to activate the P2Y1 receptor to induce a rise in intracellular
calcium ions in transfected astrocytoma cells (EC50=
743 nM, efficacy of 77%, compared to ADP) [104].
NAD+ contains a β-blocked diphosphate group. Beta-NAD
has been shown to be an inhibitory neurotransmitter that
activates P2Y1 receptors in gastrointestinal smooth muscle
[105]. Curiously, another blocked diphosphate derivative 19,
in which the β-phosphate of 2-MeSADP was masked as
photoreversible 2-nitroveratryl ester, did not activate the
P2Y1 receptor until irradiated to free the 5′-diphosphate. This
compound acted as a caged agonist of the P2Y1 and P2Y12

receptors for use as a tool for the light-directed facilitation of
platelet aggregation [106].

Many nucleotide antagonists of the P2Y1 receptor have
been introduced (Fig. 4). The initial observation was that

adenosine 3′,5′-bisphosphate (A3P5P, 34) and its naturally
occurring congeners acted as partial agonists or antagonists,
respectively, at the turkey and human P2Y1 receptors [107].
Various chemical modifications of adenine nucleotides
containing bisphosphate groups, for example N6-methyl 2′-
deoxyadenosine 3′, 5′-bisphosphate MRS2179 35 (pKB=
6.99), and its 2-chloro analog MRS2216 36 (pKi=6.69),
provided potent and selective P2Y1 antagonists [108]. [33P]
MRS2179 was studied as a radioligand of the P2Y1 receptor
[109]. C-nucleoside pyrazolo[1,5-a]-1,3,5-triazines were pre-
pared, and their 3′,5′-bisphosphate C-nucleotide analogues
are stable in vivo as P2Y1 receptor antagonists [110].

The same conformationally constrained (N)-methanocarba
modification of the ribose moiety that enhanced agonist
action in MRS2365 14 also favored antagonist action in
nucleotide bisphosphate derivatives. For example, the 2-
chloro analogue MRS2279 37 (pKB=8.10) and the 2-iodo
analogue MRS2500 38 (pKB=9) were selective, high-affinity
antagonists of the P2Y1 receptor [111]. MRS2500 effectively
inhibited platelet aggregation in vivo in the mouse and other
species [112, 113]. The (N)-methanocarba antagonist [3H]
MRS2279 37 was introduced as a radioligand for the P2Y1

receptor [114]. The higher affinity antagonist MRS2500 38
has been prepared as a radioligand for the P2Y1 receptor
both as a 32P form and as a 125I form [64, 115].

Although the steric constraint of the (N)-methanocarba
ring greatly enhanced affinity at the P2Y1 receptor, a cyclic
form was not essential for P2Y1 receptor antagonism [116].
The acyclic bisphosphate derivative MRS2298 39 (IC50=
62.8 nM) and bisphosphonate derivative MRS2496 40
(IC50=1.5 μM) were effective inhibitors of ADP-promoted
platelet aggregation with intermediate potency [112].

Costanzi et al. [117] studied QSAR of antagonists of the
P2Y1 receptor based on ligand docking models and
focusing on halo and alkynyl groups at the 2 position.
Other alkynyl nucleotides were evaluated at the platelet
P2Y receptors. The 5′-diphosphate derivative of 2-
phenylethynyladenosine (PEADP, 42) was found to interact
mainly with the platelet P2Y1 receptor as an antagonist,
while the corresponding 2-hexynyladenosine derivative
(HEADP, 17) activated the platelet P2Y12 receptor, but
not the P2Y1 receptor [118].

Thiol Coenzyme A (CoA-SH) and various drug-derived
CoA derivatives antagonized the human P2Y1, but not the
P2Y2, receptor expressed in Xenopus laevis oocytes [119].
Palmitoyl-CoA (16:0) 43 and CoA thioester derivatives of
nafenopin and ciprofibrate, two clinically relevant hypolipi-
demic drugs, were more potent than CoA-SH as antagonists.
This phenomenon was further studied using CoA derivatives
with saturated acyl groups containing 16–18 carbons to
influence the platelet aggregation and Ca2+ mobilization
induced by various P2Y agonists [120]. Palmitoyl-CoA 43
was shown to act mainly as an antagonist of the P2Y1
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receptor but also as a partial antagonist at the P2Y12 receptor.
Not all inhibitors of the P2Y1 receptor are competitive with
the binding of nucleotides at the receptor. For example,
pyridyl isatogen (PIT) 67 was found to be an allosteric
modulator of the P2Y1 receptor [121].

The screening of structurally diverse chemical libraries
has helped identify lead compounds for the development of
non-nucleotide antagonists of the P2Y1 receptor (Fig. 6).
For example, the urea derivative 68 is a selective and orally
bioavailable antagonist of the human P2Y1 receptor of
novel chemotype with a Ki value of 90 nM [122].
Aminobenzazole derivatives from Bristol–Myers Squibb
were reported as P2Y1 receptor antagonists [123]. Other
structurally diverse antagonists of the P2Y1 receptor have
been reported. Tetrahydro-4-quinolinamines such as 69
(Ki=70 nM) were found to be novel P2Y1 receptor
antagonists [124]. Recently, benzofuran-substituted urea
derivatives such as 70 (Ki=140 nM) were reported as novel
P2Y1 receptor antagonists [125].

P2Y12 receptors

ADP (EC50=69 nM) and 2-MeSADP (EC50=0.3 nM) are
potent non-selective agonists at the platelet P2Y12 receptor.
[33P]2-MeSADP was utilized as a radioligand of the P2Y1

receptor [126]. Adenine nucleotides, including 5′-mono-
phosphates, with extended 2-alkylthio groups were found to
preserve or enhance the potency as agonists at the rat C6
glioma cell P2Y12 receptor [43, 127]. For example, 2-
(hexenylthio)-ADP 20 displayed a pEC50 value of 83 nM
and selectivity over the P2Y1 receptor of 80-fold.

The SAR of antagonists of the P2Y12 receptor has been
extensively explored, resulting in clinical agents. Thienopyr-
idines, notably the blockbuster antiplatelet drug Clopidgrel 29
(Fig. 2), act as liver-activated prodrugs that are irreversible
inhibitors of the P2Y12 receptor [128]. In order to form the
P2Y12 receptor antagonist species, a two-step pre-activation
in vivo is required, which delays onset of action of the drug
and the time required for reversal of the platelet effect after
drug administration is ceased. This pre-activation process
also is subject to pharmacogenomic factors, which explain
the variability of the population to be effectively treated by
Clopidogrel. A patient’s poor clinical response to Clopidogrel
can be predicted using an in vitro platelet function assay [129].
A patient’s response to Clopidogrel depends partly on factors
that affect its metabolism through cytochrome P450 in the
liver. The presence of a reduced-function CYP2C19*2 allele
or the co-administration of the proton pump inhibitor
omeprazole decreases the effectiveness of Clopidogrel, and
cigarette smoking increases its pre-activation. Another
thienopyridine antagonist that has been in clinical trials,
Prasugrel 32 (CS-747, LY640315), is a more potent P2Y12

antagonist than Clopidogrel and leads to a more complete

inhibition of platelet function, but it also displays a longer
bleeding time. Prasugrel, with less genetic variability than
Clopidogrel, requires only one step of pre-activation in vivo
[130] to the active metabolite R-138727 33.

As discussed above, the action of the thienopyridines
depends on the covalent reaction of an active metabolite
with a thiol on the P2Y12 receptor. However, directly acting
and reversible P2Y12 receptor antagonists, both nucleotides
and non-nucleotides, have also been reported. ATP, itself,
has been characterized as an antagonist at the P2Y12

receptor, which has enabled the introduction of various 5′-
triphosphate analogs as selective receptor probes and
clinical candidates. Thus, the antithrombotic nucleotide
derivatives from AstraZeneca, AR-C67085 45 and 5′-
adenylic acid, N-[2-(methylthio)ethyl]-2-[(3,3,3-trifluoro-
propyl)thio]-, monoanhydride with (dichloromethylene)bis
[phosphonic acid] (AR-C69931MX, Cangrelor, 46), have
been tested clinically as antithrombotic agents [131, 132].
The EC50 values of these P2Y12 receptor antagonists are
30 μM and 0.4 nM, respectively. Note that these two P2Y12

receptor antagonists, AR-C67085MX 45 and AR-C69931MX
46, also activate the P2Y11 receptor. Ding et al. [44] reported
that (E)-N-[1-[7-(hexylamino)-5-(propylthio)-3H-1,2,3-tria-
zolo-[4,5-d]-pyrimidin-3-yl]-1,5,6-trideoxy-beta-D-ribo-hept-
5-enofuranuronoyl]-L-aspartic acid (AR-C78511, 47) is an
inverse agonist of the P2Y12 receptor, but AR-C69931MX is
a neutral antagonist. [3H]2-Propylthioadenosine-5′-adenylic
acid (1,1-dichloro-1-phosphonomethyl-1-phosphonyl) anhy-
dride ([3H]PSB-0413, which is the tritiated equivalent of
AR-C67085MX), is a high-affinity antagonist radioligand of
the P2Y12 receptor [65].

A 5′-triphosphate group in adenine nucleotides is not
strictly required for P2Y12 receptor antagonists. The P2Y12

receptor antagonists from Inspire Pharmaceuticals, INS
49266 51 (an ADP derivative with EC50 of 52 nM) and
INS 50589 52 (an AMP derivative with EC50 of 11 nM)
[133, 134], could be considered truncated derivatives of the
proven 5′-triphosphate antagonists. The potent P2Y12

receptor antagonist and clinical candidate AZD 6140 48b
(Brilinta, Ticagrelor, pIC50=7.9) is an uncharged cyclo-
pentyltriazolopyrimidine analogue that was developed in an
extensive SAR exploration by AstraZeneca [132, 135].
Like 47, this nucleoside derivative contains a modified
base, i.e., 8-azaadenine. The antithrombotic effects of 48b
compare favorably with the thienopyridines in rat and dog
models and with less risk of bleeding, possibly due to its
reversible receptor binding [136]. The receptor-binding
properties and functional antagonism of 48b are complex
(competitive toward 2-MeSADP, but not ADP) [67]. A related
carbocyclic nucleoside derivative [125I](1S,2R,3S,4R)-2,3-
dihydroxy-4-[7-[[(2E)-3-iodoprop-2-en-1-yl]amino]-5-(pro-
pylthio)3H-[1–3]triazolo[4,5-d]pyrimidin-3-yl]cyclopentane-
carboxylic acid ([125I]AZ11931285) 48a has been proven
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useful as a high-affinity antagonist radioligand of the P2Y12

receptor [67]. Other uncharged analogues of nucleotides that
act as potent antagonists of the P2Y12 receptor are carbocyclic
nucleoside tetrazole derivatives, such as 50 [137]. An
uncharged acyclic adenine diester derivative MRS2395 41
acted as a weak but selective antagonist of the P2Y12 receptor
(IC50=3.6 μM, rat) [116]. This is in contrast to 39 and 40
which contain the same acyclic 9-alkyladenine scaffold and
interact only with the P2Y1 receptor as antagonists.

Library screening has identified novel chemotypes as
antagonists of the P2Y12 receptor (Fig. 6). For example,
Elinogrel (PRT-128, 77) [138], a competitive and reversible
antagonist with an IC50 value of 20 nM at the P2Y12

receptor, is being developed as an antithrombotic agent by
Portola Pharmaceuticals. Earlier, P2Y12 receptor antago-
nists consisting of pyrazolidine-3,5-dione derivatives in-
cluding 71 were reported in an abstract [139]. Tricyclic
benzothiazolo[2,3-c]thiadiazine antagonists of the P2Y12

such as CT50547 72 (pEC50=6.74, also called C1330-7)
were reported [140]. An ester derivative BX 667 73 and the
corresponding free carboxylic acid BX 048 74 (binding
IC50 values of 29 and 5.3 nM, respectively), which are
derivatives of L-glutamic acid, reversibly inhibit the binding
and functional effects of 2-MeSADP in platelets of several
species [141, 142]. The functional selectivity of BX 667
and BX 048 for the P2Y12 receptor in comparison to P2Y1

and P2Y6 receptors was demonstrated. Parlow et al.
[143–145] reported piperazinyl–glutamate–pyridine deriva-
tives such as 76 (pEC50=7.82) as potent orally bioavailable
P2Y12 antagonists. 6-Amino-2-mercapto-3H-pyrimidin-4-
one derivatives such as 78 (IC50=8.1 μM) appear to
antagonize the P2Y12 receptor [146]. One very potent and
selective competitive antagonist of the P2Y12 receptor, the
disulfonate derivative PSB 0739 75, which was derived
from RB2, was recently introduced as a research tool
[41, 147]. PSB-0739 was reported as the most potent
competitive non-nucleotide antagonist at the human P2Y12

receptor described so far (Ki=24.9 nM). BF0801 79 is an
uncharged adenine derivative that antagonizes the P2Y12

receptor in platelets to inhibit aggregation with an IC50 of
63.3 μM and also inhibits a phosphodiesterase [148].

P2Y14 receptors

The P2Y14 receptor is structurally restrictive with respect to
the modification of the nucleobase, ribose, and phosphate
moieties of agonist ligands. UDP-glucose 25 (EC50=
0.35 μM) and UDP 23 are nearly equipotent as agonists
of the human P2Y14 receptor. Other naturally occurring
UDP-sugars activate this receptor less potently. The SAR of
analogues of both endogenous agonists was recently
explored in a systematic fashion [149]. When the glucose
moiety is present, there is a requirement for specific

hydroxyl groups in order to potently activate the P2Y14

receptor. When the distal hexose moiety is entirely absent,
very high potencies can be obtained, suggesting partly
different modes of binding of the two ligand series. The 2-
thiouracil modification enhances potency in both series.
Thus, the 2-thio analog of UDP-glucose MRS2690 26 is a
sixfold more potent agonist for the P2Y14 receptor and,
unlike UDP-glucose, is inactive at the P2Y2 receptor.
Because UDP activates both the P2Y6 and P2Y14 receptors,
there is a need for agonist ligands that can distinguish between
these two subtypes. Stabilizing phosphonate groups have
facilitated this selectivity. For example, α,β-difluoromethy-
lene-UDP, MRS2802 27, is inactive at the P2Y6 receptor and
fully activates the human P2Y14 receptor with an EC50 of
63 nM. MRS2905 28 displays an EC50 of 2 nM at the
human P2Y14 receptor with a selectivity of >2,000 in
comparison to the P2Y6 receptor.

The heterocyclic antagonists of the P2Y14 receptor 80
(Ki=2.2 nM) and 81 (Ki=4.0 nM) were disclosed in patents
from Merck, but the full pharmacological characterization
has not yet appeared in the literature [150, 151]. A prodrug
approach in the structural series of compound 80 was
recently reported [152].

Conclusions

Novel ligands for the purine receptor families in platelets,
including both selective agents derived from known ligands
and new chemotypes, are now available for use as tools in
pharmacological studies. Some of these agents have entered
into clinical trials. Functional properties of the P2Y1 and
P2Y12 receptors were extensively explored using mutagen-
esis and molecular modeling, which are useful tools in drug
discovery. Detailed SAR analyses have been constructed
for nucleotide and non-nucleotide ligands at the P2X1,
P2Y1, P2Y12, and P2Y14 receptors. There is much
pharmaceutical development activity aimed at identifying
newer agents to act at the P2Y12 receptor that do not require
enzymatic pre-activation in vivo. The screening of chem-
ically diverse compound libraries has identified novel
chemotypes that act as competitive non-nucleotide antago-
nists of the P2Y1 receptor or the P2Y12 receptor, and
antithrombotic properties of the structurally optimized
analogues were demonstrated. New tools have been
developed for the discovery of ligands at platelet purine
receptors, including in silico screening to identify novel
antagonist chemotypes, fluorescent probes, and covalent
attachment to dendrimeric carriers to produce multivalent
conjugates that inhibit platelet aggregation. In conclusion, a
wide range of new pharmacological tools is available to
control platelet function by interacting with cell surface
purine receptors.
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