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Social Network Analysis (SNA) has been widely used to measure the degree of social
influences on behavior change based on social theory. SNA has been used to model various
forms of network influence on individual behavior using the so-called network
autocorrelation model (Doreian, 1980a, 1981, 1990; Dow, 2007; Dow, Burton, White, &
Reitz, 1984; Leenders, 2002; Mizruchi & Neuman, 2008; Ord, 1975; Paez, Darren, & Volz,
2008; Smith, 2004). It has been a workhorse for modeling theories of social influence by
measuring and statistically testing network effects on individual behaviors. Similarly, in
diffusion of innovation studies, the network exposure model (Burt, 1987; Marsden &
Friedkin, 1993; Valente, 1995, 2005) has been widely employed to measure the extent to
which individuals are exposed to an innovation in the network, which is then presumed to
influence the timing of his or her adoption of innovation. The network exposure model can
be used to model behavioral outcomes as being influenced simultaneously by local- and
network-level effects and provides a mapping of social theories with statistical estimation
(Leenders, 2002) by specifying the appropriate weight matrix (W) for different network
influence processes (Valente, 1995).

The standard network approaches for mapping social influence have been limited in their
operationalization by specifying a weight matrix W based on a single mode (actor-by-actor)
network. W is a N × N weight matrix with elements wij representing the extent to which
actor j (alter) influences actor i (ego). For example, research using network exposure to
substance use has shown a correlation between individual use and exposure to friends’ use
of substances (Alexander, Piazza, Mekos, & Valente, 2001; Cleveland & Wiebe, 2003;
Cleveland, Wiebe, & Rowe, 2005; Crosnoe, 2002, 2006; Crosnoe, Muller, & Frank, 2004;
Hall & Valente, 2007; Haynie, 2001). Peer influence based on friendship relations, however,
is only one of the many ways peers come into contact with one another and potentially
influence each other’s behavior.

In this paper, we extend the existing one-mode network exposure model by developing a
new influence model of “affiliation exposure” that statistically tests the affiliation effect
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within a network autocorrelation framework. We believe this new model will allow analysis
of social influences previously not available with network exposure type models, and thus
opening entirely new information vistas for exploration and examination. In the proposed
“affiliation exposure model,” the weight matrix W is the converted affiliation matrix using
the off-diagonal values of the co-membership matrix. The diagonal of the converted matrix
(i.e., the number of events participated in by each actor) is used as a covariate in subsequent
regression analysis. It is known that the one-mode network autocorrelation model contains
potential biases in the estimation of the structural parameter (Dow, Burton, & White, 1982;
Mizruchi & Neuman, 2008; Neuman & Mizruchi, 2010; Paez, et al., 2008; Smith, 2004,
2009) under certain conditions. In particular, a recent simulation study has shown negative
bias in the estimate of the autocorrelation parameter ρ (i.e., estimated ρ tends to be lower
than the population ρ) and this tendency becomes more pronounced with higher density in
random graphs (Mizruchi & Neuman, 2008). This bias is reported to hold across other types
of well-known networks including the star, caveman, and small-world structures (Neuman &
Mizruchi, 2010).

Given these results, we decided it was prudent to see if a similar bias was present in the
affiliation exposure model, and so we have conducted a simulation study to examine the
statistical bias in the Maximum Likelihood (ML) estimates of autocorrelation parameter ρ.
To maximize our ability to compare our results with prior reports, we have chosen to match
many of the independent parameters of the simulation performed earlier by Mizruchi &
Neumann (2008). Given the bias observed in the one-mode autocorrelation model, we will
explore potential bias in the two-mode version of the network effects model1, i.e., a bias in
the autocorrelation parameter ρ for the affiliation exposure. As in the one-mode case, we
will investigate the network density levels at which bias in the autocorrelation parameter
potentially become pronounced.

In this study, two-mode actor-by-events bipartite graphs were randomly generated based on
a Poisson-distributed outdegree (i.e., conditioning on the expected number of events, λ, for
each actor which is the mean number of events each actor participated in). Using a range of
different densities of simulated bipartite graphs, along with varying levels of network
autocorrelation ρ and event total local effect γ, we explore the extent to which the density of
the affiliation network affects the degree of bias in the parameter estimates derived from the
model. We will show that the autocorrelation parameter tends to be biased with increased
density, and this negative bias becomes increasingly pronounced as γ (the main effect of
event participation) approaches zero. We will conclude by discussing the implications of our
findings for estimating affiliation exposure models, and how including the diagonal
(outdegree) values seem to help stabilize the estimates (in the presence of noise) of the
model and help mitigate the systemic negative bias.

This study conceptualizes social influence based on co-membership in organizations, events,
or activities, and proposes a new way of operationalizing affiliation-based network influence
derived from two-mode network data within a network autocorrelation modeling framework.
It assumes that co-membership is a structural feature that defines individual social identities
and increases the probability of forming acquaintances (McPherson 1982). Affiliation-based
social influence is conceptually different from friends’ influence in that it assumes that
social influence is not limited to positive-affective ties. Borgatti and Everett (1997), in their
discussion of classic women-by-event affiliation data (A. Davis, Gardner, & Gardner, 1941),
pointed out that the strength of social proximity of a pair of women who attended the same
events reflects not only a positive-affective tie but also a non-liking/negative-affective tie

1To be clear, the network effects model is the estimate of exposure’s association with the behavior. The Network Exposure Model is
the calculation of the exposure term.
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(i.e., having a competitive relationship), thus still being closely familiar with and influenced
by each other (p.246).

1. Two-mode network data
In SNA, structural variables are measured based on a distinct set of entities, which are
referred to as “mode” (Wasserman & Faust, 1994). In the one-mode network, structural
variables are measured on a single set of nodes (N) within a given network boundary, and
network data are represented as a sociomatrix X, composed of N rows (nominating nodes)
and N columns (receiving nodes), with elements of X=xij equal to 1 if a node i (row)
nominated a node j (column) as a given relation, and 0 otherwise.

In the two-mode network data, structural variables are measured on two sets of nodes.
Usually, the first mode is a set of actors within a given network boundary, and the second
mode is a set of events with which the actors in the first set are affiliated. Such two-mode
networks are referred to as affiliation networks with each actor (indexed in row) with each
event (indexed in column) in the N×K matrix form Aij, with the entry of A=aij equal to 1 if
row actor ni is affiliated with column event j, and 0 otherwise. Two-mode network or
affiliation networks are also referred to as bipartite graphs, membership networks (Breiger,
1974), or hypernetworks (McPherson, 1982).

2. Analysis of affiliation networks
There are primarily two current approaches to analyzing affiliation networks. The first
approach is to analyze the two-mode network data directly without transformation. Many
studies have developed such techniques to analyze “raw” two-mode networks including Q-
Analysis (Doreian, 1980b; Freeman, 1980), Galois lattices (Freeman & White, 1993; Roth &
Bourgine, 2005; Wasserman & Faust, 1994), correspondence analysis (Faust, 2005; Roberts
Jr., 2000), blockmodeling (Doreian, Batagelj, & Ferligoj, 2004), centrality measures
(Bonacich, 1991; Borgatti & Everett, 1997; Faust, 1997), overlapping membership
(Bonacich, 1978), structural similarity (Borgatti & Everett, 1992), clustering (Borgatti &
Everett, 1997; Robins & Alexander, 2004), degree distributions (Newman, Strogatz, &
Watts, 2001; Newman, Watts, & Strogatz, 2002; Robins & Alexander, 2004), exponential
random graph models (Agneessens, Roose, & Waege, 2004; Faust, Willert, Rowlee, &
Skovretz, 2002; Skovretz & Faust, 1999; Wang, Sharpe, Robins, & Pattison, 2009), and
identification of positions in affiliation network (Field, Frank, Riegle-Crumba, & Mullera,
2006).

The second approach for studying two-mode networks is to convert the data into two (or
more) one-mode networks, either as an actor-by-actor network or an event-by-event one.
The process of converting a two-mode network into its one-mode versions is frequently
described as the projection of the bipartite graph onto the unipartite space of actors or events
only. In a projected actor-by-actor matrix, each pair of actors is connected if they share at
least one common event. In particular, these one-mode “projection” networks are frequently
constructed by either multiplying the affiliation (N×K) matrix A with its transpose (i.e., AA
′) or multiplying the transpose of the affiliation matrix with itself (i.e., A′A). The resulting
converted matrices are symmetric, valued, 1-mode matrices that record the co-membership
relation for each actor (N×N matrix C=AA′) or the overlapping relations for each event
(K×K matrix T=A′A). Essentially, in the individual, actor-by-actor case the co-membership
(C) off-diagonal entries count the number of events jointly affiliated with for each pair of
actors, and the diagonal entries count the total number of events each actor is affiliated with.
In the event-by-event case the off-diagonal entries count the total number of actors jointly
affiliated by each pair of events, and diagonal entries count the total number of actors
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affiliated with each event. To date, the projected one-mode networks are usually
dichotomized2, and then analyzed using conventional network analytic techniques.

Using either of the two approaches described above, various types of collaboration networks
have been studied that include: the networks of movie actors where two actors are linked if
they co-appear in the same movie (Watts & Strogatz, 1998), the networks of scientists where
two scientists are linked if they co-author a paper (Newman, 2001a, 2001b, 2001c), the
network of words where two words are linked if they co-occur in the same sentence (Ferrer
& Sole, 2001), the interlocking networks of board of directors where two directors are
linked together if they are members of the same board (Conyon & Muldoom, 2004; G. F.
Davis & Mizruchi, 1999; Mizruchi, 1996; Robins & Alexander, 2004). Additionally, some
other network studies have conducted combined analysis of bipartite graphs with projections
of them (Guillaume, Le Blond, & Latapy, 2004; Latapy, Magnien, & Vecchio, 2008;
Newman, et al., 2001; Robins & Alexander, 2004) to examine how network features differ
among two methods.

It is generally accepted, however, that directly analyzing bipartite graphs provides a richer
understanding of two-mode structures than analysis using the projected 1-mode data only,
since much information in the original bipartite structure (such as information about path
lengths of three or more and information about nodes with a single affiliation) is lost during
the projection process (Latapy, et al., 2008; Robins & Alexander, 2004; Wang, et al., 2009).
None the less, using the projected 1-mode matrix is appropriate when theoretical attention is
being focused on one type of the two social entities (Robins & Alexander, 2004) and
primary interest lies in how the actors/events are connected via the events/actors (Borgatti &
Everett, 1997).

The analysis presented here is based on a projected, non-binarized one-mode analysis that
focuses on the actor-to-actor network (AA′, rather than the event-to-event network A′A)
since our theoretical attention is on the actors rather than the events, and thus our primary
interest lies in the co-membership among actors via the events. This co-membership is the
backbone of modeling the affiliation-based social influence within a network autocorrelation
framework where the unit of analysis is the individual actor, but before introducing the
affiliation exposure model, the following section will review the general formula of a
network exposure model for one-mode data.

3. Network Exposure Model
The general formula of the network exposure E (for N actors) has been introduced and
developed (Valente, 1995, 2005), which is defined as:

(1)

Where E is the N-by-1 exposure vector, Wij is a social network weight matrix, and Yj is a
vector of j’s behavioral attribute (j = 1, …, N; j ≠ i). By specifying different weight matrices
W, the general exposure model measures different types of social influence. There have
been two contrasting one-mode network approaches to studying social influence and

2There are some exceptions that do not dichotomize a projected one-mode network. For example, Bonacich developed a measure of
structural centrality in the pattern of overlapping memberships (independent of group size), which uses a continuous measure of
association (Bonacich, 1972).
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measuring interpersonal proximity, (1) “structural cohesion” which measure direct and
indirect connectivity among actors and (2) “structural equivalence” which measures network
positions in terms of the similarity of actors’ profiles of relations (Burt, 1987; Marsden &
Friedkin, 1993; Valente, 1995).

Social influence based on cohesion is founded on solidarity relations such as friendship or
advice relations (Marsden & Friedkin, 1993) and presumes that individuals are influenced
by other actors in the network with whom an individual has direct ties. This type of social
influence is termed “relational exposure” (Valente, 1995), which is computed by using a
one-mode adjacency matrix, Xij, as a specification of weight matrix Wij, with Xij = 1 if an
actor i nominates an actor j in a given positive relationship, and Xij = 0 otherwise. By
multiplying Xij by nominated actors’ behavior yj and normalizing by the row-sum of Xij
(i.e., actor i’s outdegree, Xi+), the resulting normalized relational exposure of Ei measures
the mean level of nominated actors js who have behavioral attribute of yj in an ego network.

On the other hand, social influence based on structural equivalence emphasizes competition
between ego and alter. The more similar two people are in the network, the more
substitutable they are and this may lead to increased feelings of competition. It has been
shown that individuals are more likely to adopt innovations as their structurally equivalent
alters adopt (Burt 1987). People who occupy similar structural positions (in terms of patterns
of relations with all other actors in the network) will influence each other, and this type of
social influence is termed as “positional exposure” (Valente, 1995). “Positional exposure” is
calculated by using the one-mode adjacency matrix of Xij, to compute structural equivalence
matrix of Sij that is based on any of the profile similarity relations between all pairs of
actors3. Although social influence based on structural equivalence extends the frame of
reference from ego’s neighbors to the network as a whole, it is still limited to
conceptualizing social influence based on one-mode social network data. It should be noted
that various coding schemes can be considered in defining the weight matrix W (Tiefelsdorf,
Griffith, & Boots, 1999). For the simplicity of interpretation, the most frequently used row-
sum standardization, or W-coding scheme, was used in this study.

4. Development of the Affiliation Exposure Model
We now introduce a new way of conceptualizing social influence based on co-membership
with events, and we call this type of social influence “affiliation exposure.” In the
specification of Wij in the network exposure model, “affiliation exposure” uses the
converted one-mode matrix C (= AA′) that records the co-membership relations (i.e., the
number of events each pair of actors attended in common) in a network, thus representing
the affiliation-based social influence. The diagonal is the count of the number of events each
actor is affiliated with and this is extracted for inclusion in the subsequent statistical network
autocorrelation analysis as an independent variables (discussed later). The diagonal is set to
zero in the calculation of exposure. By multiplying Cij by each co-participant’s attribute yj
and normalizing it by row-sum Ci+ (ignoring the diagonal), the resulting affiliation exposure
vector of F is defined as follow:

3There are various ways to measure the profile of similarity including ones based on the proportion of exact matches (the “Exact”
method), based on the proportion of exact matches of only non-zero values (the “Jaccard” method), and based on the distance between
profile vectors with the root of the sum of squared differences (the “Euclidian distance” method).
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(2)

Affiliation exposure, F, measures the degree each actor is exposed to attribute Y based on
the extent of co-participation among the actors. More specifically, the affiliation exposure
measures the mean level of attribute of Yj that is weighted by the proportion of all events
each pair of actors co-participated in. For example, if an actor participated in three events
with one alter, and a single event with another alter, then the first alter’s influence
(“exposure”) is three times greater than the second alter’s influence. In the next section, we
situate the affiliation exposure term within network autocorrelation framework, and examine
potential bias of network autocorrelation parameters and local event parameter estimates for
various levels of density in converted matrix C.

5. Network autocorrelation model
In the standard linear OLS regression model, y = Xβ + ε, random variable of error term is
based on the assumption of being independently and identically distributed (i.i.d.) with mean
zero and equal variances, σ2I. However, in the analysis of network data, the independence
assumption for the error terms is violated due to correlation among error terms. The network
autocorrelation model (Doreian, 1980a, 1981, 1990; Dow, 1984; Ord, 1975) was developed
to deal with the issue of the network autocorrelation in the regression analysis. There have
been two families of network autocorrelation models, which are (1) network effects model
and (2) network disturbances model. This study uses the network effects model (Doreian,
Teuter, & Wang, 1984) which is more straightforward to model social influence than
network disturbances model (Doreian, 1980a; Dow, et al., 1984; Ord, 1975)4 The network
exposure model assumes that social influence occurs when individuals are exposed to a
behavior by their network contacts. The exposure is estimated via the network effect model.
Network effects model is based on the assumption that social influence occurs through the
dependency among responses to the dependent variable (Leenders, 2002). It treats the
network autocorrelation as a parameter and models the autoregressive effects on outcome
variable:

(3)

where y is a (N × 1) vector for values of a dependent variable, X is an (N × h) matrix of
values for the N actors on h independent variables with unit row vector for the intercept
term, β is a (h × 1) vector of regression coefficients, ρ is a scalar estimate of autocorrelation
parameter, and W is a (N × N) weight matrix with its element wij representing the degree to
which yi depends on yj. The W matrix can be row or column normalized to unity5, which
determines how social influence is allocated among alters in the network, thus altering the
strength of influence for a particular influencer (Leenders, 2002). It is important to note that

4Network Disturbances Model is defined as: y = Xβ + ε, ε = ρWε + ν, ν ~ N(0, σ2I), where y, X, W, β have been defined in the
equation (3). Here, ε is an (N × 1) column vector of error terms that is a weighted average of the disturbances, ρ is now a parameter
that represents the degree to which the error terms are correlated, and ν is an (N × 1) column vector of random residuals that is
independently normally distributed given the removal of the correlated errors into ρWε (Mizruchi & Neuman, 2008). Network
Disturbances Model is based on the assumption that social influence occurs through the autocorrelation of the disturbances (Leenders,
2002), and models disturbances as being affected by network autocorrelation.
5A new stochastic matrix W can be obtained by being divided by its row/column sum, where wij = wij / Σwi+ for all i for row-
normalization or wij = wij / Σw+j for column-normalization).
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in relation to the network exposure model, Wy term with row-normalized W matrix
corresponds to the values of exposure term (E) defined in the equation (1).

The network effect model for affiliation exposure is defined as:

(4)

where y, X, β, ρ, and ε are defined as in equation (3), Wy is equivalent to F in equation (2)
with W being a (N × N) row-normalized co-membership matrix C, D represents the number
of events participated in for each actor (the diagonal entries of C matrix (i.e., Cij; i = j))
ranging from 0 to event size K, and γ is a corresponding regression parameter. One other
difference between the network effects model based on the one-mode binary matrix and the
two-mode version is the addition of γD term in the model. The D term is a measure of levels
of participation in events or activities, and γ reflects its effect on the behavior of interest (y).
For example, in a study assessing the effects of joint participation in team sports on alcohol
use, the γ term assesses the association between the number of teams each person belongs to
and alcohol use. The proposed approach includes the prediction (y) in the regression model
and thus making it a self or autocorrelation design that focuses on reducing the errors in its
predictions (which may not be covered by a finite manifold). Consequently, it does not
require the clustering and uniform statistical space assumptions which were made in the
Getis-Ord statistics (Getis & Ord, 1992). In the next section, we will explore potential bias
in the autocorrelation parameter ρ by simultaneously controlling for the effects of X and D
(the events total).

As for the estimation procedures in network autocorrelation model6, Maximum Likelihood
Estimation (Anselin, 1988; Doreian, 1981; Ord, 1975) has been widely used and believed to
be the preferred method for estimating the parameters of the network autocorrelation model
for over two decades (Leenders, 2002). The likelihood function to be estimated is defined as
follows (Doreian, 1981; Doreian, et al., 1984):

(5)

The above equation is minimized with respect to ω, ρ, and β (see Doreian, 1981 for more
detailed formula). Previous simulation studies, however, have shown that the network
autocorrelation model contains potential biases in its estimation of the structural parameter
(Dow, et al., 1982; Mizruchi & Neuman, 2008; Neuman & Mizruchi, 2010; Paez, et al.,
2008; Smith, 2004). Specifically, a recent simulation study has shown a negative bias in the
estimate of network effects autocorrelation parameter ρ (i.e., estimated ρ tends to be lower
than the population ρ), and report that this tendency becomes more pronounced with higher
density in random graphs (Mizruchi & Neuman, 2008) and holds across other types of well-
known networks including star, caveman, and small-world structures (Neuman & Mizruchi,
2010).

6For Network Autocorrelation Model, the standard Ordinary Least Squares (OLS) method yields biased and inconsistent estimates of
both autocorrelation parameter ρ and regression parameter β since Wy variable and the error term, ε, are correlated (Dow, 2007;
Johnston, 1984). To overcome this problem, other estimation methods were proposed including Maximum Likelihood estimation
(MLE) procedure, two-stage Least Squares estimation (2LSE) procedure (Anselin, 1990; Dow, 2007, 2008; Kelejian & Prucha, 1998;
Land & Deane, 1992), and Bayesian estimation (LeSage, 1997).
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This present simulation study explores the potential bias in the two-mode version of network
effects model, that is, the degree of bias in the autocorrelation parameter ρ for the affiliation
exposure term (F).

6. Simulation procedure
We conducted a series of simulations to examine the extent to which the Maximum
Likelihood estimate of autocorrelation parameter ρ might be biased in the network effects
model for given levels of density in the co-membership matrix C. In general, we followed
and extended the simulation procedures conducted by Mizruchi and Neuman (2008) where
the bias in the autocorrelation parameter was examined for one-mode, randomly-generated
graphs (with a specified set of densities and population ρ values). The reason for this is to
facilitate the comparison of the reported one-mode results with the two-mode results.

When analyzing a two-mode network, there are two ways to base a density computation.
The first is based on the original actor by event (N × K) affiliation network A (Borgatti &
Everett, 1997)7, and the second is based on the projected (N × N) co-membership matrix C
(Wasserman & Faust, 1994). This study used the latter basis since the density of C, the co-
membership matrix, is the main component of the W matrix in the affiliation exposure
model and as such the density measures the degree of interaction among actors through
shared events. In the simulation, a range of different network “densities” are specified using
binarized co-membership matrix C to test the association of bias with network density, and
to be comparable with the one-mode case by Mizruchi and Newman (2008) analysis. W uses
the following expression of “density” that assumes any non-zero value to indicate the
presence of a tie between two actors:

(6)

In other words, we are using the average normalized out-degree score, and this is
mathematically equivalent to other common one-mode (binary) density calculation
formulations. The density of C (Δ (c)), however, is, in part, a function of the expected
number of events each actor participated in (i.e., Poisson parameter λ) but they are not
linearly related, which prevented us from obtaining a closed-form solution. Therefore, we
have instead employed a linear-interpolation approach to obtaining an estimate of the
needed lambda (λ) values for the desired densities in C (Δ (c)) within ±1%. We will discuss
this procedure in more detail in the next section.

Generating random bipartite graph
Our simulation uses a Poisson outdegree distribution8 with parameter λ to generate random
bipartite graphs A, where a random variable of Ai+ (sum of row i of matrix A) represents the
number of events participated in for an actor i (i=1, …, N), and the expected number of
events each actor participated becomes E(Ai+) = λ. We have chosen the Poisson outdegree

7Density in the affiliation network A is computed using the following formula (Borgatti & Everett, 1997): ΔA = L / (N×K), where L is
the number of ties present in the affiliation network A and the denominator (N×K) represents the maximum number of ties possible in
the affiliation network A, i.e., every actor is connected to every event.
8We did not specify the indegree distribution (the number of actors affiliated with a given event) since we theoretically focus on the
mode of actors rather than the other mode of events as unit of analysis, prioritizing the specification of outdegree distribution in actor-
by-event bipartite graphs (i.e., the event total affiliated by each actor) that are controlled as one of the covariates in network
autocorrelation model.
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distribution since we assume a homogeneity in the distribution (i.e., no actors are very
different from the average number of events participated in), indicating the normal and
expected behavior when taking an actor at random9 (Latapy, et al., 2008). Additionally,
these values are based on several empirical affiliation studies which reported the average
number of organized sports activities participated in (K=13) by middle-school students (N
>= 100), which approximated a Poisson distribution.

There are two steps to generate the random bipartite graphs used in this study10. First, we
generated binary actor-by-event bipartite graphs drawn uniformly at random constrained on
Poisson outdegree distribution with densities (in A matrix) ranging from 0.05 to 0.95 in
increments of 0.05. For each targeted density value, we generated 100 random bipartite
graphs. Then, we converted these observed random bipartite graphs into one-mode co-
membership matrices and computed corresponding densities (by using Δ(c)). Figure 1 shows
the non-linear relationship between the theoretical density values (as determined by λ
divided by event size) and the actual observed densities in C for a variety of K values (event
size) and 100 actors.

Since the simulation will treat the density of the C matrix as one of the independent
parameters, we compensated for the non-linear relationship shown in Figure 1(a) by
interpolating a “corrected” density parameter for the A matrix such that the corresponding C
matrix density (Δ (c)) would match the target value. The result of this process is shown in the
Figure 1(b) example in which K=20 and 100 actors. The targeted (x-axis) and observed
densities (y-axis) now match within ±1% (solid green line). For illustrative purposes, the
dotted red line shows the density of A required to reliably generate the targeted density in
the C matrix. In other words, simply incrementing by fixed amounts of the average number
of events in the simulated affiliation networks does not provide correspondingly incremental
densities in the resulting C matrix. As an example, to obtain a target density of Δ(c)=0.15, a
density of 0.37 (see Figure 1b) in the affiliation matrix must be generated, which required a
corresponding λ value of 6.08 on a matrix with 100 actors and 20 events11. In the second
step, we generated 100 random bipartite graphs at each target density level (Δ (c)) using the
corresponding estimated λ values, and these were the graphs used in the subsequent analysis
(parameter specification will be discussed later).

Simulation procedures
Our simulation procedure12 was implemented as follows:

Step (1) Number of actors is 100, and the maximum number of events is K=10 (thus
forming a 100-actor by 10-events affiliation matrix A).

Step (2) Targeted density, Δ(c), in the (100 × 100) co-membership matrix C (Δ (c))
was initiated at 0.05 and incremented by 0.05 to 0.90 with corresponding

9This is different from an assumption of a heterogeneous distribution where a significant number of actors are very different from the
average one, such as that used in the case of a power-law distribution (Latapy, et al., 2008).
10Our method of generating random bipartite graphs is different from previous simulation studies that used empirical affiliation data
as the basis of comparison. Examples include generating uniform random bipartite graphs distributions conditional on properties of the
infrastructure of the empirical data using a bootstrap approach (Robins & Alexander, 2004), generating random bipartite graphs with
the same size and the same degree distributions (Latapy, et al., 2008), mathematically deriving exact generating functions for the
probability distribution of vertex degrees (Newman, et al., 2001; Newman, et al., 2002). Our simulation study does not employ
specific empirical data to generate random bipartite graph since this paper aims at providing general model and exploration of biasness
of its parameters if any, and is not limited to a specific substantive issue or data.
11Note the value λ is dependent on both the number of actors and the number of events.
12Our simulation study is in line with previous network autocorrelation simulation studies conducted in the case of one-mode
networks (Mizruchi & Neuman, 2008; Neuman & Mizruchi, 2010), rather than studies that directly measure and test bipartite
statistics.
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estimated λ values to be {1.80, 2.56, 3.16, 3.65, 4.10, 4.54, 4.93, 5.29, 5.66,
6.03, 6.35, 6.69, 7.07, 7.48, 7.81, 8.18, 8.61, 9.06}.

Step (3) We randomly generated three covariate variables X plus the unit vector for
the intercept term and corresponding set of regression coefficients (three β
values plus an α value) from a standard normal distribution (with a mean of
0 and standard deviation of 1). We have also specified a vector of error
term ε drawn from a standard normal distribution with mean zero and
standard deviation of σ=1.0. However, the previous study indicated that
negative bias could be attributed to the specification of model noise in the
simulation by showing that reduction in the variance of the residuals (i.e.
and thus improving the fit of the models) by setting the standard deviation
(σ) of the residuals from unity to 0.1 contributed significantly to remove
most of the bias in the sampling distributions of ρ (Mizruchi & Neuman,
2008). Therefore, the present simulation specified σ=1 (since it is a more
conservative approach) and also a σ=0.1. Additionally, the diagonal entries
of C matrix (i.e., Cij; i=j) were constructed to estimate event total effect,
which was defined as the D term in the network effects model.

Step (4) The population (true) value of the autocorrelation parameter (ρ) was set to
{−0.8, −0.5, −0.2, −0.1, 0.0, 0.1, 0.2, 0.5, 0.8}13 and the population event
total parameter (γ) was set to {0.0, 0.25, 0.5, 0.75, 1.0}. We used
combinations of ρ, γ, Δ (c) for the parameter space to be simulated. For each
combination we performed a trial by running 100 replications of our model,
which yield 9(ρ) × 5(γ) × 18 (Δ(c)) × 100 (replications), yielding a total of
81,000 individual model runs.

Step (5) We computed the “observed” values of Y in our network effects model by
transforming the equation y = ρWy + Xβ + γD + ε to y = (I – ρW)−1(Xβ +
γD + ε), and then inserting the simulated W, the three X variables and
intercept unit vector as well as their corresponding coefficients (α and three
βs), the residuals (ε), and a set of assigned population autocorrelation
parameters (ρ), and the population event parameter γ.

Step (6) We returned to the original autocorrelation model (y = ρWy + Xβ + γD + ε)
and used this y along with W, X, and D to estimate the model parameters of
ρ (and γ). If these estimated parameters are unbiased, then the value of ρ
(and γ) computed from these trials should have a sampling distribution with
a mean approximately equal to the originally specified population value
(Mizruchi & Neuman, 2008).

For step (1) we employed the MATA programming language in STATA to generate the
random bipartite graphs conditioned on Poisson outdegree distributions and then exported
these matrices to the R environment to perform the remaining steps, using the “lnam”
function in the “sna” package program (Butts, 2008) for steps (4) and (5) in a manner similar
to (Mizruchi & Neuman, 2008).

7. Results
For the first set of results, we report three-dimensional (3D) graphs of the simulation results
to observe some overall trends. Figure 2 shows graphs of the mean difference between
estimated ρ and the population ρ (= Δρ) as a 3D-surface against the varying density level
and population gamma γ values for each population value of ρ (ρ= −0.8, −0.5, −0.2 going

13We selected a set of population parameter ρ to be consistent with one-mode simulation conducted by Mizruchi and Neuman (2008).
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from left to right in the upper row, ρ= −0.1, 0.0, 0.1 going from left to right in the middle
row and ρ=0.2, 0.5, 0.8 going from left to right in the lower row).

All of these graphs display a general tendency that the surfaces tilt toward the corner of
higher density values and lower values in the population of γ. These results imply that there
is a negative bias tendency to the autocorrelation parameter as density increases and as γ
population values decrease (approaches zero) for all levels of ρ. The first observation (the
density effect) is consistent with a similar observation for the one-mode case as reported by
Mizruchi and Neuman (2008). The second observation (i.e., less negative bias for higher
values of γ) makes sense since D (which is not as random14 as the other terms given its
relation to W) has a stable underlying structure that helps reduce the final variance in the
estimates and thus stabilize the system as a whole. The stabilizing effect of D increases as γ
approaches one, and leads to a better fit of the model and reduction in the final variance of
the residuals. To explore these results in more detail, we have drawn two-dimensional
graphs with both specifications of the standard deviation of error term i.e., σ=1.0 and σ=0.1.

Figure 3 shows the mean plots of the estimated autocorrelation parameter ρ among 100
replications against each level of density in C (Δ(c)) at each level of population γ. Here we
only present the results of three population ρ={0.0, 0.2, 0.5} (moving horizontally from top
to bottom in the rows of graphs) and three γ={0.2, 0.5, 1.0} (moving vertically from left to
right in the columns of graphs) due to space limitations. Green and red lines represent the
sample mean of the estimated ρ with specification of error standard deviation of σ=1.0 and
σ=0.1 respectively, and bars represent upper and lower bounds of the 95% confidence
interval around the mean. Asterisks indicate that the upper bounds of the 95% confidence
interval fall below the given population value of ρ, indicating that the sampling distribution
of ρ exhibits a negative bias (Mizruchi & Neuman, 2008). The black line represents a
population target value of ρ, but is frequently intertwined with the σ=0.1 (red) curve, which
indicates the mean sample estimates for ρ appear to be very close to the values of the
specified population parameter at almost all levels of density across each level of population
ρ and population γ. When σ=1.0 (green lines) in Figure 3, the results show that negative bias
is dependent on the value of γ such that negative bias occurs primarily when the effect of
event participation, γ, is small (graphs on the left rather than those on the right). This effect
is almost invariant across the levels of ρ.

Table 1 presents fit statistics, means and 95 percent confidence intervals, for the ρ estimates
by levels of density and γ. The data show that as γ increases the ρ estimates stabilize across
various density levels thus reducing the estimate bias.

At the highest ends of the density, across all three levels of population ρ for each value of γ,
the degree of negative bias is quite high. For example, densities 0.85 or higher indicate that
the average number of co-participated events is greater than 8.61 (the corresponding
estimated λ) out of maximum event size K=10. At this level the autocorrelation parameter
underestimates affiliation influence significantly.

Regression Analysis
We have also conducted a regression analysis to statistically test the effect of the population
γ value on bias in estimated ρ, using our simulation results of K=10 and σ=1.0. We
computed the difference between estimated ρ and the population ρ (estimated ρ – population
ρ = Δρ) to evaluate the level of bias, and regressed it on density, population γ and population

14As a supplemental analysis, we generated a random D term from a standard normal distribution (with a mean of 0 and standard
deviation of 1) and included in our model, which is equivalent of testing without D term in our model. We found that that the
“without/random D” case performed worse (more negative bias) then when D was included.
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ρ values. Here, we report only the magnitude of the effect size in order to evaluate the bias
and do not report significance level since the “statistically significant” results are most likely
an artifact of the large sample size (N=81,000). The results show that the standardized
coefficient for density effect was −0.23, which indicates that the negative bias in ρ becomes
greater as density increased. Findings were consistent with those reported in Neuman &
Mizruchi (2010). The standardized coefficient for the γ effect was 0.17, which indicates that
the positive bias in ρ becomes greater as the population level of γ increased. These results
suggest that increase in negative bias in ρ with higher density level can be offset by the
increase in positive bias in ρ with higher values in γ. The stronger the effect of the diagonal,
the greater the likelihood that it can cancel out the negative bias in the autocorrelation
parameter. Thus the event participation positive bias helps counteract the density negative
bias. The effect size for the population effect ρ was 0.05, which indicates the positive bias in
ρ becomes greater as the population ρ increases. However, this effect size is very close to
zero and hence has a negligible influence. In supplementary analyses, we included an
interaction term of density and population effect ρ to statistically test if the negative bias in ρ
at higher levels of density increased at increasing levels of population ρ (Mizruchi &
Neuman, 2008). The result showed that the standardized coefficient for the interaction effect
was 0.02, which indicates virtually no effect. The results were also consistent with those in
Neuman and Mizruchi (2010) that did not support the existence of the interaction effect.

Sensitivity Analysis
We repeated the simulation analysis for K=20 to compare with the results of the simulation
with K=10. For this simulation the A (affiliation) matrix is a 100-actor by 20-events
affiliation matrix, and 100 random bipartite graphs were generated for each of the 18 target
density levels in C, Δ(c)={0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55,
0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90} using the corresponding estimated λ values {3.54,
4.98, 6.08, 7.07, 7.89, 8.66, 9.39, 10.05, 10.64, 11.22, 11.81, 12.43, 12.95, 13.54, 14.08,
14.66, 15.13, 15.71} (refer to Figure 1). We reproduced the baseline model, that is, a model
with three X variables plus an intercept term, and specified the standard error of the
residuals to be either σ=1.0 or σ=0.1. We selected the same population values for ρ={0.0,
0.2, 0.5} and γ={0.2, 0.5, 1.0} to facilitate comparison with the K=10 case. Figure 4 shows
the equivalent graphs for the specification of K=20 case and Table 2 presents the
corresponding statistics.

Figure 3 shows a similar pattern of results produced in the K=10 case. It is interesting to
note that the negative bias when σ=1.0 is weaker in the lower densities in the K=20 case
than in the K=10 case. This occurs because of the shift in skewness of the Poisson
distribution as greater values of λ are employed in the case of K=20,from being left-skewed
to being more symmetric around the mean. Additionally, for all levels of γ, strong negative
bias starts around a density level of .85 (estimated λ=15.13) for each target ρ value. This
negative bias again disappears when the standard deviation of the error term returns to the
σ=0.1 scenario. It is also worth noting that the one effect we did not observe in either case
but was observed by (Mizruchi & Neuman, 2008) was a dependence on ρ on the magnitude
of the bias.

In summary, our results are consistent with the previous Mizruchi and Neuman one-mode
simulation15 in that a significant bias in the estimates for ρ becomes more pronounced as
network density increases. However, our results were not consistent with their observation
that the negative bias tendency became more pronounced at higher values of population ρ.

15They also specified that three X plus constant with values of X, β, and ε were drawn from standard normal distributions for their
baseline model.
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More specifically (for the σ=1.0 scenario), Mizruchi and Neuman (2008) found that a
significant negative bias starts at densities as low as 0.05 for ρ=0.5 but it did not start until
the density reached 0.20 for ρ=0.0. One possible explanation for the divergence of findings
is that the addition of D (the diagonal count of the number of events) to our regression
model adds information that consequently reduces the proportion of disturbance in the
model (it increases model fit) since D is essentially the out-degree of the corresponding row
the W matrix16 and thus is a count of the number of disturbance terms. This additional
information may reduce variances in the iterative maximum likelihood optimization process
of the linear network autocorrelation model, and acts to counter the ρ-dependent bias
observed by Mizruchi and Neuman (2008). In other words, the two-mode estimation case
provides additional information (D) from the network data thus making network effects
estimation more accurate.

8. Conclusion
We have introduced a two-mode version of the network autocorrelation model by
developing a new influence model of “Affiliation Exposure,” potentially opening up new
network analysis opportunities for datasets which lack traditional friendship network data. In
addition to the alternate formulation of W, the two-mode network autocorrelation model is
distinguished from its one-mode counterpart by the inclusion of D (the diagonal of the W
matrix) and the corresponding estimation of γ in the regression equation. Our simulation
analysis based on Poisson outdegree distributions (chosen because of the appearance of this
distribution in several real-world datasets) has shown that the two-mode network
autocorrelation model has similar statistical properties to the one-mode version (i.e.,
negative bias in ρ becoming stronger with higher density). However, the degree of this bias,
unlike the one-mode case, was independent of the true population value (ρ). Additionally,
the simulation results have shown that stronger D terms helped to reduce the observed
tendency of the negative estimation bias to increase with density. Combining these results
together, the additional structure of D may serve to help stabilize the estimates in the
presence of noise as part of the maximum likelihood optimization process, and thus acts to
counter the ρ-dependent bias observed by others in single-mode networks, but further
research will be needed to confirm this.

Substantively, special attention is needed when the average number of events each actor
participated in is high. When our two-mode version of the network autocorrelation model
exceeds a Δ(c) of 0.80 in the co-membership matrix, the autocorrelation parameter tends to
be severely underestimated. Consequently, estimating network effects when participation in
events is exceedingly high may be biased. For example, when attendance at community
events by community leaders is near universal, estimating social influences may be
problematic and underestimated. Methodologically, our simulation results were obtained by
generating random bipartite graphs based on Poisson outdegree distributions. Future
research will be expanded by generating random bipartite graphs with other distributional
assumptions, such as such as exponential or power-law distributions, as well as using joint
distribution of in-degree and out-degree distributions if they are known. Finally, this
simulation study has shown that one of the possible solutions to attenuate the negative bias
as a function of density would be to include meaningful information from the social
influence weight matrix in a regression model. Including this additional information might
mitigate the influence of noise in the model. Our two-mode version of network
autocorrelation model has shown the utility of such method by including the diagonal values

16Another possible reason would come from the difference in how the W matrix is defined. Mizruchi and Neuman used a random
graph with a given target density, while we generated random bipartite graph assuming Poisson outdegree distribution and multiplied
it by its transpose. Such differences in the distribution may account for the differing results.
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of the converted matrix in an autocorrelation model. This method may be applied to the one-
mode case where the diagonal information of the influence weight matrix is meaningful, but
further research is needed to confirm the utility of this approach as well. In conclusion, we
find that network influence estimates can be validly obtained from two–mode network data
and that the affiliation exposure may become an important method used to understand how
co-participation influences social norms, attitudes, and behaviors.
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Research highlights

• Introduces a two-mode version of the network autocorrelation model

• Conduct simulation analysis to explore biasness in autocorrelation parameter

• Affiliation exposure helps attenuating negative bias in autocorrelation parameter
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Figure 1.
Plots of observed densities in the generated networks. (a) The dotted line is the mean density
of the A matrix, and the solid lines are the densities of the corresponding C matrices. This
demonstrates that the density of A as determined by λ (the mean number of events
participated in) is non-linearly related to the density of C, the corresponding co-membership
matrix. (b) Results of the density compensation procedure, where the lower straight line is
the desired density in C and the upper curve is the density of A that is required. Because of
the non-linear relationship of λ to the density in C (see text), a linear-interpolation of the λ
parameter was used based on the resulting density in C.
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Figure 2.
Three-dimensional graphs of the mean difference between the estimated ρ and the
population ρ (Delta Rho (Δρ) = estimated ρ-population ρ) against density and population
Gamma (γ) for each population value of ρ (with an overall disturbance specification of
σ=1.0)
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Figure 3.
Mean plots of the estimated autocorrelation parameter ρ among 100 replications against
each level of density in C (Δ(c)) at each level of population γ. Bars represent upper and lower
bounds of the 95% confidence interval around the mean. Asterisks indicate that the upper
bound of the 95% confidence interval falls below the given population value of ρ. Event size
was specified as 10 (K=10). Δ(c)={0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50,
0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90} where the corresponding estimated λ values
are {1.80, 2.56, 3.16, 3.65, 4.10, 4.54, 4.93, 5.29, 5.66, 6.03, 6.35, 6.69, 7.07, 7.48, 7.81,
8.18, 8.61, 9.06}.
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Figure 4.
Mean plots of the estimated autocorrelation parameter ρ among 100 replications against
each level of density in C (Δ(c)) at each level of population γ. Bars represent upper and lower
bounds of the 95% confidence interval around the mean. Asterisks indicate that upper bound
of the 95% confidence interval fall below the given population value of ρ. Event size was
specified as 10 (K=20). Δ(c)={0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55,
0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90} where the corresponding estimated λ values are
{3.54, 4.98, 6.08, 7.07, 7.89, 8.66, 9.39, 10.05, 10.64, 11.22, 11.81, 12.43, 12.95, 13.54,
14.08, 14.66, 15.13, 15.71}.
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