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Abstract
High-throughput screening data repositories, such as PubChem, represent valuable resources for
the development of small molecule chemical probes and can serve as entry points for drug
discovery programs. While the loose data format offered by PubChem allows for great flexibility,
important annotations, such as the assay format and technologies employed, are not explicitly
indexed. We have previously developed a BioAssay Ontology (BAO) and curated over 350 assays
with standardized BAO terms. Here we describe the use of BAO annotations to analyze a large set
of assays that employ luciferase- and β-lactamase-based technologies. We identified promiscuous
chemotypes pertaining to different sub-categories of assays and specific mechanisms by which
these chemotypes interfere in reporter gene assays. Our results show that the data in PubChem can
be used to identify promiscuous compounds that interfere non-specifically with particular
technologies. Furthermore, we show that BAO is a valuable toolset for the identification of related
assays and for the systematic generation of insights that are beyond the scope of individual assays
or screening campaigns.
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INTRODUCTION
The field of high throughput screening (HTS) is rapidly advancing through the development
of sophisticated robotics and liquid handling systems, sensitive and versatile detection
technologies, and powerful informatics systems that enable miniaturization and increased
throughput.1 Furthermore, HTS is being used to interrogate increasingly complex biological
systems and processes, driven by advancements in molecular and cellular biology in
combination with innovative assay designs.

*To whom correspondence should be addressed: Stephan Schürer; Center for Computational Science, University of Miami, 613
Clinical Research Building, 1120 NW 14th St., Miami FL 33136; sschurer@med.miami.edu; phone: +1-305-243-4842.

NIH Public Access
Author Manuscript
J Biomol Screen. Author manuscript; available in PMC 2012 April 1.

Published in final edited form as:
J Biomol Screen. 2011 April ; 16(4): 415–426. doi:10.1177/1087057111400191.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In an effort to find novel entry points for drug discovery programs, countless HTS
campaigns comprising large commercial and proprietary compound libraries have produce
massive data sets – primarily in pharmaceutical companies. The NIH Molecular Libraries
Roadmap Initiative2 and the availability of more affordable “out of the box” screening
systems and reagents have facilitated a dissemination of HTS capabilities into academic
institutes and universities, where they are now relatively common and available to
researchers.

HTS datasets, which consist of experimental results and assay metadata, are typically stored
in data warehouses using relational database schemas.3;4 The fast pace of innovation in
assay designs and detection technologies, as well as the increasing complexity of the
biological targets under investigation, pose challenges to “static” database schemas to
capture and manage the diversity of screening experiments and their outcomes. To optimize
the value of HTS efforts beyond any individual HTS campaign and to facilitate more
informed decision-making as compounds progress in the value chain, systematic knowledge
management is receiving increased attention from informatics organizations.5 In this
context, a formal, well-structured, knowledge-based, and extensible description of biological
assays is required. Expert biocuration to organize and annotate existing data is also a critical
component of any HTS knowledge management solution.

PubChem is a public repository of HTS assay descriptions, small molecule compounds, and
HTS results (which we refer to as endpoints).6;7 Originally put in place as part of the
Molecular Libraries Program (MLP), it serves to host data generated at the MLP centers as
well as that from other NIH funded projects. As of September 2010, there were over 2,100
bioassays from the MLP deposited in PubChem. In addition to PubChem, there are several
other publically available sources of screening data, including, ChEMBL8, which contains
structure activity relationship (SAR) data curated from the medicinal chemistry literature;
the Psychoactive Drug Screening Program (PDSP);9;10 and ChemBank.11;12 In addition,
private resources, such as Collaborative Drug Discovery (CDD),13;14 also make large
screening data sets publically accessible.

Despite recommendations from industry and government work groups, there is currently no
agreed upon standard for the representation of HTS assay data. Such a representation is vital
for researchers to meaningfully interpret and compare diverse assay results.15 Because HTS
data repositories lack detailed annotations using standardized terms, seemingly trivial
queries such as “list the biochemical vs. cell-based assays”, or “list assays that use a
luciferase reporter construct” are not possible. In addition, the lack of a formal description of
biological assays hinders the integration of HTS data from different sources as well as with
other life science databases (e.g. biological pathways).

PubChem’s already large and diverse set of deposited assay results along with several other
accessible screening data repositories form a large corpus of data that can serve as a starting
point to develop a systematic categorization of HTS assays. The exponential growth of
public data repositories indicates that we are only beginning to explore the space of possible
assay designs. The development of a clearly structured and standardized formal description
of concepts that are relevant to interpreting HTS results is therefore very timely.

In this report we demonstrate how such a formalized terminology can facilitate analyses
across multiple diverse assays to identify promiscuous compounds. These compounds are
traditionally problematic for HTS and it is desirable to identify them as early as possible in a
campaign. Compound promiscuity can be related to an assay technology, detection method
or interaction with biological targets and often the specific mechanisms of action are not
fully understood. There have been attempts at the identification of compound classes that
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can interfere with specific assay technologies, but these studies are usually focused on a
small number of biological assays and did not make use of the large numbers of data sets
currently available.16; 17 Here we attempt for the first time to identify promiscuous behavior
on a large- scale using a curated data set that allowed us to interrogate compound behavior
across certain assay categories and sub-categories.

METHODS
PubChem local mirror database and chemical structures

A local relational mirror of the PubChem bioassay database was created using in-house
scripts and a public version of the MySQL database. The details of this database, schema,
population and update processes, implementation, and code are reported elsewhere.18

Briefly, the database consisted of several tables, including assay details (such as AID, assay
name, description, project category, protocol), panel assay specifications, result definitions
(such as IC50, % inhibition or any other observed measurement or statistics), result data
(with PubChem Activity Outcome and Score and the most important results, such as IC50,
and qualifiers such as <,>,=), cross references (links of assays to other NCBI databases such
as protein or nucleotide target, PubMed, taxonomy), and relationships (links between
different assays, links to other NCBI Entrez databases, and links between targets and their
sequences). The system utilized the PubChem FTP site to access XML assay descriptions
and CSV assay data and the NCBI Entrez Utilities (eUtils) to access additional information
(including if an assay had changed) to keep the mirror database current. The database
included a structure table only as a placeholder. Chemical structures corresponding to the
assay data were downloaded by Substance IDs (SIDs) directly from PubChem as SDFiles
using the batch download facility.

PubChem Assay Annotation and Assay Clustering
PubChem assays were annotated manually using the mirror database described above, which
was fetched from PubChem in April 2010 with 2,299 assays by AID. 172 assays had no data
at all (on hold assays). There were 194 summary assays, of which 136 had no substances or
activity data. These assays were not considered for annotation. There were 105 assays with
no activity outcome method (which is usually assigned as screening, confirmatory, other, or
summary) - these are from Ambit Biosciences, DTP/NCI, and SGCO. 1,498 assays were
from the screening centers of the NIH Molecular Libraries Probe Center Network (MLPCN)
and former Molecular Libraries Screening Center Network (MLSCN) – not including assays
without data (on-hold) and summary assays.

To aid the manual annotation process, all assays were clustered based on the assay title,
description, protocol, and source. Several assays (other than on hold or summary assays) did
not have a protocol or only a minimal description, but all had information about the source.
To cluster the assays, first for each assay a text fingerprint was generated from all words
used in title, description, procedure, and source after stemming (to consolidate different
grammatical forms) using the Pipeline Pilot 8.0 (Accelrys)19 text analytics component
collection. The text fingerprints (TXFP_Custom) encode for each individual assay the
presence and absence of word tokens from the global corpus of assays. The assay
“documents” were then clustered based on the fingerprints using the Tanimoto similarity
metric and setting the average cluster size to 5 members. The clustering method is a
relocation technique based on maximum dissimilarity partitioning implemented in the
Pipeline Pilot text analytics collection. A total of 460 clusters were generated. This method
grouped together similar assays very effectively; for example all assays of the same
screening campaign by center or assays with the same procedure or assay design (for
example many NCGC toxicity assays); as expected, clusters usually included assays from
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the same source. The method also grouped together related assays with minimal annotations
(such as many of the NCI or Chembank assays), summary assays, or assays that were on
hold. 299 clusters were generated from the 1,498 MLPCN and MLSCN assays that had data
deposited and were not summary assays. To illustrate the similarity relationships of these
assays we generated a minimum spanning tree (MST) based on the pair-wise (Tanimoto)
similarities of the assays computed from their text fingerprints (the same similarities that
were used for clustering above). The MST was computed using an in-house protocol
implementing Kruskal’s algorithm. The MST was visualized in Cytoscape20 and is shown in
Supporting Figure S1-A. Supporting Figure S1-B and C show the clusters and assays
memberships for biochemical and cell-based assays respectively. Assay formats were
mapped onto the tree after manual annotation (see below).

Following cluster pre-processing, assays were then manually annotated by assay format,
assay technology, and the other BAO categories. The BAO schema with classes, individuals,
relationships and their definitions can be downloaded from our website and BAO can also
be visualized there.21 For the limited analysis presented here, we focused specifically on
assays based on designs to detect luminescence from the luciferase-catalyzed conversion of
luciferin substrates22 and assays employing β-lactamase-based technology.23

Luciferase-assays were classified into five sub-categories: reporter-gene, viability, ATP-
coupled, luciferin-coupled, and luciferase enzyme activity assays. Briefly, luciferase
reporter-gene assays use the luciferase gene downstream of a promoter of interest. The
amount of luciferase expressed was quantified by the intensity of light (luminescence)
produced in the presence of substrates, ATP and luciferin. Viability assays estimate the
proportion of living cells in an assay by measurement of ATP content in a luciferase
catalyzed reaction. ATP-coupled assays measure the residual amount of ATP (for example
after a kinase reaction) by a coupled luciferase reaction. Luciferin-coupled assays measure
the amount of luciferin generated after detoxification by cytochrome P450 enzyme activity.
Luciferase enzyme activity assays quantify the luciferase enzyme activity by the amount of
light produced in a biochemical reaction. β-lactamase technology is used in either reporter-
gene or enzyme activity assays.

PubChem Promiscuity Index (PCIdx)
The PubChem Promiscuity Index (PCIdx) of a substance (by SID) was defined as the
number of assays in which this substance is active divided by the number of assays in which
it was tested (equation I, where N is the assay count for the substance).

(I)

To define “active” we used the PubChem Activity Outcome, which is one of the required
fields to be uploaded by the assay depositor. Activity Outcome categorizes tested samples as
active, inactive, inconclusive, or unspecified. PubChem does not have rules when to apply
the outcome category “active”, which is defined (subjectively) by the depositor. Therefore
“active” can have different meanings across different assays. This is clearly not the best way
of comparing compounds in a large number of assays and it would be much better to
standardize the most important endpoints across all assays. However, currently activity
outcome is one of the only two required endpoints (the other one is activity score - also
subjectively depositor defined) and therefore the only way to quickly identify “active”
compounds.
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To compute PCIdx for each compound, all assays in which it was tested and the
corresponding activity outcomes were determined by querying the PubChem mirror
database above. PCIdx was calculated according to equation I, separately for single
concentration assays (PubChem activity outcome method “screening”) and concentration-
response assays (activity outcome method “confirmatory”). Only assays of a certain
category were considered, for example all luciferase technology assays or a certain subset
thereof, such as viability assays or luciferase enzyme inhibition assays.

Because the significance of the PCIdx measure increases with more tested assays, we
visualized compounds’ promiscuities by plotting PCIdx over the number of assays tested
while indicating the number of active assays by a color code (compare Figures 1, S4, S6).

Figures 1, S4, S6 and the heat map Figure 3 were created in TIBCO Spotfire DecisionSite.24

Data Clustering
Data in Figure 3 (corresponding to Table S1) were hierarchically clustered using the
unweighted pair group method with arithmetic mean (UPGMA) and PCIdx correlation as
similarity measure.

Chemical Structure Clustering
Chemical structures were clustered by maximum common substructure using ChemAxon
Library MCS.25

Chemical Structure Similarities
Compound pair-wise similarities and the similarity matrix were computed using extended
connectivity atom type fingerprints of length 4 (ECFP4)26 and the Tanimoto metric
implemented in Pipeline Pilot 8.19

RESULTS
BioAssay Ontology and Assay Annotations

We have developed a BioAssay Ontology (BAO)21 to facilitate analyses of screening results
from large and diverse sets of biological assays spanning multiple technologies and
originating from different sources. The BAO project seeks to develop a formal, extensible,
knowledge-based description of biological assays by making use of descriptive logic based
features of the Web Ontology Language (OWL). Expert curation is an important component
of the BAO project, and we have been systematically annotating sets of PubChem
BioAssays with BAO terms describing assay concepts. The BAO project will also provide
software tools to query and explore data sets in the context of the ontology.

The BioAssay Ontology describes several concepts related to biological screening, including
Perturbagen, Target, Format, Assay Design, Detection Technology, and Endpoint, including
endpoint data manipulation. Perturbagens deposited in PubChem and the other screening
data sources mentioned above are mostly small molecules, but can include various other
perturbing agents that are screened in an assay. We refer to targets as “Meta Target”
describing not just protein targets, but also pathways, biological processes or events, etc.
targeted by the assay. Format describes the biological or chemical features common to each
test condition in the assay and includes biochemical, cell-based, organism-based, and
variations thereof. Assay Design describes the assay methodology and implementation of
how the perturbation of the biological system is translated into a detectable signal. Detection
Technology relates to the physical method and technical details to detect and record a signal.
Endpoints are the final HTS results as they are usually published (such as IC50, percent
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inhibition, etc.). Endpoint data manipulation specifies how the raw signal(s) are transformed
into reported endpoints (i.e. normalization, correction, etc.). BAO also captures other assay
properties such as assay purpose and how assays are related in campaigns. BAO is also
designed to handle multiplexed assays. All main BAO components include multiple levels
of sub-classes and specification classes, which are linked via object property relationships
forming a knowledge representation. The details of the development and description of BAO
will be reported elsewhere. The BAO schema with classes, individuals and relationships can
be downloaded from our website.21 BAO classes, their subsumption hierarchies and class
definitions can also be visualized directly on the BAO website.21

We annotated a set of over 350 PubChem assays and grouped them into related classes by
assay technology and detection method. Specifically, we focused on widely used HTS assay
technologies that employ luciferase- and β-lactamase-based reporters.22 By analyzing the
outcomes of related assays we could readily identify compounds of interest, for example
those that were promiscuously active in one or multiple classes of assays. The luciferase
assays were annotated and classified into sub-categories that relate to assay design
(described in methods). To efficiently annotate assays and to facilitate data analysis across
all PubChem assays, we created a local mirror of the PubChem database. This database
stores assay descriptions and endpoints in a relational format and can be queried easily using
SQL. Mirrored assays were then manually annotated with BAO terms after interpreting the
textual descriptions available in PubChem. To aid in the assay annotation process, we
clustered the assays based on text fingerprints derived from the free text in assay title,
description, protocol, and source (see methods). Supporting Figure S1 illustrates the
similarity relationships based on their textual descriptions in PubChem of the 1,498 MLPCN
and MLSCN assays and the clusters that were obtained as well as the most important
formats (biochemical and cell-based) and the screening center. Figure S1-A shows the
minimum spanning tree of the assays (see methods) illustrating that assays from the same
center and assays of the same format typically group together locally. Figure S1-B and C
show the cluster memberships (see methods). Each cluster contained only assays from one
center and most clusters did only contain assays of one format. Clusters of assays also
typically were of related designs and biological targets (not shown). In our hands this was an
effective method to group similar assays together enabling the sequential annotation of sets
of related assays. We found that this greatly reduced errors and accelerated the annotation
process compared to random or chronological (by Assay ID: AID) order of annotation.

Analysis of luciferase technology assays
Using the local relational database created from data as of April 2010 we identified a total of
257 assays using a design based on the luciferase-induced conversion of luciferin substrates
that results in the emission of light.22 Specifically we annotated the following types of
luciferase-technology assays: reporter gene assays (105), cell-viability assays (through
detection of ATP, 82), ATP-coupled (other than viability assays, 35), luciferin-coupled
assays (23), and enzyme (biochemical) activity assays (12). A histogram of assay types is
shown in Supporting Figure S2. We also identified and annotated the assay kits (Supporting
Figure S3).

Using the luciferase assay annotations, we computed promiscuity statistics for each
compound that was tested in any of the luciferase assays. We developed a Pipeline Pilot
(Accelrys Inc.) protocol that queries the relational database to determine how many different
assays (of a luciferase-technology category) each compound was tested in and in how many
it was found active. This was done separately for single concentration and concentration-
response assays. To define active and inactive we used the PubChem activity outcome
endpoint. Although this is a subjective, “local” definition (each depositor can define “active”
and “inactive” for each assay independently), we found it a useful first approximation. We
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calculated a PubChem Promiscuity Index (PCIdx) for each category as the quotient of the
number of luciferase assays in which a substance was reported as active and the number of
assays in which it was tested (see methods, equation I). The larger the ratio of active
luciferase assays to assays tested, the higher a compound’s promiscuity PCIdx. However,
the significance of this promiscuity measure increases with the number of assays tested. We
therefore visualized promiscuity by a scatter plot of PCIdx and the number of assays tested,
while also indicating the number of active assays (of each category) by color. Figure 1
shows compound promiscuities for the different luciferase technology categories for single
concentration and concentration-response assays (87,615 data points shown overall). It
shows a large number of promiscuous compounds identified from viability and reporter gene
assays, which we decided to investigate in greater detail. Supporting Figure S4 illustrates
promiscuities across all luciferase technology assays taken together.

The majority of viability assays were concentration-response series deposited by the
National Center for Chemical Genomics (NCGC). Figure 2 shows the most promiscuous
cytotoxic compounds (by Substance ID: SID) identified by these assays. We have previously
demonstrated that such data can be useful to model acute animal toxicity.27 All of the
compounds shown have been tested in 44concentration-response assays and were
categorized as active in more than 95 % of them. For example, the toxicity of digitonin (SID
17389047) is related to its lipid (membrane) solubilizing properties. Most of the compounds
are chemically reactive, which is likely the cause of their toxicity. Crystal violet
(hexamethyl-p-rosaniline chloride, SID 17389869) and methylene blue (SID 17388909) are
redox-active and electrophilic dyes, respectively. 17388695, 17389115 are surfactants
(phase transfer reagents), 17389451 is a reactive dihydroxyanthraquinone, 17389124 is used
as pesticide, and 17389974 is an alkylator.

Although luciferase is often used in viability assays, its most common application is in
reporter gene assays. To investigate promiscuous compounds in this category, we retrieved
all substances that were active in at least 5 single-concentration and 5-concentration-
response luciferase reporter gene assays. Figure 3 illustrates the promiscuity indices (PCIdx)
of the 161 compounds in each of the luciferase assay categories for dose-response (DR) and
single-concentration (SC) assays after hierarchical clustering (see methods). There are two
major clusters of compounds. In one group, the compounds were also highly promiscuous
across viability assays. This could be expected, since broadly cytotoxic compounds should
also show up as actives in luciferase reporter gene assays. Importantly, this pattern was
immediately revealed by our analysis method, which utilized activity outcomes across all
assays of each category in which a compound had been tested. In the other group,
compounds also showed promiscuity in the category of luciferase enzyme inhibition assays.
It is therefore likely that the mechanism responsible for their promiscuity across reporter
gene assays is the inhibition the luciferase enzyme. Most of those compounds also showed
high promiscuity indices in the other categories of luciferase assays. Supporting Table S1
lists all 161 compounds corresponding to Figure 3 (by SID), their PCIdx values for each
category and the number of assays in which each compound was active vs. the number of
assays in which it was tested.

Figure 4 and Table 1 illustrate example chemical structures of both categories of highly
promiscuous reporter gene compounds. The first row in Figure 4 and the first 5 entries in
Table 1 show selected compounds that likely act via inhibiting luciferase enzyme. They
represent 5 different chemical classes including the benzoyl-aryl-urea (SID 3717070), or the
3,5-disubstituted-1,2,4-triazole (SID 865680) scaffolds.16 The second row of Figure 4 and
entries 6 to 10 in Table 1 show cytotoxic compounds that were broadly active across cell
proliferation assays. They include reactive compounds such as electron-deficient vinyl
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chloride (SID 24817234) and Michael acceptor (SID 845529), and Daunorubicin (SID
855534), which is a DNA intercalator used as chemotherapeutic.

β-lactamase- vs. luciferase-reporter gene assays
Another widely used assay reporter technology relies on β-lactamase.23 Most of the
implementations use Fluorescence Resonance Energy Transfer (FRET) substrates resulting
in a fluorescence shift upon hydrolysis of the β-lactam.28 As of April 2010, we annotated 92
β-lactamase assays, 74 of which were reporter gene assays (Supporting Figure S5-A).
Supporting Figure S5-B shows the assay kits used. To identify small molecule structural
classes that were active in a large percentage of the β-lactamase technology assays tested in
PubChem, we performed an analysis similar to that for luciferase-based assays. Supporting
Figure S6 shows the compounds’ promiscuity plots for β-lactamase enzyme activity and β-
lactamase reporter gene assays respectively, and expressed separately for single
concentration and concentration-response assays. From Figure S6, several interesting classes
of compounds can be identified, including some subtle ones. For example, from quadrant A
(biochemical β-lactamase enzyme activity measured by concentration-response assays), a
series of 2-alkylsulfonyl-1,3,4-oxadiazoles could be identified, which had previously been
demonstrated to covalently modify the enzyme resulting in its inhibition.17 Due to its
mechanism, this chemotype shows activity in many other assay types (not shown). However,
there are many more compounds that can be identified as highly promiscuous among the β-
lactamase reporter gene assays.

For further analysis, we selected compounds with a promiscuity index (PCIdx) of at least 0.5
and which have been tested in at least 10 reporter gene assays (for single concentration or
concentration-response assays). These compounds were clustered by maximum common
substructure (MCS). Some of the most promiscuous clusters are shown in Figure 5 by their
MCS scaffolds. Supporting Table S2 includes all 97 compounds, their MCS scaffolds,
cluster details, PCIdx and the number of active and tested assays. Interestingly, in contrast to
the promiscuous luciferase reporter gene compounds (Figure 4, Supporting Table S1), these
compounds formed more pronounced (larger) clusters. The mechanism of promiscuity was
not immediately obvious from this analysis. However, we hypothesize that compounds in
cluster 1 inhibit the β-lactamase enzyme, because these compounds were also promiscuously
active in the biochemical β-lactamase inhibition assays. Some of the other series had
reactive functional groups, for example cluster 2 (Figure 5) or clusters 7 and 4 (Supporting
Table S2), which could therefore be toxic or react chemically with the reporter enzyme or
other proteins in the pathways upstream of the promoter.

To further investigate how the promiscuity mechanisms were distinct among luciferase and
β-lactamase reporter gene assays, we pair-wise compared all highly promiscuous
compounds across the two technologies; specifically 102 compounds that were active
against the majority of luciferase reporter gene assays vs. 97 compounds active against the
majority of β-lactamase reporter gene assays. Compounds were selected with PCIdx ≥ 0.5
and tested in at least 10 assays of their respective reporter technology. Figure 6 shows the
similarity histogram of the maximum similar compound among one group for each
compound in the other group (see methods). The complete similarity matrix and the
histogram of all pair-wise similarities are provided in Supporting Figures S7 and S8. Figure
6 (and Figures S7, S8) indicated that for most of the compounds active against β-lactamase,
there was no significantly similar compound active against luciferase. This supports distinct
mechanisms of non-specific chemical interferences among luciferase and β-lactamase
reporter gene assays. Chemical classes that were promiscuous in both luciferase and β-
lactamase reporter gene assays are shown in Figure 7 (all compounds are provided in
Supporting Table S3). Their generic mechanisms appeared to include high chemical
reactivity such as SID 14729238 or SID 4251553 and general toxicity such as Emetine (SID
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855836),27 which is a protein synthesis inhibitor. However, the results suggested that other
mechanisms are likely to exist; for example Staurosporine (SID 11532977) is one of the
most promiscuous pan-kinase inhibitors.29

DISCUSSION
The BioAssay Ontology is the first public effort to develop a formal knowledge-based
description of HTS assays and screening outcomes.21 The value of large public data
repositories such as PubChem will ultimately be determined by how well researchers are
able to utilize the information to extract knowledge as a starting point for new research and
drug development. Their usefulness will largely be determined by two factors: 1) the content
and quality of data in the repository and 2) the ability to retrieve relevant results. The ability
to identify, aggregate and analyze data from various assays that are related to a project of
interest is particularly important. BAO primarily addresses this second aspect, but it will
also help to analyze data quality by identifying redundancies and related data. While
developing BAO, we have annotated over 350 PubChem assays to organize them by
concepts that are relevant to interpret HTS results. Specifically, we investigated assays
based on designs that use the luciferase-catalyzed conversion of luciferin substrates resulting
in luminescence and assays detecting β-lactamase via FRET substrates. In contrast to
previous reports that focused mostly on individual screening campaigns, BAO has enabled a
systematic analysis of many related assays to generate results that could not be obtained
from individual screens. Our promiscuity analyses also demonstrated clearly that there is
valuable information in the PubChem repository beyond individual screening campaigns,
and that the BAO descriptions can facilitate the extraction of new knowledge from large
numbers of related data sets.

Among assays employing luciferase technologies, we identified five sub-categories: reporter
gene assays, viability assays, ATP-coupled and luciferin-coupled enzyme activity, and
biochemical luciferase enzyme activity (Supporting Figure S2). Analyzing compound
promiscuity in viability assays revealed the most generally cytotoxic compounds and
compound classes. Many of these assays were performed by the NCGC with compounds
that were also studied at the Environmental Protection Agency (EPA).30 Toxicity for these
highly promiscuous compounds can be mediated by several mechanisms as illustrated by
our examples. One common and expected theme that could readily be identified for many of
these compounds was that chemical reactivity is related to their cytotoxic effects (Figures 2
and 4).

The majority of the annotated luciferase assays belong to the category of reporter gene
assays. We identified the most promiscuous compounds in both single concentration and
concentration-response assays, based on the promiscuity index and the number of luciferase
reporter gene assays in which a compound was screened. The identified chemotypes are of
interest because it is likely that they will be identified in future luciferase reporter gene
assays. The fact that many of the most promiscuous luciferase reporter gene compounds
have been tested in concentration-response assays indicates that they were selected as
interesting hits from primary assays. Based on our observations, researchers would be well
advised to exclude these compounds from follow-up studies, because they act via a
mechanism that is related to the assay technology and not the biological target of interest.
Calculated promiscuities of these compounds in the different sub-types of assays that use
luciferase in their design suggested two likely mechanisms of action. One was related to cell
viability/toxicity and the other to inhibition of the luciferase enzyme. We have shown
specific examples for both cases (Figures 3, 4, Tables 1, S1). The analysis presented here
was relatively simple, because it did not take into consideration variations in assay
conditions and different luciferase enzymes used. We nevertheless could identify many
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promiscuous and undesired chemotypes, making this information useful for flagging
primary screening hits that should be treated with caution. Our simple analysis that relies on
results from many different assays is thus an effective approach to help identifying
undesirable compounds and eliminating them before additional resources are spent during
hit verification, lead identification and optimization stages. Moreover, this computational
analysis could also be used to develop hypotheses on the mechanism of compound
promiscuity.

We then performed a similar promiscuity analysis for β-lactamase reporter gene assays to
identify chemotypes that were non-specifically active in this category of assays (Figures 5,
S6, Table S2). The rationale was the same as for luciferase reporter gene assays: to identify
and exclude undesirable hit compounds as early as possible in the discovery and
optimization pipeline. In contrast to luciferase reporter gene assays, the β-lactamase
promiscuous compounds formed pronounced, larger clusters after maximum common
substructure clustering. This could be due to the composition of the library or because the
larger number of luciferase (compared to β-lactamase) reporter gene assays selected more
diverse highly promiscuous compounds.

Pair-wise comparison of the most promiscuous compounds in luciferase-vs. beta-lactamase
reporter gene assays showed that, with a few exceptions, their chemical spaces do not
overlap (Figures 6, S7, S8). This suggests distinct mechanisms of promiscuity that are
specific to the reporter technology. Although this may be expected, such a quantitative
analysis using a large number of assays is relevant for data analysis and it is also directly
relevant to HTS assay development. Our analysis demonstrates that the two reporter
technologies are orthogonal to one another, because they are prone to distinct chemotypes of
artifactual hits. Compounds that were identified as promiscuous in both luciferase and β-
lactamase reporter gene assays appear generally cytotoxic due to their chemical reactivity or
a mechanism unrelated to the reporter, for example non-selective kinase inhibition (Figure 7,
Table S3).

SUMMARY AND CONCLUSIONS
In summary, we have systematically analyzed data from a large number of assays in
PubChem to identify compounds that are promiscuously active in specific assay
technologies and via distinct mechanisms of action. Such an analysis is only possible with
the detailed annotations that we made based upon the BioAssay Ontology, the first reported
ontology to formally describe high-throughput screening assays and assay outcomes. There
are many advantages of a formal description of bioassays and standardized annotations of
data sets such as those in PubChem. Here we demonstrated that analyses across many assays
are facilitated by standardized annotations such as those produced by BAO and that the
results can provide insights that cannot be obtained by analyzing individual data sets. This is
particularly relevant for relatively noisy primary HTS results. Analysis across many assays
of the same type can also be expected to be more robust than analyses focused on individual
data sets. Although HTS data contain false positives and false negatives, the BAO approach
does not rely on each individual result data points, but requires only that the ensemble of
results reflect the correct trend, i.e. the fraction of the experiments of a certain category in
which a compound is found active.

While undesirable and reactive chemical functionalities that are prone to cause false
positives in HTS have been reported in the past 31, the definition of undesired chemical
substructures to a large extent depends on the specific assay technologies and biological
targets; for example in some applications covalent modifiers may be acceptable or even
desired, while in others they have to be excluded. BAO provides a means to identify
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undesirable chemical substructures in a data driven manner specific to the assay
technologies or biological meta-targets that are covered by BAO. With the type of analysis
presented here it would thus be possible to identify undesirable chemotypes that are
specifically relevant to a given discovery project.

We would not recommend to a-priori remove from a screening library all compounds that
show promiscuity, but rather flag them, because such compounds can still be of interest for
certain targets and orthogonal assays designs and detection technologies are prone to
structurally different artifacts (as we have shown for luciferase and β-lactamase reporter
gene assays). By the same token, certain chemotypes may cause artifacts across a large
number of assay technologies and biological targets and these could be removed to improve
a screening collection. This will require more comprehensive analyses. We are currently
annotating more assays from PubChem and will perform similar analyses for various other
categories. The curation effort is time-consuming and not an effective long-term strategy to
standardize data. While a certain amount of curation will likely be required to consolidate
terminology, it would be desirable to add BAO-type annotations at the stage of assay
deposition and to make these annotations available in the primary data sources such as
PubChem. BAO is available from our website.21

As the number of available data sets increases, the type of analyses presented here would
have to be repeated periodically in order to comprehensively and accurately identify
promiscuous compounds of a certain category. However this is a straightforward
undertaking given standardized assay annotations and endpoints. Utilizing BAO annotations
and standardized endpoints we are also currently working on developing predictive
classifiers from quantitative outcomes of luciferase assays. Such classifiers could then be
used to automatically flag potentially promiscuous compounds.

The BAO software under development21 will facilitate the query, exploration and
downloading of curated HTS data by BAO terms and thus will also facilitate the
identification of promiscuous compounds for specific assay technologies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Compound promiscuity by luciferase assay technologies. For each compound the
Promiscuity Index vs. number of tested assays are depicted. A, B: ATP-coupled enzyme
activity (e.g. kinase activity, not viability); C, D: luciferase enzyme activity; E, F: luciferin-
coupled enzyme activity (e.g. P450); G, H Luciferase reporter gene assays; I, J: cell viability
assays (ATP-coupled). A, C, E, G, I: concentration-response assays; B, D, F, H, J: single
concentration assays. Color and size indicate the number of assays (of the particular
luciferase assay type) in which a compound was active. 87,615 data points with at least one
active assay shown: A: 3,457, B: 5,619, C: 2,313, D: 3,646, E: 3,457, F: 5,619, G: 14,200,
H: 36,685, I: 1,413, J: 11,206.
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Figure 2.
Examples of highly promiscuous (cytotoxic) compounds in luciferase viability assays. All
compounds have a promiscuity index between 0.95 to 1.0, were tested in 44 assays, and are
active in at least 42 assays.
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Figure 3.
Heat map of 161 most promiscuous compounds in luciferase reporter gene assays, which are
active in at least 5 concentration-response and 5 single concentration (luciferase reporter)
assays. DR and SC denote “dose response” and “single concentration”, respectively. Shown
are the promiscuity indices of all compounds in the different luciferase assay categories for
both concentration-response and single concentration assays, respectively, clustered by their
PCIdx profiles. Two groups of promiscuous reporter gene compounds were apparent,
suggesting the mechanism for reporter gene assay promiscuity: one in which compounds
were also active in viability assays (red shade) and the other where compounds were also
active in luciferase enzyme assays (blue shade). Compare Supporting Table S1 for details.
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Figure 4.
Selected examples of promiscuous compounds in luciferase reporter gene assays of two
categories. Top row compounds were also active in luciferase enzyme inhibition assays.
Bottom row compounds were active in viability assays. Refer to Table 1 for details.
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Figure 5.
Representative chemical scaffolds of the most promiscuous compounds in β-lactamase
reporter gene assays (see supporting Table S2 for compounds from all series).
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Figure 6.
Histogram of the maximum pair-wise Tanimoto similarities of each of the 102 most
promiscuous luciferase reporter gene compounds compared against the 97 most
promiscuous β-lactamase reporter gene compounds. Tanimoto similarities were computed
using ECFP4 fingerprints. Most promiscuous compounds were defined as those with PCIdx
≥ 0.5 and which were tested in at least 10 assays. See Supporting Figure S7 for the full
similarity matrix and Figure S8 for the histogram of all pair-wise similarities.
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Figure 7.
Compounds representing structural classes that show promiscuous activity across luciferase
and β-lactamase reporter gene assays. Supporting Table S3 includes all compounds and their
cluster details.
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