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Plague (caused by the bacterium Yersinia pestis) is a zoonotic re-
emerging infectious disease with reservoirs in rodent populations
worldwide. Using one-half of a century of unique data (1949-
1995) from Kazakhstan on plague dynamics, including data on
the main rodent host reservoir (great gerbil), main vector (flea),
human cases, and external (climate) conditions, we analyze the full
ecoepidemiological (bubonic) plague system. We show that two
epidemiological threshold quantities play key roles: one threshold
relating to the dynamics in the host reservoir, and the second
threshold relating to the spillover of the plague bacteria into the
human population.

climate forcing | generalized threshold model | wildlife reservoir of Yersinia
pestis | spillover to the human population

lague (Yersinia pestis infection) has played a dramatic role in

human history and is still endemic throughout large parts
of the Central Asian semideserts (1, 2), where the great gerbil
(Rhombomys opimus) is a major reservoir host species (3, 4).
Here, we combine monitoring data from the PreBalkhash natural
plague focus in southeastern Kazakhstan (74-78°E, 44-47°N)
(Fig. 1) (5, 6) with cases of human plague. The abundance of
great gerbils and their fleas, and the prevalence of wildlife plague
were estimated at up to 78 sites in the PreBalkhash each spring
(May and June) and fall (September and October) from 1949 to
1995. Fleas (primarily Xenopsylla gerbilli minax) (7, 8) infesting
the gerbils are the main plague vector (3). Plague infection is
known to persist in the population only when the gerbil density
exceeds a threshold (3, 9). Transmission to humans occurs oc-
casionally through either contacting fleas that have fed on an
infected animal (either a rodent or a secondary host) or eating
or skinning infected animals (1). The records of human plague
began in 1904, with most of the cases occurring before 1949,
which was when plague monitoring and flea control began (8, 10)
in an effort to eliminate human plague outbreaks. The human
plague cases are recorded annually and aggregated spatially,
whereas the data on the gerbils and their fleas are recorded bi-
annually. Using recently developed statistical modeling techni-
ques (11) (Methods), we here analyze these data to better
understand the underlying dynamic structure of the full ecoepi-
demiological (bubonic) plague system as it is seen in Central Asia.
Although full in the sense of containing all elements—abiotic
environment, rodent reservoir, fleas, pathogen, and spillover to
humans—it cannot, of course, claim to describe each of these
elements exhaustively. For some elements, lack of data prohibits
a high level of detail. We have attempted to model as compre-
hensively as data allowed. For other factors, we have taken
a pragmatic approach, for example, by using the error term. For
instance, secondary reservoir species (12) are not considered
explicitly and are accounted for in this way, which is justified by
the fact that the great gerbil is considered to be the dominant
host species in the plague focus covered within our study area
(13). In particular, we seek in this study to evaluate whether
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there is evidence of thresholds (incorporating a combination of
elements of the whole system) and whether there are separate
thresholds within and between species.

Results and Discussion

We investigate the dynamics of rodents together with fleas in the
host reservoir through the following three components: abun-
dance of rodents, average number of fleas infecting each rodent
(flea burden), and number of free infectious fleas that are
searching for a host (infectious-flea force). By modeling these
three parameters jointly over time, we seek to understand and
predict the persistence and outbreak of plague in the wildlife
reservoir and its spillover into the human population. In partic-
ular, we observe that the yearly density change in rodents decays
exponentially with the flea density (Fig. 1B). The flea burden and
infectious-flea force are important in exploring this observed
exponential decay in the rodent population. Because plague
is unable to invade or persist in the wildlife reservoir unless
the density of rodents exceeds a critical threshold (3, 9), the
infectious-flea force is assumed to always be zero if the (lagged)
density of rodents is below this threshold (estimated in the sta-
tistical model). Above the threshold, the infectious-flea force is
evaluated as a function of biotic and environmental factors.

In our study area, humans are not fully integrated into the
system; however, studying the spillover of plague into humans
presents a biomarker for how well plague is controlled in this
area. Given the dynamics of plague in the wildlife reservoir, we
show that the spillover into humans is best modeled using a
threshold model, where the flea density is a key threshold vari-
able that determines when human plague outbreaks may occur.
The number of human plague cases is modeled as a function
of different sets of biotic and climatic variables depending on
whether the flea density is below or above the threshold. Details
pertinent to the statistical modeling used for the wildlife reser-
voir and plague spillover into humans can be found in Methods;
estimation techniques, model diagnostics, a bootstrap test justi-
fying the use of the threshold models, and forecasting techniques
are all included in SI Text.

We begin by modeling the joint seasonal dynamics of the
rodent—flea—plague system, incorporating the annual density
change in rodents (referred to as the rodent population growth
rate), a measure of the flea burden, and a measure of the
infectious-flea force. The rodent population growth rate is de-

Author contributions: N.I.S. and N.C.S. designed research; N.I.S., H.H., M.B., and N.CS.
performed research; N.LS. analyzed data; N.I.S., K.L.K., H.H., V.A, M.B., K-S.C,, and N.CS.
wrote the paper; and N.I.S. and H.H. derived the two threshold quantities.

The authors declare no conflict of interest.
*This Direct Submission article had a prearranged editor.

To whom correspondence may be addressed. E-mail: n-samia@northwestern.edu or n.c.
stenseth@bio.uio.no.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1015946108/-/DCSupplemental.

PNAS | August 30,2011 | vol. 108 | no.35 | 14527-14532

-
<
=
=2 wn
28
=

[T}
O =
g3
>
=
[T}



http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1015946108/-/DCSupplemental/pnas.201015946SI.pdf?targetid=nameddest=STXT
mailto:n-samia@northwestern.edu
mailto:n.c.stenseth@bio.uio.no
mailto:n.c.stenseth@bio.uio.no
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1015946108/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1015946108/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1015946108

L T

z

D\

A - + - + -
Spring gerbil growth rate i = B3 + B} exp(B5F,_15) + 5 log(Rises) + A7 B
. + -
Fall gerbil growth rate p.fJ = ﬁ"; + ﬂ{ exp(,B{F,_z) \\
_ + o+ + %
Spring flea burden WEs =v5 + i+ vilog(Fos) R
+ + +
Fall flea burden e, =¥/ +v{108(F,5) +¥]log B
. + + -
1| Spring change in infectious-flea force I“{.s =aj+af;qs+ @ilog(1l + . if Beps = z°
1
1 . + - + ]
: Fall change in infectious-flea force L = (4;".6r +a fi o5+ tI‘_{ log(1 +-) + tl if Rt_gf >zf lf' N e
- ' £ \
1= 3 080
1 = = e E %, L) 0
1 Flea density Rodent density _ + Positive effect G © 00 o0 s
1 - 00 ."bfﬁ o
c b
: _ Change in infectious-flea force Summer rainfall - Negative effect 2 . 0
1 0 |
5 8 | T T
C Fall Season Upper Regime of Fall Season 0 50 1000 1500 2000 2500
o | b © Lag 1.5 Flea Density
F
o | o ° g
s =
2 & Fall Season
g 3 % ]
@ % -
s = g ndT
E o ] :
@ v £ "do
s 3 2 i &o
] ] 0 oledo g ‘g
= “ = = -}
"g L § 9 N 8@ 3 : a ¢
. £ 0 o
2 & o g % n 00 0 R
2T T T
a4 ° 0 500 1000 1500 2000 2500
T T T T T T T
0.5 1.0 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5
2 Flea Densi
Summer Rainfall Summer Rainfall Lz f

Fig. 1. The rodent-flea—plague model for Central Asia (map in A Right). (A) Summary of the analysis of the plague dynamics in rodents and fleas. Note that

the joint conditional distribution of the seasonal growth rates, seasonal flea burdens, and change in the infectious-flea forces in year t is multivariate normal
with mean (g, uﬁ,, ule, uls, uil, ﬂgf), where the superscripts G, B, and J refer to the rodent growth rate, flea burden, and change in infectious-flea force
models, respectively, and the subscripts s and f refer to the spring and fall seasons, respectively. The model formulation is given in Methods. The plus or minus
sign above the parameters refers to a finding of positive or negative effect of the corresponding covariate, respectively. (B Upper) Plot of the rodent growth
rate vs. the lag-1.5 flea density during the spring season. (B Lower) Plot of the rodent growth rate vs. the lag-2 flea density during the fall season. The circles
correspond to the observed rodent growth rate in each season. The red curves illustrate the mean effect of changes in the lagged flea density (lag-1.5 in the
spring and lag-2 in the fall) on the rodent growth rate, with the other covariates fixed at their seasonal mean values. (C Left) The effect of changes in the (log)
summer rainfall on the (log) flea burden in the fall season. (C Right) The effect of the (log) summer rainfall on the infectious-flea force in the upper regime of
the fall season. Note that the curves illustrate the mean effect of (log) summer precipitation, with other covariates set at their mean values. The unit of
rainfall is log-millimeter scale (i.e., the untransformed rainfall data are in millimeters). Open circles are the partial residuals for summer precipitation. The

partial residuals are defined as the mean effect of summer precipitation plus Pearson residuals.

fined as G, = log(R/R, _ 1), with R, being the rodent density
averaged across all sites at time ¢ (measured every 0.5 y, because
samples were taken in spring and autumn). The flea burden is
measured by B, = log(F,/R,), where F, is the flea density aver-
aged across all sites at time ¢. The infectious-flea force, I,, is the
product of the flea density and the prevalence of plague in
rodents (from which fleas become infected) averaged across
sites. The change in the infectious-flea force is defined as J;, =
log(1 + I,) — log(1 + I, _ ;). The notations used throughout this
paper are described and defined in Table S1. The resulting
model of the reservoir dynamics that best accounts for the time
series of these three variables (Methods has details of its deri-
vation) is summarized in Fig. 1 and Table 1. Candidate ex-
planatory variables are defined in Table S1. The optimum
model for the rodent-flea—plague system is a multivariate
nonlinear model, where the nonlinearity feature pertains to the
behavior of the infectious-flea force as a threshold model with
the rodent density being a dominant season-specific variable
defining the threshold (SI Text). This result suggests that the
rodent population 1.5-2 y earlier has to be sufficiently high for
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an outbreak to occur, which is consistent with but more mul-
tifaceted than previous findings (6, 14, 15).

Coupled with this finding, we model the dynamics of plague
that spill over into the human population using the annual
numbers of human (plague) cases in Kazakhstan and several
potential explanatory variables listed in Table S1. Here, in-
formation is averaged across all sites in the monitoring area and
pooled across the spring and fall seasons (Methods). The
resulting human—plague model is summarized in Fig. 2 and Ta-
ble 1. The final model linking the rodent—flea—plague system and
the human-plague system is nonlinear, incorporating the (lag-
ged) flea density as a threshold-defining variable (SI Text). The
positive dependency on the flea burden above the threshold
suggests that the crowding of the fleas on the rodents neces-
sitates their finding other host species (such as humans or their
domestic animals). The positive dependency on flea density
per se also suggests that, with more fleas present, any human
contact with the wildlife system is more likely to lead to trans-
mission, irrespective of whether the fleas are actively searching
for alternative hosts (second threshold information given below).
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Table 1.

Variable

Maximum likelihood estimates of the parameters in the full flea—wildlife-human-plague model

Estimated value Asymptotic SE Asymptotic 95% CI

Rodent growth rate model
Spring intercept 5
Exponential decay f; multiplicative constant (spring season-specific)
Exponential decay f; rate (spring season-specific)
Rodent density of previous season g (spring season-specific)
Lag-1 rodent growth rate (spring season-specific) g
Fall intercept
Exponential decay ] multiplicative constant (fall season-specific)
Exponential decay /5 rate (fall season-specific)
Flea burden model
Spring intercept r3
Lag-1 infectious-flea force 3 (spring season-specific)
Flea density of previous season y3 (spring season-specific)
Fall intercept 7
Flea density of previous season y} (fall season-specific)
Summer precipitation 7} (fall season-specific)
Change in infectious-flea force model
Change in infectious-flea force of previous season a;
Spring intercept ap
Lag-1 infectious-flea force of (spring season-specific)
Fall intercept af
Lag-1 infectious-flea force a§ (fall season-specific)
Summer precipitation of (fall season-specific)
Spring threshold
Fall threshold
Residual SD of spring rodent growth rate model (with weight 1) o6
Weighting factor* in fall rodent growth rate model ¢ ¢
Correlation across seasons in rodent growth rate model pg
Residual SD of fall flea burden model (with weight 1) o5 ¢
Weighting factor" in spring flea burden model 5
Weighting factor® in spring change in infectious-flea force model 6,5
Weighting factor® in fall change in infectious-flea force model &,
Correlation between spring (fall) flea burden and spring (fall) change in
infectious-flea force pg,
Human model
Lower regime
Intercept o
Lag-1 rodent density ;4
Lag-1 summer temperature f, ,
Lag-1 fall rainfall g, 3
Upper regime
Intercept f,
Lag-1 infectious-flea force f, ,
Lag-1 flea burden 3, ,
Lag-1 spring temperature f, 3
Threshold r

-1.56 0.28 (-2.13, —0.989)

2.56 0.45 (1.67, 3.45)
—0.00473 0.0014 (—0.00758, —0.00188)

0.499 0.12 (0.257, 0.740)
-0.336 0.13 (~0.593, —0.0781)
-0.514 0.19 (-0.892, —-0.136)

1.48 0.33 (0.820, 2.14)
—0.00426 0.0021 (—0.00843, —0.0000817)

2.23 0.67 (0.896, 3.57)

0.0427 0.010 (0.0221, 0.0633)

0.286 0.12 (0.0525, 0.520)

1.94 0.45 (1.04, 2.84)

0.232 0.058 (0.116, 0.347)

0.392 0.15 (0.0962, 0.688)

0.381 0.091 (0.202, 0.560)

0.694 0.29 (0.114, 1.27)
-0.527 0.15 (—0.829, —0.225)
—-0.0550 0.85 (-1.73, 1.62)
—-0.828 0.15 (-1.13, —-0.525)

0.0897 0.043 (0.00436, 0.175)

3.25

4.94

0.583 (0.438, 0.691)

0.982 (0.744, 1.29)

0.521 (0.249, 0.717)

0.616 (0.491, 0.771)

1.60 (1.16, 2.21)

1.95 (1.38, 2.77)

2.69 (1.89, 3.83)

0.450 (0.188, 0.652)
24.8 9.2 (6.66, 42.9)

0.167 0.076 (0.0177, 0.317)
-0.920 0.41 (=1.73, —0.108)
-1.49 0.72 (-2.91, -0.0705)
-3.56 0.99 (-5.49, -1.62)

0.0126 0.0028 (0.00718, 0.0181)

0.00608 0.0010 (0.00403, 0.00814)

0.487 0.13 (0.229, 0.746)
148.71

Cl, confidence interval.

*The residual SD of the fall rodent growth rate model is 6,7 66,5, Where og,s is the residual SD of the spring rodent growth rate model.
"The residual SD of the spring flea burden model is 5g 66,1 Where o5 is the residual SD of the fall flea burden model.

*The residual SD of the spring change in infectious-flea force model is 5,505, Where o5+ is the residual SD of the fall flea burden model.
5The residual SD of the fall change in infectious-flea force model is 5,¢ o8, Where og ¢ is the residual SD of the fall flea burden model.

The nonlinearities in the full ecoepidemiological plague sys-
tem (Figs. 14 and 24 have the model formulations) can be re-
lated to the threshold properties of two process-based epi-
demiological quantities that function as idealized proxies for the
threshold dynamics. The first proxy is the basic reproduction
number Ry, and it applies within the wildlife reservoir system
(Fig. 1). We denote the threshold quantity by R.¢, the effective
reproduction number of the wildlife system. An expression for R,
is derived in ST Text, and it was earlier derived from a dynamical
transmission model by Keeling and Gilligan (16) and applied
to data_in the work by Stenseth et al. (6). It is given by
Ry = \/ﬂRKF(l —e~%R) /dp, where fg is the transmission rate
from fleas to rodents, Ky is the rodents’ carrying capacity, Kr is
the fleas’ carrying capacity per rodent, a is the flea-searching
efficiency, and 1/dr is the expected length of the infectious pe-
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riod; the term (1 —e~%®) is the probability of fleas searching
successfully for a new rodent host.

On this basis, the first threshold quantity, R, is then given by
Regt = \/PrBi(1 —e~R) /dp. In other words, R is defined as
the product of the following three terms: (i) the density-adjusted
transmissibility of the bacterium, (ii) the probability of the vector
finding a new primary rodent host, and (iii) the expected length
of the infectious period. The threshold quantity R.s is found,
therefore, to depend on R, and B,. In the statistical model, if the
(lagged) rodent density is above some threshold in the spring
(3.25 gerbils/hectare) and fall (4.94 gerbils/hectare), plague
outbreaks may occur in the wildlife reservoir. Above that
threshold, the infectious-flea force increases with the infectious-
flea force of the previous year and the increase in the infectious-
flea force since the previous season as well as the summer pre-

PNAS | August30,2011 | vol. 108 | no.35 | 14529

ENVIRONMENTAL

SCIENCES


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1015946108/-/DCSupplemental/pnas.201015946SI.pdf?targetid=nameddest=STXT

BEEERENAS - PINAS  PNAS

E

12

o

Higher regime
Lower regime

Observed human cases '
Fitted values 3
Out—of-sample point forecasts |

95% Interval forecasts

10

+ o+ . :
ﬁw"‘ﬁm.‘f’ﬁl. ﬁl&logf iffgsr

- i
Human Plague Cases ~ log(uf') = 5 5 P g
P : c
frp+ ﬁza."‘ By o€y + Bl iffg>r B e
£
. 4
Fleadensity Rodentdesity Fabudn [
. R " 2 -
Summer temperature | | Spring temperature Fall rainfall + Posilive effect
- Negative effect od. .
‘ T T T T T
1950 1960 1970 1980 1990 2000
B C Year
o g P D Upper Regime of Human Model
o &
° %
o
o |
= 9 g | £
] o [} < B2 o o a3
ﬂ o - & E
o € 3
& g o z
£ g | 5
E g = o F]
3 oo o g ° o :
o 4
g 1 ° B £
o - o oo © o g
o o oo o o0 o s 2
oo ® ¢ ® o o ° o aw Dok 0 o ol ¥ - &
T P ) ! T A T T T L T T T T T T
0 " 200 400 600 o P oo 00 600 % 5 A s 5 &
Lag 1 flea density Lag 1 flea density Spring Temperature

Fig. 2. The wildlife-human-plague model for Central Asia. (A) Summary of the analysis of the plague dynamics in human population. Note that the number
of infectious human cases in year t is assumed to be Poisson-distributed with conditional mean p!!. The model formulation is given in Methods. The plus or
minus sign above the parameters refers to a finding of positive or negative effect of the corresponding covariate, respectively. (B) Plot of the observed
number of human plague cases against the threshold variable, namely the lag-1 flea density. The vertical line shows the location of the threshold estimate r.
(C) Plot of the threshold quantity A based on a simulation with 10,000 replications as a function of the lag-1 flea density. The vertical line shows the location of
the threshold estimate 7. The threshold quantity X is defined as the mean of the distribution governing the product cmy of these quantities (Results and
Discussion). (D) The effect of changes in the lag-1 spring temperature on the human outbreaks in the upper regime. Note that the curve illustrates the mean
effect of (lag-1) spring temperature with other covariates set at their mean values. The unit of temperature is degrees Celsius. Open circles are the partial
residuals for lag-1 spring temperature defined as the mean effect of lag-1 spring temperature plus Pearson residuals. (E) Time series plot of the observed
values (gray; O, observations in the lower regime; *, observations in the upper regime) and the fitted values of human plague cases (blue). Out of sample
point and 95% interval forecasts for the number of human plague cases are represented in solid and dashed red lines, respectively. The forecast origin is the

fall season of 1990.

cipitation (Fig. 1). We note that the idea of this threshold
quantity is based on the assumption that fleas and rodents mix
homogeneously and that the main biological process is that of
fleas searching for hosts. One can state that R.¢ > 1 is a neces-
sary condition for outbreaks. It has earlier been shown (15) that
this condition is not sufficient for major outbreaks to occur in the
Kazakhstan wildlife reservoir, because the spatial metapopu-
lation of burrow systems causes percolation-like phenomena,
violating the homogeneous mixing on which the above threshold
concept is based. However, the condition is still necessary, be-
cause outbreaks start with local transmission being strong
enough and locally homogeneous mixing can be a good ap-
proximation, even in case of a metapopulation. Furthermore, the
threshold quantity describes threshold behavior in the classic sense
in that a steady state of a dynamical system changes stability when
the value of the quantity passes the threshold. We show next that
the condition R.¢ > 1 is also not sufficient for generating major
outbreaks in the human population by spillover.

The second threshold for which we observed evidence statis-
tically relates to the spread of plague into the human population.
This threshold phenomenon cannot be explained by an Ry-like
quantity as above. Among other factors, our analysis shows that

14530 | www.pnas.org/cgi/doi/10.1073/pnas.1015946108

the lagged flea density plays an important role in determining
the dynamics of the system. We refer to a possible threshold
quantity governing these dynamics as A, which is described and
reported here. The transmission process from wildlife reservoirs
to humans is not fully understood; however, it is likely to be
primarily a stochastic process and not the result of homogeneous
mixing between humans and the wildlife reservoir. It is, there-
fore, not yet possible to propose a dynamic transmission model
for the human exposure process from which to derive a quantity
that possibly governs the stability of steady states in such
a model. Theoretical work is certainly needed on the nature of
this second threshold. It is our hope that our statistically based
modeling study will stimulate such theoretical work.

We can, however, investigate what such a quantity could look
like by a heuristic bottom-up approach to human exposure that
can guide more fundamental future modeling. Instead of taking
fleas or rodents as our starting point, we start from contacts by
humans with the natural system. We concentrate on the flea route
of transmission to humans. Let ¢ be the stochastic number of
lifetime contacts that a random susceptible human has to the
rodent/flea natural system. Let ¢ have a negative binomial distri-
bution, with parameters 1 and 0.002, because most people have no

Samia et al.
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contacts at all in present day and only a few people will have
relatively many contacts (SI Text). Let, furthermore, m be the
number of fleas that jump to a human given a contact and suc-
cessfully transmit; m is assumed to have a Poisson distribution
with a mean of the average number of fleas per rodent in the
system, which depends on the flea density. Finally, let y be the
prevalence of infected rodents in the system, where we assume
that all fleas on an infected rodent are infective. Although a sim-
plification, it is probably not far from true for septisemic gerbils
when considering transmission by unblocked fleas (i.e., without
latency period) (7). We define A as the mean of the distribution
governing the product cmy of these quantities. We obtain a value
for A by doing simulations using the different distributions based
on the observed rodent prevalence and the observed flea to rodent
ratios, all with a lag of 1 y. In Fig. 2C, we show a plot of A based on
a simulation with 10,000 replications as a function of the lag-1 flea
density. The mean A seems to be a suitable threshold quantity for
spillover to humans. If its value is smaller than one, then we expect
a minor sporadic number of human cases; if its value is larger than
one, we expect major human outbreaks. There is a good corre-
spondence with the statistically observed threshold phenomenon.
This finding is to be expected, because A depends on the lag-1 flea
density. The epidemiological reasoning underlying A, however,
and the fact that its interpretation yields a natural threshold (both
in contrast to the lag-1 flea density by itself) lead us to expect that
a possible mechanistic threshold quantity, to be derived from
a dynamic model describing the process of transmission to
humans, will be strongly related to the quantity A.

These results suggest that the spread of plague between rodents
within the reservoir and from rodents to humans requires both
high abundances of rodent hosts and a sufficient number of active
fleas. Plague outbreaks in rodents occur [incurring the force of
infection (17) to be strictly positive] only if the abundance of great
gerbils (at the appropriate time lag) is above the critical threshold,
in which case the force of infection varies with the change in the
infectious-flea force of the previous season and the lag-1 in-
fectious-flea force in addition to some climate variables, which are
displayed in Fig. 14.

The transmission rate to humans is a key determinant of the
corresponding quantity A, generating a threshold-type dynamic in
humans, which is displayed in Fig. 2 A-C. There has to be a suffi-
cient number of viable fleas (fleas ha™") for major human outbreaks
to occur, which is shown in Fig. 2 B and C. In particular, high hu-
man transmission rates are predicted in the year after a high flea
burden and a high infectious-flea force along with environmental
conditions favorable for plague. Considering the full plague—
wildlife-human system, R.¢ > 1 is a necessary but not sufficient
condition for plague outbreaks in the human population; for out-
breaks to occur, it is also necessary that A > 1. Hence, the rodent
density and flea density (at appropriate time lags) are key threshold
variables that determine when major human outbreaks may occur:
the flea density is, in our analysis, found to be a major threshold
variable in plague transmission to humans. The transmission of the
disease to humans is, in fact, delayed by 1y, which is indicated by
the lag of the threshold variable (i.e., the lag-1 flea density) relative
to its invasion of the reservoir.

Environmental factors affect the plague system at many levels
(1, 5, 6), several of which are related to the effects of tempera-
ture and humidity on the reproduction and survival of hosts and
vectors. Above the flea threshold, we find lag-1 spring temper-
ature to be positively related to human plague cases, consistent
with earlier findings that this relationship increases plague
prevalence in gerbils (6). Below the flea threshold, warmer
summers and wetter falls (at lag-1) decrease the probability of
human infections. High summer temperatures are known to be
detrimental to flea populations (6, 18). Precipitation in the fall
might affect the quality of the burrows and the capacity for the
rodents to keep warm in a wet and cold environment; under such
conditions, the activity of the rodents may be suppressed (the
rodents stay inside their burrows), and therefore, the chance of
spreading the plague between burrow colonies is decreased.

Samia et al.

The large-scale wildlife reservoir dynamics are dominated by
several interlinked factors. The rodent population growth rate
decays exponentially with the lag-1.5 flea density in the spring
season and the lag-2 flea density in the fall season (being consis-
tent with our earlier finding) (6); the upper regime of the change
in the infectious-flea force model shows that an increase in the
lag-1 infectious-flea force corresponds, in both seasons, to an in-
crease in the current infectious-flea force when all other things
are equal.

Our analysis suggests that summer precipitation plays a key
role in the dynamics: it is positively linked with the fall flea
burden, the change in the infectious-flea force in the upper re-
gime of the fall season, and ultimately, the infectious-flea force
in the upper regime of the fall (Fig. 1C). From Table 1, with
other things being equal and when the lag-1 flea density is above
the threshold, increasing the lag-1 spring temperature is associ-
ated with an increase in the human plague outbreaks (Fig. 2D).
In fact, a 1 °C increase in lag-1 spring temperature during the
study period increases the human outbreaks in the upper regime
from an average of 2.82 to 4.59, a 63% increase. However, the
climatic effects on the human plague outbreaks in the upper
regime are amplified with the lag-1 infectious-flea force, which is
positively affected by the summer rainfall. The model predicts
that, in the upper regime, a 10% increase in infectious-flea force
and a 1 °C increase in spring temperature (in the preceding year)
would boost the human outbreaks from an average of 2.82 to
4.99, a 77% increase.

We assessed the empirical forecasting performance of the full
ecoepidemiological model by fitting the model to the data from
1949 to 1990 and computing biannually the out of sample point
forecasts in the rodent-flea—plague model (Fig. S6), conditional
on which we compute the point forecasts and the 95% interval
forecasts for the number of human plague cases from 1991 to
2003. The forecasts obtained (Fig. 2E) track the observed
number of plague cases that are all within the 95% interval
forecasts closely, except for the years 1998 and 1999; the reasons
for the discrepancy are unclear.

By bringing together data on the dynamics of the full eco-
epidemiological plague system, we have shown that the close link
between the wildlife reservoir and the human population makes
understanding the dynamics of the human component impossible
in isolation from the dynamics of the plague within the reservoir.
If we are to reduce the chances of a human plague outbreak, we
will need to focus on the reservoir dynamics and the link between
the reservoir and the human population. Hence, establishing
close links between veterinary and human medicine, together
with environmental scientists, is essential as is studying more
closely the mechanisms involved in the human exposure process.

Methods

Statistical Modeling. Seasonal wildlife reservoir model. Both the original and the
log-transformed rodent densities are highly skewed. Hence, we investigate
the seasonal behavior of the rodent population growth rate that is denoted
by Gy, where G; = log(R¢/R; _ 1) and R; is the rodent density averaged across
all sites at time t. Simultaneously, we explore the seasonal dynamic behavior
of the fleas depicted by the flea burden and the number of free infectious
fleas that are searching for a host. The flea burden, denoted by B;, is mea-
sured by B; = log(F¢/R;), where F. is the flea density averaged across all sites at
time t. The number of seasonal free infectious fleas that are searching for
a host is denoted by /; and computed as the product of the flea density and
the prevalence of plague in rodents averaged across sites. We refer to /; as
the infectious-flea force.

We consider the following statistical model that investigates the seasonal
dynamic behavior of both the rodents and fleas. Let the sub- and superscripts
s and f refer to the spring and fall seasons, respectively. Using a similar
approach as the approach used by Stenseth et al. (6) and Samia et al. (19)
(Fig. S1A), we investigate a model in which the infectious-flea force /; is
a degenerate random variable such that /; = 0 if t is spring and the lag-F
rodent density, namely R; _ 7, is below the spring threshold z° and I, = 0 if tis
fall and the lag-/” rodent density, namely R, _ /, is below the fall threshold z".
The delay parameters F and /” and the threshold parameters z* and z" are
specified separately for the two seasons, and then, using a similar approach

PNAS | August30,2011 | vol. 108 | no.35 | 14531

ENVIRONMENTAL
SCIENCES


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1015946108/-/DCSupplemental/pnas.201015946SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1015946108/-/DCSupplemental/pnas.201015946SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1015946108/-/DCSupplemental/pnas.201015946SI.pdf?targetid=nameddest=SF1

as the works by Stenseth et al. (6) and Samia et al. (19), we establish that
a model incorporating these thresholds is better than alternatives lacking
a threshold or using the same threshold in spring and fall (results of the
bootstrap tests are given in S/ Text). Otherwise, in the upper regime (i.e.,
when the threshold variable R; _ / is above the threshold parameter ¥, where
j = s for spring and j = f for fall), the infectious-flea force I, is highly skewed,
and hence, we instead model a measure of the change in free infected fleas
given by J; = log(1 + Iy) — log(1 + I+ _ 4), referred to as the change in
infectious-flea force, where one is added inside the logarithm because the
infectious-flea force I; can be zero. Then, in the upper regime for both
seasons, the conditional distribution of (Gts, Gef, Bes Bere Tts Jef) inyear tis
multivariate normal with mean (uf, u%;, ul,, ut,, uf;, ul;) and variance-
covariance matrix . The sub- and superscripts G, B, and J refer to the ro-
dent growth rate, flea burden, and change in infectious-flea force models,
respectively. The structure of the variance—covariance matrix £ is used to
model possible heteroscedasticity and dependence among the observations
(i.e., the diagonal entries of are %, i=1, ..., 6, where the %, i=1, ..., 6 are
not necessarily equal and the off-diagonal entries of £ are not necessarily
zero) (SI Text). Note that if, for example, the infectious-flea force in the
spring season is in the lower regime, the variance-covariance matrix of
the conditional distribution would have dimension reduced by one (i.e., the
number of seasons in the lower regime). The serial correlation structures in
the variance—covariance matrix that we considered are the general, com-
pound symmetry, and autoregressive moving average structures (20).

Fig. S1B shows that the rodent growth rate decays exponentially with
the flea density at different lags. Hence, we model the seasonal condi-
tional means of the rodent growth rate nonlinearly as follows:
S = Frexp(B5Fe_as) + p5XG and uf; = Blexp(BiFe_qr) + pE XL, where Fi _
and F; _ 4 are the lagged flea density for the spring and fall seasons, re-
spectively. The vector of covariates X and X{ are season-specific. The delay
parameters d® and df are assumed to be season-specific and unknown; thus,
they need to be estimated. The prime superscript signifies the transpose of
the given vector.

Furthermore, we define the conditional means of the flea burden and
the change in infectious-flea force models to be uf; =y*'Y;, uf, = y"'Y{,
s =" Wi, ifRe_p 225, and ] . = o W], if R,_jr 2 2. The covariates Y}, j=s5,
f in the flea burden model and W4, j =s,f in the change in infectious-flea
force model are assumed to be season-specific.

Figs. 1A and 2A summarize the results of our analysis for year t ranging
from 1949 to 1990. Using a similar approach as in the works of Stenseth et al.
(6) and Samia et al. (19), we estimate the delay parameters F and to be 1.5
and 2y, respectively, and the threshold parameters z° and z' to be 3.25 and
4.94, respectively (the two numbers being significantly different) (S/ Text). Fig.
1A summarizes the results of our analysis, where R} is the summer rainfall at
time t. The subscript t — 0.5 refers to the previous season [i.e., if the response is
in the spring (fall) of year t, then t — 0.5 refers to the fall of last year (spring of
current year)]. The subscripts t — 1, t — 1.5, and t — 2 are similarly defined.
Table 1 summarizes the maximum likelihood estimates of the parameters in
the model along with their asymptotic SEs and asymptotic 95% confidence
intervals. Model diagnostics are discussed in S/ Text and in Figs. S2-54.
Human-plague model. \We model the number of human plague cases in
Kazakhstan using the newly introduced and developed generalized threshold
model (GTM) in the work by Samia and Chan (11). Let H; be the number of
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infectious human cases in year t. Then, conditional on the vector covariate
process {Xi}, H; is assumed to be an independent Poisson random variable
with a conditional mean x{" given by (Eq. 1)

BiXe i oy <r
A\ t—d
log(yy") = {/jzfxt, if 'ﬁt—d >r, [11

where X; is a p-dimensional vector of covariates that consists of the
threshold variable #. and its lags as well as some other covariates and their
lags. The vector covariate X; may also contain lags of the response variable.
The regression parameters are such that p; # 2, with p; and B, being p x 1
vectors. The parameter r is known as the threshold, and d is a nonnegative
integer referred to as the delay or threshold lag. The analysis of the above
model, referred to as a GTM, is conditional on the observed X values (11).

Our analysis is done by pooling information across all sites in the monitoring
area and across all seasons (i.e., spring and fall seasons). Plague spread requires
both a high abundance of hosts and a sufficient number of active fleas as
vectors transmitting plague bacteria between hosts (6). Under this assump-
tion, the threshold variable used in the model is the (lagged) flea density £, _
ginyear t —d, which is defined as the seasonal flea density averaged across all
sites and then minimized across seasons (Table S2). The threshold variable
considered in the GTM model is a measure of free fleas that are searching for
a host. Let 4, be a measure of the potential (annual) infectious-flea force to
humans in year t, computed as the product of flea density and prevalence of
plague in rodents, averaged across all sites and then maximized across sea-
sons. Note that 4 quantifies the number of infected fleas that could feed on
and infecta human host (16, 21). Let C; be a measure of the flea burden in year
t, computed as the ratio of the flea density divided by the rodent density,
averaged across all sites and then maximized across seasons. Let D; be the
density of the great gerbils in year t averaged across all sites and then max-
imized across seasons. Then, conditional on the vector covariate process {X4},
the number of infectious human cases H; is assumed to be an independent
Poisson random variable with a conditional mean ¥ given by Fig. 2A on the
log scale, where T;” is the spring temperature, TV is the summer temperature,
and RP is the fall rainfall.

Fig. 2A summarizes the results of this analysis. The parameters, including
the threshold parameter, were estimated by a likelihood-based approach.
Table 1 summarizes the maximum likelihood estimates of the GTM defined
in Fig. 2A. Note that the delay parameter d is estimated to be 1y and that
the threshold parameter r is estimated to be 148.71 using a grid search
between the 10th and 90th percentiles of #,_;. Fig. 2B plots the number of
infectious human plague cases vs. the threshold variable, namely the lag-1
flea density. The vertical line shows the location of the threshold estimate.
Model diagnostics are discussed in S/ Text and Fig. S5.
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