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Abstract
Much recent activity is aimed at reconstructing images from a few projections. Images in any
application area are not random samples of all possible images, but have some common attributes.
If these attributes are reflected in the smallness of an objective function, then the aim of satisfying
the projections can be complemented with the aim of having a small objective value. One widely
investigated objective function is total variation (TV), it leads to quite good reconstructions from a
few mathematically ideal projections. However, when applied to measured projections that only
approximate the mathematical ideal, TV-based reconstructions from a few projections may fail to
recover important features in the original images. It has been suggested that this may be due to TV
not being the appropriate objective function and that one should use the ℓ1-norm of the Haar
transform instead. The investigation reported in this paper contradicts this. In experiments
simulating computerized tomography (CT) data collection of the head, reconstructions whose Haar
transform has a small ℓ1-norm are not more efficacious than reconstructions that have a small TV
value. The search for an objective function that provides diagnostically efficacious reconstructions
from a few CT projections remains open.
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1. Introduction
The aim of image reconstruction from projections is to acquire knowledge of the interior of
an object or a body from some physically obtained approximations of line integrals of some
spatially varying physical parameter (such as the x-ray attenuation). In practice,
measurements are taken for a number of lines. We wish to reconstruct the distribution of the
spatially varying physical parameter from the measured data; such a distribution is typically
referred to as an image, it is represented by a real-valued function f of two variables of
bounded support. The mathematical problem is to reconstruct the function from its (noisy
and incomplete) projections [1, 2].
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We define a projection in the direction θ ∈ [0, π) as follows. Let (s1, s2) denote the
coordinates of the point r = (r1, r2) ∈ ℝ2 in the coordinate system rotated by θ. Then, the
projection of f in the direction θ (i.e., the θ-projection of f) is defined as the function [ f ]
(•, θ) of the variable s1 for which

(1)

where Ls,θ is the line at the distance s from the origin that makes the angle θ with the r2-axis.
It can be said that the transform  defined by (1) gives the θ-projections of f for any θ ∈ [0,
π). The transform  is called the Radon transform of f [3].

In practice, we sample θ-projections of f by taking physical measurements for a number of
directions θ in a finite nonempty set Θ. Let, for s ∈ ℝ and θ ∈ Θ, g (s, θ) denote the
approximation to [ f] (s, θ) that we obtain based on our measurements. For any θ ∈ Θ, we
use Sθ to denote the finite nonempty set of all s for which we have such a g (s, θ). The
reconstruction task consists of finding a “good” approximation f* to the unknown function f
from the set

(2)

of approximations to [ f](s, θ).

In many applications, it is desirable (and sometimes necessary) to take the measurements in
such a way that the cardinality of Θ is small (i.e., in the order of 100 or less) and then we
have the task of trying to find a good reconstruction f* from a few projections. One example
of this is electron tomography [4] in which a structure in a biological cell is imaged using an
electron microscope. The taking of the measurements for any one θ-projection damages the
structure and so only a few (typically 70) θ-projections can be sampled before the resulting
structural change is such that further measurements are useless.

The possibility of obtaining good reconstructions from a few projections is based on the fact
that images in any application area are not random samples of all possible images, but have
some common attributes. For example, in industrial nondestructive testing the object to be
reconstructed is known to contain only certain types of materials of known x-ray
attenuations and using this the distribution of these materials in the image can often be
recovered from very few projections by the methods of discrete tomography [5, 6].

More recently an alternative approach to reconstructing objects from a few projections was
proposed. In [7] a mathematically described image that was supposed to be a representation
of a cross section of the human head (a head phantom) was “reconstructed exactly” from
only 22 projections. The underlying idea was that the common attribute of the previous
paragraph should be that the desirable images have a small total variation (TV). (This, and
all other concepts mentioned in this section without definition, are defined in the next
section.) The number of papers that cite [7] is truly impressive; two examples that
specifically concern themselves with reconstructions with small TV are [8, 9].

However, the impression given in [7], namely that one can obtain in practice “exact”
reconstructions of head cross sections from only 22 projections using TV minimization, is
misleading. From the practical point of view, there are two essential problems in the
illustration provided by [7]. First, the head phantom used in there is unrealistically simple, it
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is piecewise constant with only a few simple features and is therefore particularly (and
unrealistically) appropriate for reconstruction by TV minimization. Second, the method by
which the projections of the head phantom were obtained in [7] is a mathematical
idealization of the physical process of projection taking, resulting in a consistency between
the phantom and the projections that is much greater than what can be possibly obtained in
any application. This was illustrated in [10], by using a more realistic head phantom. It was
shown there that with such a phantom a TV-minimizing reconstruction even from 82
mathematically-ideal projections is not “exact”, although it is quite good. More importantly,
it was also shown that a TV-minimizing reconstruction from 82 realistically simulated
projections is unacceptable from the medical point of view: it failed to recover a large tumor
in the brain. A similar conclusion was drawn in [11] using physically obtained projections of
a cadaver head.

It has been suggested recently [12] that the reason for the unacceptable performance of TV-
minimizing reconstruction from 82 realistically simulated projections as reported in [10]
may be due to using TV as the objective function and that one should use the ℓ1-norm of the
Haar transform instead. The authors of [12] are not alone in considering this a good
direction; see, for example, the section on “Intuitive Introduction of Compressed Sensing
(CS)” in [13] on the use of the ℓ1-norm of a sparsifying transform such as the Haar
transform. Unfortunately, the investigation reported below does not confirm the superiority
over TV of the ℓ1-norm of the Haar transform. It is demonstrated by experiments simulating
the computerized tomography (CT) data collection of the human head (as was done in [10])
that a reconstruction whose Haar transform has a small ℓ1-norm is not any more useful from
the medical diagnostic point of view than the reconstruction that has a small TV value. Thus
the search for an objective function that provides diagnostically efficacious reconstructions
from a limited number of CT projections remains open.

While our orientation in this paper is strictly toward CT, the ideas that are presented are
relevant to related inverse problems; examples are inverse scattering problems from a few
angles [14] and the inversion of Radon spherical transform for a few angles [15].

Our paper is organized as follows. The following section discusses the mathematical notions
that we use in our work. In Section 3 we show the results of our experiments. In Section 4
we discuss the methods by which these results were obtained. We provide our conclusions in
Section 5.

2. Mathematical Background
Since computers store and process images in a digital form, in order to fully understand
what goes on in practical image reconstruction from projections, we must make precise the
concept of digitization of an image f (which we defined in the previous section as a real-
valued function of bounded support on ℝ2). Throughout this paper N denotes a positive
integer. An N × N digital image is a function p: [0, N − 1]2 → ℝ. For any (t1, t2) ∈ [0, N −
1] × [0, N − 1] and for any positive real number d, referred to as the sampling interval, we
define a pixel (which is a subset of ℝ2) by

(3)

Given an image f and a sampling interval d, we define the N × N digitization  of f with a
sampling interval d by
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(4)

Conversely, an N × N digital image p and a d > 0 give rise to an image  that is defined by

(5)

For any image f, positive integer N, and sampling interval d, we refer to the image  as
the N × N pixelization of f with a sampling interval d. The pixelization is supposed to be an
acceptable approximation of f; in order for that to be true it is necessary the Nd be large

enough so that the support of f is a subset of the support of , but d be small enough so
that important details in the image are not lost due to the pixelization. In image
reconstruction from projections, we typically first select such an N and d, and then the
reconstruction algorithm is supposed to produce an N × N digital image p* that is a “good”

approximation of  for the image f for which the projection data were collected. Note that

this intuitively implies that  will be a “good” approximation of f. We now discuss
the criteria by which the p* should be chosen.

First, it should be reasonably consistent with the projection data (2). Following [16], we use
r(p) to denote a measure of inconsistency of p with the data. There are many ways of

defining r, in this paper we use

(6)

Second, we should define an objective function φ, such that φ(p) measures how badly 
violates the desired common attribute of images (for our application). As mentioned
previously, one common choice is total variation (TV); see, e.g., [7, 8, 9, 10, 11, 16] and
their references. We define it here by

(7)

As discussed in the previous section, our paper is concerned with the investigation of the
claim that instead of using TV, should use the ℓ1-norm of the Haar transform as the objective
function. The ℓ1-norm of an N × N digital image p is defined as

(8)
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The definition of the Haar transform is more complicated. We define it only for M × M
digital images with M a power of 2. We therefore introduce an auxiliary-operator B that
maps any N × N digital image p into an M × M digital image Bp, where M is the smallest
power of 2 that is not smaller than N, defined by

(9)

In our algorithm we will also make use of the inverse of this operator that, for any M × M
digital image p, with M ≥ N, produces the N × N digital image B−1p defined by

(10)

A standard way of defining the Haar transform is done using matrices. For any N × N digital
image p, we use p̂ to denote the N × N matrix whose (t1, t2)th entry is p (t1, t2), for 0 ≤ t1, t2
< N. Conversely, for any N × N matrix P with entries pt1, t2, we denote by P̄ the digital
image for which P̄ (t1, t2) = pt1t2, for 0 ≤ t1, t2 < N. For any positive integer k, we define the
2k × 2k Haar matrix Kk recursively by [17]

(11)

where

(12)

I2k is the 2k × 2k identity matrix and the Kronecker product of an N × N matrix P with entries
pt1t21, for 0 ≤ t1, t2 < N, and a 1 × 2 matrix Q is defined as the N × 2N matrix [18]

(13)

Let p be any M × M digital image with M = 2k, where k is a positive integer. The Haar
transform of p is the M × M digital image

(14)

and the inverse Haar transform of p is the M × M digital image
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(15)

For an arbitrary N × N digital image p, we define the ℓ1-norm, of its Haar transform (L1H)
to be

(16)

Having defined two choices for the objective function φ (namely TV and L1H) we now
return to the discussion of the output N × N digital image p* that is supposed to be a “good”

approximation of  for the image f for which the projection data were collected. The
conditions that p* must satisfy in order to be considered to be an acceptable output are that
both r (p*) and φ (p*) be “small.” The first of these conditions is made mathematically
precise by specifying a positive real number ε and requiring that r (p*) ≤ ε. The choice of ε
has to be application dependent: the noisier the data are, the larger the ε ought to be chosen.
For noisy projection data, it may happen that for a small choice of ε there is no p* that
satisfies the condition and, even when there is one, it may be that it fits the noise in the data
more than the noiseless projection measurements [ f] (s, θ). An intuitively reasonable

choice is , but in actual practice we do not know what f is (it is the image that we
wish to reconstruct from the data) and so such an ε need to be estimated based on prior
knowledge regarding the application area. The second of the conditions has a similar

mathematical interpretation: it is desired that . Again, this condition cannot
be used in actual practice as a criterion to be satisfied by the output of an algorithm, since f
is not known. However, in evaluating algorithms on simulated data we can test whether or
not the condition happens to be satisfied by the output. In the next section we report on
outputs produced by our algorithms, in all cases they satisfy both conditions. Whatever
conclusions we will reach regarding the relative merits of the objective functions TV and
L1H based on the outputs of our algorithms will not be essentially dependent of the actual
algorithms used: the outputs of the algorithms for TV and L1H will both be such that the

value of the inconsistency with the data is just less than ε and . It is the
choice of the objective function φ, rather than the specific algorithm used to obtain a p* that
satisfies the stated conditions, that determines the appearance of the p*.

3. Results
In this section we report on experiments aimed at answering the question: Can one obtain
superior reconstructions form a few projections to those reported in [10] by using L1H
instead of TV as the objective function? In the first two experiments, in the same way as was
reported in [10], we reconstructed a head phantom h (see Figs. 1(a) and 2(a) for renderings

of  as defined by (4) and d = 0.0752 measured in centimeters) from 82 projections with
the geometrical arrangement of the lines for which data were collected as used in that paper.
Also as in [10], two modes of data collection were simulated. (We note that all
computational work reported in this paper, such as phantom and projection data generation,
reconstruction, statistical analysis of the results and the display of digital images, was done
within the framework of the software package SNARK09 [19].)
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The first mode of data collection is a mathematically idealized one: for each θ ∈ Θ and s ∈
Sθ, we used

(17)

see (1), (4) and (5) for the notation. In this mathematically idealized case we have that

; a consistency between the phantom and the data that is not achievable in
practical CT. We used two reconstruction methods (discussed in the next section) that
produced from these idealized data reconstructions whose inconsistencies (6) are less than
0.05. One of the methods was aimed at producing a reconstruction pTV, shown in Fig. 1(b),
for which TV (pTV) is relatively small, while the other method was aimed at producing a
reconstruction pL1H, shown in Fig. 1(c), for which L1H(pL1H) is relatively small: see (7) and
(16). The numerical values associated with the phantom and the two reconstructions are
reported in Table 1. Note that the reconstructions have the desired properties: both r (pTV)
and r(pL1H) are less than 0.05, the TV value of pTV is smaller than that of the digitized

phantom  and that of pL1H, and the L1H value of pL1H is smaller than that of the

digitized phantom  and that of pTV. Visual qualities of the reconstructions in Figs. 1(b)
and (c) are quite good, but they are by no means exact in the sense of being identical to the
phantom in Fig. 1(a). This illustrates yet again the validity of the claim in [10] that for the
perfection of the reconstructions in [7] it was necessary to have not only mathematically
idealized data (which is the case in this experiment as well), but also unrealistically simple
phantoms. The realism of our head phantom from the medical point of view is justified in
Chapter 4 of [2].

The approach just described is an idealization of what really occurs in CT and, in fact, in
most real applications of image reconstruction. Among other things, the approach just
described does not take into account the phenomenon of scattering, nor the stochastic nature
of the imaging process, nor the fact that detectors have a width and in consequence they
cannot acquire line integrals. To investigate the likely performance of our algorithms on real
CT data we used a second mode of data collection that more realistically simulates that of a
CT scanner. For details how the 82 realistically simulated projections were obtained we
refer to [10]. An essential difference between this realistic case and the mathematically ideal

case is that value of r for the digitized phantom  (shown in Fig. 2(a)) is no longer 0,
but 1.79088; in other words, the digitized phantom is inconsistent with the projection data
used as the input to the reconstruction algorithms. Since the digitized phantom is what an
exact reconstruction method should produce, there is no point in insisting that the
inconsistency of a reconstruction with the realistic data be much less than

. We again used two reconstruction methods (discussed in the next
section) that produced from these realistic data reconstructions whose inconsistencies (6) are

less than . One of the methods was aimed at producing a reconstruction pTV,
shown in Fig. 2(b), for which TV (pTV) is relatively small, while the other method was aimed
at producing a reconstruction pL1H, shown in Fig. 2(c), for which L1H (pL1H) is relatively
small. The numerical values associated with the phantom and the two reconstructions are
reported in Table 2. Note that the reconstructions have the desired properties: both r (pTV)

and r (pL1H) are less than , the TV value of pTV is smaller than that of the

digitized phantom  and that of pL1H, and the L1H value of pL1H is smaller than that of
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the digitized phantom  and that of pTV. Visual qualities of the reconstructions in Figs.
2(b) and (c) are quite unacceptable from the medical point of view: the large tumor in the
phantom is totally invisible in both of the reconstructions. This illustrates that the negative
result reported in [10] that using TV as the objective function results in not recovering a
large tumor from 82 realistic projections cannot be improved upon by replacing TV by L1H
as the objective function. In fact, if anything, the reconstruction got worse by such a
replacement, as can be seen by comparing Figs. 2(b) and (c).

The anecdotal experiment with realistic data that is presented in the previous paragraph is
not sufficient for a firm conclusion. We therefore designed a third experiment that uses
statistical hypothesis testing (SHT) for task-oriented comparison of reconstruction algorithm
performance [2, Section 5.2]. Using SHT we are able to assign a numerical statistical
significance by which we can reject the null hypothesis that the algorithm that produces a
small TV and the one that produces a small L1H are equally efficacious for a task of
detecting low contrast tumors in the brain, in favor of the alternative hypothesis that the
algorithm that produces a small TV is more efficacious for that task. Details of this
methodology can be found, for example, in [2, Section 5.2]. Roughly it consists of the
following four steps. (i) Generation of random samples from a (statistically described)
ensemble of phantoms. (ii) Generation of realistic projection data sets and reconstructions
using the two algorithms on each of the projection data sets. (iii) Assignment of figures of
merit (FOMs) to each of the reconstructions. An FOM is supposed to measure the goodness
of a reconstruction for a given task. (iv) Computation of the statistical significance (based on
the average FOMs of all the reconstructions for all the data sets) by which we can reject the
null hypothesis in favor the alternative hypothesis. The statistical significance is measured
by the P-value, which is the probability under the null hypothesis of observing a difference
between the average FOMs that is as large or larger than what we have actually observed. A
small P-value indicates high statistical significance.

The ensemble of phantoms used for the SHT experiment of this paper is exactly the same
ensemble that was used for SHT experiments in [2]; it is specified in Section 5.2 of that
book. A random sample from that ensemble is shown in Fig. 3(a). In addition to the features
included in the head phantoms of our previous two experiments, it contains a large number
of symmetric pairs of potential tumor sites, only one of which contains a tumor; for each
pair of sites, the choice is done randomly with equal probability while generating the sample
phantom. For each sample phantom, projection data were generated according to the
realistic parameters specified in [2. Section 5.8] for the standard projection data, with two
exceptions. Since our paper is concerned with reconstruction from a few projections, instead
of generating data for 360 projections as in [2, Section 5.8], we generated data for only 60
(equally-spaced) projections. In addition, for this paper, we made the simplifying
assumption that data are collected using a monochromatic x-ray source. For each of the
reconstructions for each of the samples, two FOMs were calculated: hit ratio (HITR) and
image wise region of interest (IROI). The first of these indicates the fraction of all pairs for
which the average density in the reconstruction of the tumor site is larger than the average
density in the reconstruction for the symmetric non-tumor site. The second is proportional to
a signal-to-noise ratio, where the signal is the difference in the reconstruction of the total
densities in all tumor sites and all non-tumor sites and noise is the standard deviation in the
densities in the reconstruction at the non-tumor sites. For more detailed definitions of these
two FOMs. see for example [2, Section 5.2].

For the SHT experiments we used 30 samples from the ensemble of phantoms. The results,
reported in Table 3, are conclusive: the P-values for both of the FOMs were less than 1.3 ×
10−12. In other words, we can reject with confidence the null hypothesis that the two
algorithms are equally good for detecting low contrast tumors in the brain in favor of the
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alternative hypothesis that the one that produces low TV is better for the task at hand.
Nevertheless, looking at the reconstructions, one cannot possibly agree with the statement
that the reconstructions are medically useful. As an illustration, we include in Fig. 3 a
sample phantom and its reconstructions by the two algorithms. As can be seen, using only
60 noisy projections, neither pTV nor pL1H resolve the individual tumors, however the
increased density due to the tumors is slightly better indicated in the small TV
reconstruction. However, this is hardly relevant as compared to what one can do by using
more projections. To demonstrate that, we picked a sample from our ensemble of phantoms
and generated a projection data set using exactly the same parameters that were used for our
SHT experiment, except that it contained 360 projections rather only 60. We reconstructed
from this data set using a standard algorithm (an algebraic reconstruction technique, ART,
using blob basis functions, relaxation parameter 0.05 and 10 cycles through the projection
data; see [2, Chapter 11]). The result of this reconstruction is illustrated in Fig. 4. Using 360
projections allows us to visualize the small tumors very well. The values for this
reconstruction of HITR and IROI are 0.9569 and 0.3923, respectively; these values are
much higher than what we have been able to obtain from 60 projections, even with the help
of algorithms that aim at a small value of TV or L1H.

4. Methods
The method that we used to produce pTV, for both data collection modes, was the iterative
algorithm used for TV-minimization in [10]. The difference between the two applications of
that algorithm was that in the case of the mathematical idealized data the process was
stopped when the inconsistency got below 0.05, while in the case of the realistic data the
process was stopped when the inconsistency got below 1.79. It was pointed out in [10] that
the methodology proposed in there is applicable to objective functions φ other than TV and
this was formalized and made mathematically rigorous in [16], where it was referred to as
the superiorization methodology.

An essential aspect of the superiorization methodology as described in [16] is that at certain
points the algorithm attempts to reduce the objective function φ by moving in a direction
that is the negative of one of its subgradients. When we were contemplating the nature of the
objective function L1H, it seemed to us that there is a more natural way to reduce its value.
We now present the variant of the superiorization methodology [16] that we used to obtain
the pL1H in the previous section.

The algorithm makes use of a family of operators Wβ, w, with 0 < β ≤ 1 and 0 < w, mapping
N × N digital images into N × N digital images, defined by

(18)

for (t1, t2) ∈ [0, N − 1]2. It is obviously the case that ||Wβ, wp||1 < ||p||1. Such operators have
been used in the literature in conjunction with the objective function L1H, compare it for
example with equation (10) of [12].

We also make use of another operator P mapping N × N digital images into N × N digital
images, whose desired essential property is that r (Pp)< r(p), whenever 0< r(p). In
other words, P is supposed to reduce the inconsistency of p with the data. To obtain pL1H,
we used the operator P defined by equations (10) and (11) of [10], which is the same
operator that we used in the algorithm to obtain pTV. To make our paper self-contained, the
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definition of P is reproduced in the Appendix below. Note that the definition of P depends
on the production data (2) in an essential way.

The following pseudocode describes how we obtained pL1H, given projection data (2). It
makes use of the parameter w (which we selected to be 0.0005 in our actual experiment), an
initial value β0 for β (which we selected to be 1), an initial value p0 of the digital image
(which we selected to be the image whose value is zero everywhere), a real number
parameter a, 0 < a < 1 (which we selected to be 0.9999) and a positive real number
parameter ε (which we selected to be 0.05 for the mathematically idealized data, 1.79 for the
realistic data used to produce Fig. 3 and 1.07 for the SHT experiment that involves fewer
projections each of which is generated using a larger number of photons).

Algorithm 1

Algorithm to obtain pL1H

1: k = 0

2: β = β0

3: pk = p0

4: WHILE r (pk) > ε DO

5:  q = HBpk

6:  logic = true

7:  WHILE logic

8:   pk+1 = PB−1H−1Wβ.wq

9:   IF r (pk+1) < r (pk) THEN logic=false

10:   β = a × β

11:  k=k+1

12: pL1H = pk

In this algorithm q is the Haar transform of pk. The operator Wβ, w reduces its ℓ1-norm, and
the changing parameter β controls by how much. As β gets smaller, B−1H−1Wβ,wq gets to be
more similar pk. From the nature of the operator P (its desired behavior discussed above and
its continuity), we expect that as β gets small enough the condition r (pk+1) < r (pk) will
be satisfied and we get out of the WHILE logic loop and go onto the next iteration. As
illustrated in the previous section, our algorithm indeed terminates for the modes of data
collection to which it was applied and its output pL1H indeed has desired mathematical
properties: small values of both the inconsistency with the data and of the ℓ1-norm of the
Haar transform.

5. Conclusions
We have presented an algorithm that is designed to deal with the ℓ1-norm of the Haar
transform as the objective function: as illustrated, it terminates for the modes of data
collection to which it was applied and its output pL1H indeed has the desired mathematical
property of having small values for both the inconsistency with the data and the ℓ1-norm of
the Haar transform.

However, this does not appear to be of use in the medical application of reconstruction from
a few projections: the output on realistic data does not appear to contain diagnostically
important information in the object to be reconstructed; if anything it is of worse quality
than what is obtained by using total variation as the objective function.
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We have no explanation to offer for this behavior of the two objective functions, we leave
the discovery of such an explanation to those who advocate them. Our aim here was less
ambitious: we wished to see if using the ℓ1-norm of the Haar transform is superior to using
TV, as claimed in the literature; and here we simply report, based on evidence that we found,
that this does not appear to be the case.
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Appendix
Here we reproduce the definition of the operator P that is specified by equations (10) and
(11) of [10], but using the notation of our Sections 1 and 2. In addition we make use of the
notation that if p and q are N × N digital images, then p + q is the N × N digital image
defined by [p + q] (t1, t2) = p (t1, t2) + q (t1, t2), for (t1, t2) ∈ [0, N − 1] × [0, N − 1]. Further,
for every θ ∈ Θ and every s ∈ Sθ, we use as,θ to denote the N × N digital image such that as,θ

(t1, t2) is the length of the segment of the line Ls,θ that lies in the pixel .

We first define, for every θ ∈ Θ, an operator Pθ mapping N × N digital images into N × N
digital images by (this corresponds to equation (10) of [10])

(19)

where |Sθ| is the cardinality of Sθ and p is an arbitrary N × N digital image.

For the definition of P we need to order the projection directions as in Θ = {θ1, θ2, …, θT}.
In practice we use the so-called efficient ordering (see, for example, p. 209 of [2]). We
define the operator P mapping N × N digital images into N × N digital images by (this
corresponds to equation (11) of [10])

(20)

where p is an arbitrary N × N digital image.
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Figure 1.
Experiment using 82 mathematically idealized projections, see (17). (a) Digitized head

phantom  with tumor and variability. (b) Reconstruction pTV with a small TV value, see
(7). (c) Reconstruction pL1H with a small L1H value, see (16).
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Figure 2.

Experiment using 82 realistic projections. (a) Digitized head phantom  with tumor and
variability. (b) Reconstruction pTV with a small TV value, see (7). (c) Reconstruction pL1H
with a small L1H value, see (16).
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Figure 3.
Reconstructions from 60 noisy projections generated with the parameters of the SHT
experiment. (a) A random sample from the ensemble of phantoms used in the SHT
experiment ( r = 1.07460, TV = 454.0, L1H = 851.1). (b) Reconstruction pTV with a small
TV value ( r = 1.06758, TV = 403.9, L1H = 820.7). (c) Reconstruction pL1H with a small
L1H value ( r = 1.06171, TV = 559.2, L1H = 750.9).
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Figure 4.
Reconstructions from 360 noisy projections generated with the parameters of the SHT
experiment. (a) A random sample from the ensemble of phantoms used in the SHT
experiment. (b) Reconstruction using ART with blob basis functions, relaxation parameter
0.05 and ten cycles through the data.
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Table 1

Comparison of numerical values provided by (6), (7) and (16) for the experiment using 82 mathematically
idealized projections of the digitized head phantom , the reconstruction pTV with a small TV value and
reconstruction pL1H with a small L1H value.

Mathematically Idealized Experiment

p = pTV p = pL1H

r (p) 0.0000000 0.0499954 0.0499997

TV (p) 488.2 441.7 520.6

L1H (p) 866.1 848.9 842.6
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Table 2

Comparison of numerical values provided by (6), (7) and (16) for the experiment using 82 realistic projections
of the digitized head phantom , the reconstruction pTV with a small TV value and reconstruction pL1H
with a small L1H value.

Realistic Experiment

p = pTV p = pL1H

r (p) 1.79088 1.78993 1.78996

TV (p) 488.4 422.1 599.4

L1H (p) 866.3 836.9 766.0
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Table 3

Results of the SHT experiment using reconstructions from 60 noisy projections.

SHT Experiment

TV L1H P-value

Average HITR 0.6790 0.6127 1.3 × 10−12

Average IROI 0.0735 0.0360 7.0 × 10−13
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