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ABSTRACT

Summary: Here, we present ContEst, a tool for estimating the level
of cross-individual contamination in next-generation sequencing
data. We demonstrate the accuracy of ContEst across a range of
contamination levels, sources and read depths using sequencing
data mixed in silico at known concentrations. We applied our tool
to published cancer sequencing datasets and report their estimated
contamination levels.
Availability and Implementation: ContEst is a GATK
module, and distributed under a BSD style license at
http://www.broadinstitute.org/cancer/cga/contest
Contact: kcibul@broadinstitute.org; gadgetz@broadinstitute.org
Supplementary information: Supplementary data is available at
Bioinformatics online.
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1 INTRODUCTION
Next-generation sequencing methods are generating vast amounts
of short sequence reads for the purpose of studying DNA sequence
variations and identifying those that affect human disease. Many
novel methods allow for the interrogation of the structure of the
genome with unprecedented sensitivity due to the digital nature of
the data (Trapnell and Salzberg, 2009). Rare events present in only a
fraction of the sequenced material, as is the case in somatic mutation
discovery in cancer genome studies (Berger et al., 2011; Chapman
et al., 2011), can be accurately detected by sequencing to greater
read depth. Moreover, genome partitioning techniques (Gnirke et al.,
2009) allow for even greater sensitivity at a lower cost by targeting
only regions of interest.

However, these methods can be heavily compromised by
contamination. Three major classes of DNA contamination
exist: cross-individual, within-individual and cross-species. Cross-
individual is the most critical to control, as even small levels
of contamination can cause many false positives, particularly in
contrastive tumor versus normal cancer studies (Fig. 1A). Within-
individual contamination, such as normal DNA contamination of
tumor DNAin cancer studies, typically leads to decreased sensitivity.
Cross-species contamination is easily detected by aligning to unique
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regions of potentially contaminating species. In order to address
the most critical need, we developed ContEst within the GATK
(McKenna et al., 2010) to accurately estimate the cross-individual
contamination level in next-generation sequencing data.

2 METHODS
Given genotype information about the sequenced sample from a genotyping
array in VCF format (http://www.1000genomes.org), general population
frequency information (provided with ContEst) and the sequencing data in
BAM format (Li et al., 2009), we use a Bayesian approach to calculate the
posterior probability of the contamination level and determine the maximum
a posteriori probability (MAP) estimate of the contamination level.

The method first identifies the homozygous single nucleotide poly-
morphism (SNP) sites based on the array data, S≡ {si}, i=1,...,N , and the
alleles at these sites, A≡{Ai}. For each site, si, we denote the probability in
the contaminating population to observe Ai at that site by fi, and therefore the
probability to see the other allele is 1−fi. In addition, we denote by bij and
eij the called base of the j-th read that covers si and its quality (represented
by its probability of being incorrect), respectively. The number of reads that
cover si, i.e. the depth at that site, is denoted by di. For a contamination
fraction c, we can now calculate the posterior probability using the Bayes
rule:

P(c|B,E,A,F)= P(B|c,E,A,F)P(c)

P(B)

Using a uniform prior on c, i.e.P(c)=1, and assuming that the reads (and
noise) are independent and equivalent for all three types of substitutions and
discarding sites suspected to be genotyping array data errors (Supplementary
Material), we obtain:

P(c|B,E,A,F)∝P(B|c,E,A,F)=
N∏

i=1

di∏
j=1

P(bij|eij,fi)

where

P(bij|eij,Ai,fi)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1−c)(1−eij)+c[fi(1−eij)+(1− fi)(eij/3)] if bij =Ai

(1−c)(eij/3)+c[fi(eij/3)+(1− fi)(1−eij)] if bij = Āi

eij/3 otherwise

The qualities of bases are typically represented using a Phred-like
Q-scores, i.e. e=10−q/10. Finally, we evaluate the above equation for
c∈[0,1] and normalize to 1 in order to get the posterior probability. The
MAP estimate of c is the mode of this distribution, and a confidence interval
can be calculated using the minimal interval containing 95% of the posterior
probability. Note that reads that do not support a known allele at S contribute
a factor that is independent of c, hence we can ignore them in the calculation.
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Fig. 1. (A) False positive somatic mutations detected per megabase on in silico contaminated data; most cancers have ∼1 true event per megabase (B)
accuracy with single contaminating sample (C) accuracy with multiple contaminating samples (D) accuracy with respect to read depth; shaded areas indicate
95% confidence interval (E) contamination estimates of TCGA Ovarian dataset.

For tumor samples, we recommend using the genotypes of the patient-
matched normal when available instead of the tumor, since homozygous
SNPs in regions of loss of heterozygosity in the tumor will interpret
contamination with normal cells from the same patient as foreign DNA since
they have different genotypes.

3 RESULTS
Using next-generation sequencing data from the TCGA Ovarian
publication (TCGA Research Network, 2011), we identified 12
exome-capture BAMs with low contamination, having very few
reads that do not match the homozygous calls from their
genotyping arrays (Supplementary Table S1). Next, we created
in silico datasets by mixing a primary sample with one or
more contaminants at specific contamination levels (Supplementary
Material). Reassuringly, the estimate of the contamination level of
the primary sample alone was 0.08%. ContEst was able to accurately
predict the level of contamination across a wide range of conditions
including more than a single contaminating sample. (Fig. 1B and C)

In order to assess the accuracy as a function of sequencing depth,
we downsampled the depth of the sequencing data (Fig. 1D), and
demonstrated that ContEst produces accurate estimates even with
average coverage <5×.

Applying the method to data obtained from the TCGA
Ovarian publication (Supplementary Table S2) indicates that
low levels of physical contamination are common (Fig. 1E).
Independent validation of all somatic events likely ensured that
this contamination did not cause false positives in the publication.
However, given a distribution of contamination as seen in TCGA
(Fig. 1E), and an estimated error rate at non-dbSNP sites from
contamination as shown in Figure 1A, a typical cancer project might
expect >10% of the samples to have >1.5% contamination, causing

∼0.2 errors/Mb per sample, which is a significant fraction of the
typical somatic mutation rate of 1/Mb per sample.

In addition, ContEst has proven to be essential in lab quality
control to identify and monitor sources of contamination, which
has helped decrease contamination at the Broad Institute.
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