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Abstract
Human histone gene expression is controlled at the level of transcription initiation and subsequent
3′end processing to generate non-polyadenylated stem-loop containing histone mRNAs.
Transcription is controlled at the G1/S phase transition by the Cyclin E/CDK2 mediated induction
of p220NPAT/HiNF-P complexes at subnuclear domains designated Histone Locus Bodies (HLBs)
that associate with histone gene clusters. Histone mRNA maturation is mediated by Lsm10
containing U7snRNP complexes. In normal human somatic and embryonic stem cells, the 6p
histone locus, the transcription marker p220NPAT and the 3′end processing marker Lsm10 (but not
the Cajal Body marker coilin) co-localize, reflecting the assembly of an integrated factory for
histone gene expression. Using in situ immuno-fluorescence microscopy and fluorescence in situ
hybridization (FISH), we show that this subnuclear organization is compromised in some cancer
cell lines. In aneuploid cells, the presence of Histone Locus Bodies correlates with the number of
histone gene loci. More importantly, the in situ co-localization of p220NPAT and Lsm10 is
disrupted in HeLa S3 cervical carcinoma cells and MCF7 breast adenocarcinoma cells, with most
Lsm10 residing in Cajal Bodies. The finding that the subnuclear integration of transcriptional
initiation and 3′end processing of histone gene transcripts is deregulated may be causally linked to
tumor-related modifications in molecular pathways controlling histone gene expression during the
cell cycle.
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Introduction
Proliferation of normal diploid human cells is coupled with mitogen-related progression
through the restriction (R) point in late G1 when cells attain competency for S phase

Address correspondence to: Gary S. Stein, Department of Cell Biology and Cancer Center, University of Massachusetts Medical
School, 55 Lake Avenue North, Worcester, MA 01655, Tel: (508) 856-5625; Fax: (508) 856-6800; gary.stein@umassmed.edu.

NIH Public Access
Author Manuscript
J Cell Physiol. Author manuscript; available in PMC 2011 September 6.

Published in final edited form as:
J Cell Physiol. 2009 July ; 220(1): 129–135. doi:10.1002/jcp.21740.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



initiation and progression (Pardee, 1974; Pardee, 1989). Cancer cells exhibit deregulation of
the R point as reflected by reduced growth factor dependence but these cells must still
temporally control the subsequent induction of DNA replication and human histone gene
expression at the G1/S phase transcription. The transcriptional activation of multiple histone
genes, which encode the highly conserved proteins that package newly replicated DNA as
chromatin, represents a universal gene regulatory mechanism that is operative in both
somatic and embryonic stem cells (Stein et al, 1996; Luong et al, 2002; Mitra et al, 2003;
Miele et al, 2005; Braastad et al, 2004; Holmes et al, 2005; Becker et al, 2006; Becker et al,
2007; Medina et al, 2007; Medina et al, 2006).

In both human somatic and embryonic stem cells, the principal regulatory proteins that
mediate human histone gene transcription are concentrated at specific subnuclear domains
referred to as Histone Locus Bodies (Ghule et al, 2008). The histone gene co-activator
protein p220NPAT (Nuclear Protein, ataxia-telangiectasia locus) is stimulated in late G1 by
cyclin E/CDK2 dependent phosphorylation and subsequently recruited by the transcription
factor HiNF-P (Histone Nuclear Factor-P) to histone H4 gene promoters (Zhao et al, 1998;
Zhao et al, 2000; Ma et al, 2000; Ye et al, 2003; Wei et al, 2003; Mitra et al, 2003; Miele et
al, 2005). Histone genes, HiNF-P and p220NPAT represent primary architectural components
of Histone Locus Bodies. Nascent primary histone transcripts contain a unique 3′ stem-loop
structure that binds Stem Loop Binding Protein (SLBP) (Wang et al, 1996). Cleavage of
histone transcripts at the 3′end depends on U7 small nuclear ribonucleoprotein complexes
(U7snRNPs) that contain several protein subunits, including Lsm10 (U7 snRNP-specific
Sm-like protein 10) and Lsm11 (U7 snRNP-specific Sm-like protein 11) (Dominski and
Marzluff, 2007; Pillai et al, 2001; Pillai et al, 2003; Dominski et al, 2003). U7snRNPs are
thought to be assembled in Cajal Bodies, but the number of Cajal Bodies and the
localization of 3′ processing factors varies in different cell types (Frey and Matera, 1995;
Liu et al, 2006; White et al, 2007; Ghule et al, 2007; Bongiorno-Borbone et al, 2008). We
have previously shown that in normal human somatic and embryonic stem cells, the
transcriptional regulator p220NPAT and the 3′ processing marker Lsm10 co-localize in
Histone Locus Bodies yet both proteins are less frequently present in coilin-containing Cajal
Bodies (Ghule et al, 2008).

Deregulation of subnuclear organization is a hallmark of tumor cells (Stein et al, 2008; Zaidi
et al, 2007) and a key question that remains to be addressed is whether the regulatory
assembly of Histone Locus Bodies is altered in cancer cells due to deregulation of cell
growth regulatory pathways. Here, we examined the micro-environment mediating histone
gene transcription and processing in different cancer cell types to assess whether there are
spatial differences in the nuclear organization of the machinery that produces histone gene
transcripts in S phase. The principal finding is that the normal presence of Lsm10, p220NPAT

and histone genes at Histone Locus Bodies is disrupted in at least two distinct cancer cell
types where p220NPAT and Lsm10 now reside in distinct compartments. This architectural
perturbation represents a functional and spatial separation between histone transcription and
3′ end processing that may reflect pathological molecular pathways that control cell growth
of cancer cells.

Materials and Methods
Immunofluorescence (IF) Microscopy

IF microscopy was performed with panel of distinct human cell types (U2OS and SAOS-2
osteosarcoma cells, T98G glioblastoma cells, MDA-MB-231 and MCF7 breast
adenocarcinoma cells, PC-3 prostate adenocarcinoma and HeLa S3 cervical carcinoma
cells). Each cell type was propagated as recommended (www.atcc.com) and grown on
gelatin coated coverslips for IF analysis. IF was carried out as described previously (Ghule
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et al, 2007). Briefly, cells were fixed with 3.7% formaldehyde for 10 min, permeabilized by
0.25% Triton-X-100 for 20 min and then treated with primary antibody for 1 h at 37°C,
followed by detection using appropriate fluorescent tagged secondary antibody. The nuclei
were counter-stained with DAPI.

Antibodies, their working dilutions and their supplier are as follows: monoclonal p220NPAT

(mouse monoclonal, 1:1000, BD Biosciences), polyclonal p220NPAT (rabbit polyclonal,
1:1000) (Ma et al, 2000; Zhao et al, 2000), coilin (pdelta) (mouse monoclonal, 1:500, Santa
Cruz Biotech), coilin (rabbit polyclonal, 1:500, (Andrade et al, 1991)) and Lsm10 (mouse
monoclonal, 1:500, Biomatrix Research). Secondary antibodies were goat anti-mouse Alexa
488, goat anti-rabbit Alexa 488, goat anti-mouse Alexa 594, goat anti-rabbit Alexa 594, goat
anti-mouse Alexa 350, goat anti-rabbit Alexa 350 (all 1:800 dilution in 1X PBSA).

Fluorescence in Situ Hybridization (FISH)
Probes were made of BAC clones spanning a region very near to the major histone gene
locus on chromosome 6p21 (RP11-2p4) (Children's Hospital Oakland Research institute,
Oakland, CA). BAC DNA was purified using Qiagen columns and probe DNA was labeled
using the DIG Nick translation kit (Cat# 11745816910 Roche Diagnostics, Indianapolis, IN)
according to the manufacturer's protocol. The probe mixture was prepared by adding
50-100ng of probe DNA, 70% formamide, 10μg human Cot-1 DNA and 10μg salmon sperm
DNA. FISH was performed after cells were subjected to IF as described above. After IF,
cells were fixed by passing through ethanol grades (70%, 85% and 100%) and briefly air
dried. Cells were then co-denatured with the probe mixture at 80°C for 8 min and allowed to
hybridize overnight at 37°C in a moist chamber. Cells were washed using 50% formamide/
4X SSC for 15 min at 37°C, followed by washes in 2X SSC 15 min at 37°C and 1X SSC 15
min at room temperature. Probes were detected by incubation with appropriate secondary
antibody followed by 3 washes with 4X SSC, 0.1% Triton/4X SSC, and 4X SSC at room
temperature with shaking. The secondary antibody used for FISH analysis was anti-DIG
rhodamine (Roche) (1:500 in 4X SSC/1%BSA). Some cells then were counterstained with
DAPI and mounted in Prolong-Gold (Invitrogen). Cells were viewed under an
epifluorescence Zeiss Axioplan 2 microscope and images were captured using a Hamamatsu
(C4742-95) charged coupled device (CCD) camera and analyzed by Metamorph imaging
software (Universal Imaging). All images were captured with a 100x/1.4 Plan-Apochromat
oil immersion objective.

Results
Aneuploidy related amplification of Histone Locus Bodies in multiple cancer cell types

In this study, we assessed the subnuclear organization of the histone gene expression
machinery in different tumor-derived cell types for comparison with normal human diploid
cells (e.g., WI38 fibroblasts and H9 embryonic stem cells). The cancer cell lines we used
were U2OS and SAOS-2 osteosarcoma cells, T98G glioblastoma cells, MDA-MB-231 and
MCF-7 breast adenocarcinoma cells, PC-3 prostatic adenocarcinoma cells and HeLa S3
cervical carcinoma cells. We examined the presence of the histone gene co-regulator
p220NPAT (which forms an obligatory complex with histone H4 gene transcription factor
HiNF-P) and Lsm10 (a major component of the U7 snRNP related to the 3′ end processing
machinery) in Histone Locus Bodies (characterized by a nucleic acid probe recognizing 6p)
or Cajal Bodies (based on its resident protein Coilin) (Fig. 1).

Unlike normal human diploid cells that typically have 2-4 Histone Locus Bodies containing
the histone gene regulator p220NPAT, all cancer cell types we examined contain 3 to 6 times
that many Histone Locus Bodies (i.e., 6 to 18 p220NPAT foci per cell)(Fig. 1 and Table 1),
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consistent with our previous observations (Ghule et al, 2007; Ghule et al, 2008). The number
of Cajal Bodies is more variable and is consistently lower than the number of Histone Locus
Bodies (ranging from 1 to 8 coilin foci per cell). The cancer cell lines we examined are all
aneuploid and their genome content ranges in general from hypotriploid to hyperpentaploid.
Thus, the aneuploid state of each cell type correlates to some extent with the number of
Histone Locus Bodies and to a lesser extent with the number of Cajal Bodies.

While it is well-known that the various cancer cell lines we used exhibit aneuploidy, it is not
exactly known to what extent these cell lines are polyploid for the major histone gene locus
on chromosomal interval 6p21. Therefore, we examined the number of Histone Locus
Bodies and Cajal Bodies in each of these cell lines in relation to a nucleic acid probe close to
the 6p21 region by FISH. Our results show indeed that the number of 6p related sequences is
increased in each of the cancer cell lines and that approximately one half of the p220NPAT

foci that characterize Histone Locus Bodies are associated with 6p derived sequences (Fig. 1
and Table 1&2) (Note: the other half should localize with the 1q22 histone gene cluster). In
contrast, coilin foci that reflect Cajal Bodies are not consistently associated with the histone
cluster at 6p and only exhibit co-localization for a limited subset (Fig. 1 and Table 1&2).
Hence, these data indicate that the number of Histone Locus Bodies is linked to the
aneuploid state of cancer cells and that Cajal Bodies represent subnuclear domains that are
less directly coupled to the in situ regulation of histone gene expression.

The subnuclear concentration of the 3′ end processing factor Lsm10 in Histone Locus
Bodies is deregulated in selected cancer cell types

We have previously shown that the U7snRNP subunit Lsm10 that supports maturation of
histone mRNA transcripts by 3′ end processing is invariably associated with p220NPAT foci
in normal diploid human somatic and embryonic stem cells (Ghule et al, 2008). To
understand if the functional organization of transcriptional and 3′ end processing
components of the histone gene expression machinery in the same subnuclear compartment
is retained in tumor cells, we assessed the localization of Lsm10 in relation to p220NPAT and
coilin in our panel of cancer cell lines.

In the majority of these cell types (e.g., U2OS, SAOS-2, MDA-MB-231, T98G and PC-3),
the 3′ end processing marker Lsm10 is invariably detected in the vicinity of 6p (Fig. 1). In
the same cell types, the signals of Lsm10 and p220NPAT consistently overlap at Histone
Locus Bodies (Fig. 2 and Table 2). Strikingly, Lsm10 is not consistently observed in the
vicinity of the 6p histone cluster in HeLa S3 cells or MCF-7 cells (Fig. 1), nor do Lsm10
signals correlate with p220NPAT. Instead, in both cell types, Lsm10 co-localizes with coilin
at Cajal Bodies (Fig. 2 and Table 2). These results suggest that the localization of Lsm10 at
p220NPAT foci and histone gene loci is deregulated in selected cancer cell types.

Dissociation of the 3′ end processing machinery from transcription initiation complexes at
histone loci in distinct cancer cell types

Although there are clear distinctions in the localization of p220NPAT, Lsm10 and coilin, we
note that all three proteins do partially overlap in each of the cell lines and that the
distribution and proximity of these factors is in part cell cycle dependent (Tables 1 and 2).
For example, the number of p220NPAT foci at Histone Locus Bodies is twice the number of
6p loci, because these foci also form on the second major histone gene cluster on 1q. There
is also variation in the size of Histone Locus Bodies, which is directly related to the larger
size of 6p histone cluster relative to the 1q cluster. The detection of the smaller 1q histone
gene cluster may be subject to threshold and may become more apparent as cells enter S
phase. Additional variation in the size of Histone Locus Bodies may arise from cancer-
related duplication of histone gene clusters, as has been observed in the organization of the
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canonical human genome (Braastad et al, 2004). Furthermore, the number of Histone Locus
Bodies varies by two fold as G2 cells exhibit twice the number of 6p histone loci after
genome replication during S phase. Genomic heterogeneity in different cell types may also
contribute to some variation in the detection of histone-related focal domains. In rare
instances, we observe that p220NPAT foci do not co-localize with the 6p locus.

The number of Cajal Bodies is highly variable and only a subset of cells contains detectable
coilin that concentrates in specific foci (∼40-60% of cells) (Table 1). Occasionally, coilin
signals merge with Lsm10 and p220NPAT signals (in 20-35% of cells), presumably as cells
progress through late S (Ghule et al, 2008), suggesting that Cajal Bodies and Histone Locus
Bodies may coalesce. Interestingly, in HeLa S3 and MCF-7 cells, we observe that 3′end
processing factors localize at Cajal Bodies that are larger and more distinct than in other cell
types. The significance of this observation remains unclear. Because of the variation in the
spatial organization of p220NPAT, Lsm10 and coilin foci and the 6p histone locus, we
examined the multiple interrelationships in a large number of cells (n>100) and quantified
the pairwise correlations between these parameters of histone gene expression as percentage
overlap in our panel of seven cancer cell lines (Fig. 3). These quantitative analyses reaffirm
the interpretation that the normal localization of Lsm10 with p220NPAT and the 6p histone
locus is compromised in MCF-7 and HeLa S3 cells.

To test directly whether Lsm10 dissociates from Histone Locus Bodies in selected cancer
cell types, we performed IF/FISH microscopy (simultaneously detecting two proteins and
one DNA locus) of Lsm10, p220NPAT or coilin and the 6p histone locus. U2OS cells show
normal association of Lsm10 with p220NPAT and the 6p locus as is observed in human ES
and diploid somatic cells. In these cells Lsm10 is always associated with Histone Locus
Bodies as indicated by almost 100% co-localization with p220NPAT and the 6p locus (Fig. 4
a,i&ii). In contrast to U2OS cells, HeLa S3 cells exhibit dissociation of Lsm10 from
p220NPAT and 6p in most Histone Locus Bodies (Fig. 4 c&v). In these cells there is a clear
distinction between p220NPAT and Lsm10 foci at the majority of HLBs (Fig. 4 c&v).
However, IF/FISH analysis shows that in another subset (∼20%), there is a clear three-way
co-localization of p220NPAT, Lsm10 and 6p (Fig. 4 c,vii). The association of between
p220NPAT, coilin and the 6p locus is significantly less frequent in both U2OS (∼20%) and
HeLa S3 (∼20%) cells (Fig. 4 b&d). This three way co-localization is usually observed at
only one of the Cajal Bodies (Fig. 4 b&d). Thus, the delocalization of Lsm10 is not absolute
and there are apparently instances where all three components can interact together. We
conclude that the deregulation in the localization of Lsm10 is a stochastic event rather than
complete abrogation of the potential of Lsm10 to associate with Histone Locus Bodies.

Discussion
All cells must replicate their DNA during S phase, necessitating the expression of histone
genes to package newly synthesized DNA into chromatin. We and others have previously
shown that the machinery for histone gene expression is localized at specialized subnuclear
domains, Histone Locus Bodies (Ghule et al, 2008; Frey and Matera, 1995; Liu et al, 2006;
White et al, 2007; Ghule et al, 2007; Bongiorno-Borbone et al, 2008). In this study, we find
that all aneuploid cancer cells examined have an increased number of p220NPAT foci that
roughly correlates with increased copy number of the 6p derived histone gene locus. More
importantly, we find that the strict spatial association of p220NPAT and Lsm10, which is
observed in normal diploid human somatic and embryonic stem cells (Ghule et al, 2008), is
sporadically deregulated in distinct cancer cell types.

The data presented in this paper clearly corroborate the now prevailing model that histone
genes are not by necessity associated with coilin containing Cajal Bodies but instead
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consistently localize to p220NPAT containing Histone Locus Bodies. The extent to which
Cajal Bodies are associated with histone loci remains somewhat unclear. In normal somatic
and embryonic stem cells, focal coilin staining is only observed in a limited number of cells
(∼20-50%). Studies with synchronized human embryonic stem cells suggest that Cajal
Bodies are S/G2 phase related subnuclear domains (Ghule et al, 2007). Cajal Bodies
represent locations where snRNP complexes are assembled (Ogg and Lamond, 2002; Gall,
2000). Association of Cajal Bodies in which large numbers of U7snRNPs are prepared for
processing of histone primary transcripts with Histone Locus Bodies is thus beneficial for
histone gene expression, but would only be expected to occur after sufficient numbers of
primary transcripts have accumulated due to transcriptional activity.

One key question is why selected cancer cell types would exhibit this de-coupling between
transcriptional components (e.g., p220NPAT) and 3′ end processing components (e.g.,
Lsm10) that mediate histone gene expression in situ at Histone Locus Bodies. The normal
sequestration of p220NPAT and Lsm10 optimizes the efficiency by which cells can produce
histone mRNAs to respond promptly to demands in histone gene expression as DNA
replication proceeds. This spatial arrangement is tightly regulated in situ at the
transcriptional level by the Cyclin E/CDK2 dependent phosphorylation of the p220NPAT/
HiNF-P promoter complex (Miele et al, 2005; Zhao et al, 1998; Zhao et al, 2000; Ma et al,
2000). Transcription of histone genes may occur throughout the cell cycle as has been
shown for selected human cancer cell types (e.g., HeLa S3) (Plumb et al, 1983; Baumbach et
al, 1987) and mouse 3T6 fibroblasts (DeLisle et al, 1983). However, histone gene
transcription could be deregulated by constitutive activation of the p220NPAT/HiNF-P
complex and/or promiscuous activation through HiNF-P independent mechanisms. Equally
possible is the simultaneous deregulation of 3′ end processing mechanisms. The spatial
sequestration of transcriptional and 3′ end processing mechanisms may normally support
efficient S phase progression to the benefit of overall cell proliferation. However, the
combined deregulation of both mechanisms would generate a futile cycle in which cells
would unnecessarily produce and process histone primary transcripts that would then be
degraded (due to lack of demand for histone proteins outside of S phase). Thus, it is
plausible that the spatial organization of histone gene transcription and 3′ end processing
factors in HeLa S3 cells and MCF-7 is compromised due to deregulation of the mechanisms
that couple and activate these two processes in normal diploid cells.
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Figure 1. Amplification of number p220 NPAT (HLBs) foci is related to the change in copy
number of histone locus
IF microscopy images were obtained using antibodies against p220NPAT (green), or coilin
(green) or Lsm10 (green) and a DIG-labeled FISH probe which hybridizes to 6p22 adjacent
to the histone gene cluster on 6p21 (red). DAPI staining (blue) is used to visualize the
nucleus. There are typically 6-18 p220NPAT foci approximately half of which are
consistently in proximity to histone gene clusters in all cancer cell types (panels a-i); the
other half should colocalize with the histone gene locus on 1q22. Lsm10, the U7 snRNP
component is associated with histone locus in some in H9, WI-38, U2OS, SAOS-2, T98G,
PC3 and MDA-MB231 (panels: j-p) but not in HeLa S3 and MCF7 (panels: q, r) cells. In all
these cancer cell types coilin foci (Cajal bodies) rarely are in proximity of Histone locus
(panels: s-z, aa).
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Figure 2. Localization of the 3′ end processing factor of histone mRNA Lsm10 in Histone Locus
Bodies is deregulated in selected cancer cell types
IF microscopy images were obtained for different cancer cell types using antibodies against
p220NPAT (green) or coilin (green) and one of the components of U7snRNP that process
histone transcripts Lsm10(red). In normal cells and most cancer cell types (H9, WI-38,
U2OS, SAOS-2, T98G, PC3) (panels: c-f) p220NPAT foci are associated with Lsm10 and not
with Cajal bodies. In a subset of MDA-MB231 cells (panels: g,p,s) there is an intermediate
phenotype where p220NPAT foci are associated with Lsm10 (∼45%) while in the remainder
Lsm10 is associated with coilin(∼55%). In contrast, in ∼80% of HeLa S3 and MCF7 cells
Lsm10 is more frequently associated with coilin foci than with p220NPAT foci (panels:
h,i,q,r).
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Figure 3. Relative distribution of Lsm10 in Histone Locus Bodies and Cajal Bodies
The graphs show quantitative analysis of the distribution of Lsm10 with respect to Histone
Locus Bodies (as denoted by p220NPAT foci and histone gene clusters at 6p) versus Cajal
Bodies (denoted by coilin foci). The micrographs represent the distribution of the
association between these subnuclear domains in different normal and cancer cell types. To
calculate the percentages, >100 cells were counted for each cell type.
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Figure 4. Dissociation of the 3′ end processing machinery of histone mRNA from p220NPAT foci
in distinct cancer cell types
IF microscopy for either Lsm10 (green) or coilin (green) with p220NPAT (blue) and FISH for
the 6p histone gene locus (red) was performed simultaneously using triple labeling. In U2OS
cells, Lsm10 is associated with Histone Locus bodies and not with coilin foci (Panels a, b).
In HeLa cells Lsm10 and coilin do not stain the same subnuclear domains as histone locus
bodies as indicated by the arrows (Panels c & d). The small insets (i-ix) represent magnified
images of the different focal organizations observed between Histone Locus Bodies
(p220NPAT & 6p locus) and Lsm10 foci or Cajal bodies.
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Table 2
Localization of Transcriptional components and 3′ End Processing Factors Relative to
Histone Locus Bodies and Cajal Bodies

The overall spatial association of Histone Locus Bodies (p220NPAT foci), Lsm10 foci, Cajal bodies and
histone gene clusters was determined by analyzing >100 cells per cell type.

A: Normal and Cancer Cell Types (H9, WI38, U2OS, SAOS2, T98G, PC3, MDA-MB-231)

Histone Locus Bodies (NPAT) Cajal Bodies (Coilin) 3′ End Processing Factors (Lsm10) Histone Locus (6p21)

NPAT foci - Partial Complete Complete

Coilin foci Partial - Partial Partial

Lsm10 foci Complete Partial - Complete

B: Selected Cancer Cell Types HeLa S3/MCF7

Histone Locus Bodies (NPAT) Cajal Bodies (Coilin) 3′ End Processing Factors (Lsm10) Histone Locus (6p21)

NPAT foci - Partial Partial Complete

Coilin foci Partial - Complete Partial

Lsm10 Partial Complete - Partial
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