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ABSTRACT

MicroRNAs (miRNAs) are important regulators of
eukaryotic gene expression in most biological
processes. They act by guiding the RNAi-induced
silencing complex (RISC) to partially complementary
sequences in target mRNAs to suppress gene ex-
pression by a combination of translation inhibition
and mRNA decay. The commonly accepted mech-
anism of miRNA targeting in animals involves an
interaction between the 5-end of the miRNA called
the ‘seed region’ and the 3 untranslated region
(3'-UTR) of the mRNA. Many target prediction algo-
rithms are based around such a model, though
increasing evidence demonstrates that targeting
can also be mediated through sites other than the
3'-UTR and that seed region base pairing is not
always required. The power and validity of such in
silico data can be therefore hindered by the
simplified rules used to represent targeting inter-
actions. Experimentation is essential to identify
genuine miRNA targets, however many experimen-
tal modalities exist and their limitations need to be
understood. This review summarizes and critiques
the existing experimental techniques for miRNA
target identification.

INTRODUCTION

MicroRNAs (miRNAs) control gene expression post-
transcriptionally by binding to complementary sequences
in target mRNAs, thereby guiding the effector proteins of
RNA.i-induced silencing complex (RISC) into close prox-
imity with the mRNA. Complete complementarity
between miRNA:mRNA pairs is rare in mammals, but
as little as a 6 bp match with the target mRNA can be
sufficient to suppress gene expression (1-4). With the ex-
ception of a handful of miRNAs reported to increase

expression of a target gene (5,6), miRNAs repress gene
expression by a combination of mRNA degradation and
translation inhibition. They can promote mRNA degrad-
ation by either of two mechanisms: direct Argonaute2-
catalysed endonucleolytic cleavage of the target (7-10),
or deadenylation and exonucleolytic attack, which is the
predominant mechanism for miRNA activity in mammals
(11). Direct cleavage by Argonaute2 only occurs when
there is near perfect complementarity between the
miRNA and target mRNA (12), a situation that occurs
much more frequently in plants (13) than in mammals
(10,14,15). For a detailed review of miRNA mechanisms
of actions see Krol et al. (16).

The mechanism by which miRNA sequence comple-
mentarity conveys functional binding to mRNA targets
has been studied at length, providing rules for miRNA
target prediction algorithms. One commonly accepted
rule is that the 5 region of a miRNA from nucleotides
2 to 8 (known as the ‘seed’ region) has particular import-
ance in targeting, as demonstrated by numerous biochem-
ical and structural findings (17). The seed region is the
most evolutionarily conserved region of miRNAs (1,18),
it is the region that is most frequently complementary to
target sites in 3’ untranslated region (3’-UTRs) (19) and in
many instances a seed match alone is sufficient to confer
mRNA recognition (1,2,20,21). Despite the importance of
the seed region, the 3’-end of a miRNA also contributes to
effective binding in roughly 2% of all preferentially
conserved sites (22,23). Furthermore, some validated
miRNA target sites do not have a complete seed match
but instead exhibit 11-12 continuous base pairs in the
central region of the miRNA (15). As new experimental
data like this come to hand the accepted modes of miRNA
targeting are expanded, although prediction programs
may not incorporate all these experimentally derived
possibilities. For example the three most commonly used
bioinformatic target prediction tools Targetscan,
miRanda and PicTar search for miRNA targets exclusive-
ly in mRNA 3’-UTRs and do not incorporate evidence of
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functional targeting within the 5-UTR and protein coding
region (22,24-26). Also, most algorithms do not adjust
predictions for the co-expression of miRNA and target
which is proposed to be an effective way of improving
predictions (27).

The various miRNA target prediction programs, which
use different rules of targeting, produce rather different
lists of predicted targets. Differences can arise from the
source of 3’-UTR sequences; Targetscan uses the Ensembl
database to define 3’-UTRs (28), whereas miRanda uses
the University of California Santa Cruz (UCSC) database
(29). This alone manifests in major differences between
prediction outcomes. Nevertheless, if the Targetscan algo-
rithm is applied to the two separate 3-UTR databases
only a 47% overlap of predicted targets is observed.
Similarly if the miRanda algorithm is applied to both
3’-UTR databases separately only a 65% overlap is ob-
served (27). With the identification of genuine miRNA
targets lacking a complete 6-mer match (15,30-32) and
the further complications of RNA structure and
RNA-binding proteins affecting site accessibility (33,34),
many predictions may not be bona fide targets and many
genuine targets can be missed (35). Accordingly, the false
positive rate of prediction programs has been variously
calculated to be 24-70% (36-40). This underscores the
requirement for experimental data to demonstrate genuine
miRNA targets and miRNA function.

GENE-SPECIFIC EXPERIMENTAL VALIDATION OF
miRNA TARGETS

Gene-specific experimental validation with the well-
established techniques of qRT-PCR, luciferase reporter
assays and western blot are commonly used to indicate in-
dividual miRNA:mRNA interactions. For a detailed
review of methods for the experimental validation of spe-
cific miRNA targets refer to Kuhn ez al. (41). Generally,
the downstream effects of differential miRNA expression
are observed at the protein level by western blot and at the
mRNA level by qRT-PCR, although these measures will
not distinguish between direct and secondary miRNA
targets. Reporter assays have been employed extensively
to demonstrate a direct link whereby expression of a
luciferase reporter—3’-UTR construct will be altered
through manipulation of a regulatory miRNA. Direct
miRNA effects are demonstrated by the loss of regulation
in constructs with mutated miRNA target sites. The dis-
advantages of reporter assays are that they are labour in-
tensive, dependent upon the region chosen for cloning and
can be sensitive to variances in protocol such as the
method of transfection or promoter identity (42—44).

In the specific circumstance where a miRNA target is
directly cleaved, RNA ligase mediated—5" rapid identifi-
cation of cDNA ends (5 RLM-RACE) may be used to
confirm such targeting. Briefly 5 RLM-RACE is a PCR-
based technique, whereby an RNA adapter is ligated to
the free 5’ phosphate of an uncapped mRNA produced
from, among other nucleolytic activities, Argonaute2-
directed mRNA cleavage. The ligation product can be
reverse transcribed using a forward primer directed

against the linker and a gene specific reverse primer
which is subsequently PCR amplified, cloned and identi-
fied by sequencing. 5 RLM-RACE has been used to
support direct cleavage of HOXB8 by miR-196 in the
mouse embryo (45), validate parallel analysis of RNA
ends (PARE) results in mammals (10,14,15), and has
been employed extensively to validate products of
RISC-mediated cleavage in plants (46).

EXPERIMENTAL miRNA TARGET SCREENING
TECHNIQUES

Demonstrating individual miRNA:mRNA interactions
misses the capacity for miRNAs to regulate complex
gene networks. Uncovering networks requires large scale
and unbiased methods of miRNA target identification. To
date, the majority of large-scale miRNA target identifica-
tion experiments involve differential expression of a single
miRNA followed by downstream gene-expression or
proteomic analysis. Most commonly, differential expres-
sion is attained by exogenous expression of a miRNA,
however inhibition of an endogenous miRNA is also
possible. Over-expression can be achieved by transient
transfection of a synthetic miRNA precursor or by
stable introduction, typically with a lentiviral vector, of
a miRNA expression construct. miRNA inhibition can
be achieved by expressing modified antisense oligonucleo-
tides able to bind mature miRNAs and block their activity.
There are a variety of miRNA silencing chemistries
including anti-miRs (47,48), antagomiRs (49), miRNA
sponges (50) and TuD (tough decoy) constructs (51).

Caveats of miRINA over-expression

Despite widespread use, miRNA over-expression experi-
ments are subject to a degree of scepticism for their po-
tential to generate false positive results brought about
through the supraphysiological increase in miRNA levels
generally achieved after transient transfection (52).
Although much of the transfected pre-miR may not be
incorporated into RISC complexes to be functionally
active, this may still be considerably greater increase than
the 20-30% range by which many endogenous miRNAs
fluctuate to modulate gene expression (53). Such
exaggerated miRNA over-expression can potentially satur-
ate RISC complexes and displace other endogenous
miRNAs (54) and consequently cause low affinity target
sites to appear functionally important. The use of miRNA
mimics is a common approach to transiently over-express
miRNAs, however it bypasses the natural mechanism of
miRNA biosynthesis, whereby a transcribed pri-miRNA
is processed by Dicer and Drosha to form the
miRNA:miRNA* duplex. Instead mimics are typically
chemically synthesized duplexes that are designed with
the aim of activation of only one miRNA strand. The
passenger strand will not necessarily be equivalent to the
natural miRNA* form, but the potential still exists for this
strand to be incorporated into RISC and mediate
off-target effects. Another consideration is that over-
expression experiments are commonly performed in a
cell environment that is artificial to the chosen miRNA,



in which case cell-specific natural targets may be missed,
while other targets not normally co-expressed with the
miRNA are detected. For example several studies over-
express brain specific miR-124 in ovarian cancer (HeLa)
cells (24,26,55).

The inherent problems of over-expression may be
avoided by using miRNA silencing to achieve differential
expression of a miRNA within physiological limits.
However, miRNA silencing by antisense oligonucleotides
is limited by being only as specific as the inhibitor used.
For example, this approach may not be selective enough
to distinguish between members of the same miRNA
family with similar sequences. Additionally, antisense
oligonucleotides may sequester endogenous miRNAs
without aiding their decay. This means that miRNA quan-
titation by qRT-PCR will not measure a decrease in
miRNA levels following miRNA inhibition, making it dif-
ficult to determine the silencing efficiency. When miRNA
inhibition and over-expression strategies are compared, as
has been performed with cartilage-specific miR-140, the
changes in miRNA abundance after inhibition were not
as great as in a separate over-expression model, though
the mRNA targets identified are theoretically more
biologically relevant (56).

Gene expression analysis

Degradation of target mRNAs following ectopic miRNA
expression is observable on a genome-wide scale by micro-
array analysis. The first reported use of this strategy
demonstrated that following the transfection of miR-1
or miR-124 mimics into HelLa cells, more than 100
mRNAs were down-regulated in each case. Supporting
direct targeting of many of these genes, a 3’-UTR motif
search revealed the 6 nt consensus sequences matching the
seed regions of miR-1 (CAUUCC) and miR-124 (GUGC
CU) were present in 88 and 76% of down-regulated genes,
respectively. When the same experiment was performed
with a miR-124 mimic with a mutated seed region, the
down-regulated genes were not enriched for miR-124
seed matches (26). Since then, similar results have been
observed in multiple cellular contexts with other
miRNAs (22,26,57,58). Technical advances in next-
generation sequencing technology have now enabled the
use of RNA-seq as an alternative to microarray gene ex-
pression analysis, allowing a deeper analysis to provide a
larger list of inferred miRNA targets in comparable
over-expression studies (59).

The limitation of using differential gene expression to
identify miRNA targets is that they are observed amongst
a pool of indirect changes in transcript abundance. This
may assist in describing the predominate genes and
pathways affected by a miRNA but does not distinguish
between direct targets. Seed matches provide one way of
enriching for direct miRINA targets over secondary effects,
and bioinformatic tools for mining miRNA targets across
large-scale gene expression studies have been developed
(60). Nevertheless, identifying direct targets remains prob-
lematic given the modest effect on levels of some target
mRNAs and the fact some miRNA targeting occurs pre-
dominantly at the level of translational repression (26).
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Despite this, the use of gene expression analysis to find
miRNA targets is endorsed by a recent report in which at
least 84% of miRNA mediated repression was attributable
to decreased mRNA abundance (61).

Immunoprecipitation of RISC components

Biochemical approaches have been developed to aid the
identification of direct miRNA targets. miRNA:mRNA
target pairs can be purified by the immunoprecipitation
of the RISC components, Argonaute (AGO)
(24,25,38,57,62,63) or TNRC6 (63). Target mRNAs
undergoing direct regulation are co-immunoprecipitated
along with RISC and identified by microarray or deep
sequencing. Argonaute co-immunoprecipitation has been
applied to identify targets of the well studied miRNAs
miR-1 and miR-124 (25,57). In these examples an exogen-
ous, epitope-tagged Argonaute (AGO2 or AGO1) was ex-
pressed in HeLa or HEK-293 T cells together with miR-1
or miR-124, then immunoprecipitated using an antibody
against the epitope tag. Precipitates were analysed by
microarray in comparison to a mock sample. Illustrating
the success of the technique, mRNAs co-immunopre-
cipitated with Argonaute from cells with ectopic miRNA
expression were enriched for seed sequences, with 70% of
the miR-1 targets and 75% of the miR-124 targets having
a 6-mer seed sequence. This degree of enrichment was
highly significant over what would be expected by
chance (25). Similar Argonaute immunoprecipitation
methods have been performed in different cell contexts,
including using a hemagglutinin (HA)-tagged AGOI in
Drosophila Melanogaster Schneider SL2 (S2) cells (38)
and co-immunoprecipitation of endogenous AGO from
HEK?293 (62), and from mouse cardiac muscle (64).
Unlike global gene expression analysis experiments with
miRNA over-expression, capturing active miRNA:
mRNA target pairs allows identification of mRNAs
regulated at both the level of degradation and translational
repression.

One potential drawback of the Argonaute co-immuno-
precipitation approach is that it may not necessarily reflect
in vivo interactions between molecules if interactions
between RNA and RNA-binding proteins occur subse-
quent to cell lysis (65). This would artificially facilitate
interactions between RNA and proteins that are usually
segregated by cellular compartments. In addition, this
methodology relies upon a sufficiently stable interaction
between the miRNA-mRNA target and the AGO
proteins to survive the co-immunoprecipitation process.
While the above reports were clearly successful in target
enrichment, the potential for loss of targets during this
process is uncertain.

High-throughput sequencing of RNA isolated by
crosslinking immunoprecipitation

To ensure co-immunoprecipitation reflects cellular inter-
actions, an advancement on the above-mentioned tech-
nique utilizes ultraviolet irradiation to crosslink RNA to
associated RNA-binding proteins prior to immunopre-
cipitation, followed by deep sequencing to comprehensive-
ly identify bound RNAs (Figure 1). This technique
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Figure 1. Argonaute high throughput sequencing of cross-linking immunoprecipitation (HITS-CLIP) protocol, also known as CLIP-seq.

[alternately known as high-throughput sequencing of RNA
isolated by crosslinking immunoprecipitation (HITS-CLIP),
or crosslinking immunoprecipitation (CLIP)-seq] was first
applied to mouse brain (24) and subsequently to
Caenorhabditis elegans (66) to identify AGO-bound
miRNA:mRNA complexes. These analyses have provided
compelling data on the location of miRNA binding sites,
within both the 3-UTR and coding sequence, and
generated genome-wide interaction maps for both exogen-
ously expressed miR-124 and general endogenous miRNA
targeting (24). Performing HITS-CLIP on cells with and
without treatment with specific miRNA antisense inhibi-
tors is likely to provide a powerful method for identifica-
tion of specific miRNA targets.

HITS-CLIP is a powerful technique capable of
providing an extensive insight to the location of miRNA
targeting within an mRNA. However, it has been criticized
for being limited by the low efficiency of UV 254 nm RNA-
protein crosslinking (63). Furthermore HITS-CLIP reads
do not precisely pinpoint the position of crosslinking
between the RNA and protein (63), and thus can only
identify a targeted region (~100-nt) as opposed to a
specific target site. Many sites identified by HITS-CLIP
have been validated (24,66), however it is not clear what
percentage of clusters represent genuine target sites.

Photoactivatable-ribonucleoside-enhanced crosslinking and
immunoprecipitation

A modified crosslinking immunoprecipitation method
for isolating  protein-associated RNAs, termed
photoactivatable-ribonucleoside-enhanced  crosslinking
and immunoprecipitation (PAR-CLIP) (63), has been de-
veloped to offer more efficient UV crosslinking by
incubating cultured cells with a photoactivatable nucleo-
side such as 4-thiouridine. This improves RNA recovery
by 100- to 1000-fold compared to the HITS-CLIP meth-
odology previously described and also is capable of iden-
tifying the location of the crosslink and thus more
precisely indicate the site of targeting. This is achieved
because the 4-thiouridine that incorporates into RNA
during co-incubation in cell culture results in thymidine
(T) to cytidine (C) transitions more frequently in

cross-linked than non-cross-linked sites, thereby marking
sites of direct interaction (63).

In one study by Hafner et al. (63), PAR-CLIP was per-
formed using epitope tagged Argonaute family members
(AGO 1-4) expressed in HEK293T cells. The most signifi-
cantly enriched 7-mer motifs identified in co-immuno-
precipitated RNA corresponded to the seed sequences of
the most abundant miRNAs which were generally pos-
itioned 1-2nt downstream of the predominant cross-
linking site. This places the site of crosslinking near the
centre of the AGO-miRNA-mRNA complex and illus-
trates the capacity for using T-C transitions in sequenced
DNA to more specifically hone in on miRNA:mRNA
interaction sites. Comparable to HITS-CLIP data from
the Darnell lab (24), 46% of miRNA binding sites were
mapped to 3-UTRs, 50% to the mRNA coding region
and 4% to 5'-UTRs. Target sites were validated by inhibit-
ing the 25 most highly expressed miRNAs using 2'-O-
methyl-modified antisense oligoribonucleotides followed
by microarray gene expression analysis. mRNAs with
miRNA binding sites were more likely to be up-regulated
after miRNA silencing, with up-regulation being most
frequent when these sites were located within 3'-UTRs.

PAR-CLIP of the TNRC6 family, another RISC com-
ponent (63), gave reads of which >50% were within 25 nt
of Argonaute crosslinked sites, demonstrating mRNA
targets are in sufficiently close proximity to both RISC
components to undergo UV crosslinking. PAR-CLIP of
Argonaute was more efficient than TNRC6, yielding 4000
clusters compared to 600.

Biotin tagged miRNA

In another biochemical approach to enrich for miRNA
targets, Orom and Lund (67) transfected cells with
biotinylated miRNA duplexes and captured miRNA:
mRNA complexes from cell lysates using streptavidin
beads. This technique has been applied in both
Drosophila and mammalian cell lines to independently
demonstrate previously-defined targets of the miRNAs
bantam and miR-124a. In the case of miR-124a, the tech-
nique enriched the known target LAMCI1 roughly 5-fold
compared to a control miRNA, and >100-fold compared



to mock-transfected cells (68). Microarray analysis from
the immunoprecpipitation of biotin tagged miR-10a from
mouse E14 embryonic stem cells showed a significant en-
richment of mRNAs encoding ribosomal proteins. It was
further reported that miR-10a targets ribosomal mRNAs
within their 5-UTR to increase translation (68). A poten-
tial advantage of this technique over the immunopre-
cipitation of RISC components is that in principal it can
specifically pull down targets of a single miRNA, although
the caveats of miRNA over-expression that we discuss
above need be considered. It is not known what affect
the biotin tag has on miRNA binding and the ability of
this technique to comprehensively identify true miRNA
targets has yet to be fully demonstrated.

Detection of direct cleavage targets

Parallel analysis of RNA ends (PARE) identifies mRNA
cleavage products on a global scale by high-throughput
sequencing of products from a modified 5 RNA ligase
mediated-rapid amplification of cDNA ends (5
RLM-RACE) procedure. This takes advantage of the
free 5-monophosphate remaining on the 3’ fragment
after Argonaute-mediated cleavage, to which an RNA
adaptor can be ligated without additional chemical modi-
fication (Figure 2). Subsequent reverse transcription and
PCR amplification then enriches these products, prior to
deep sequencing and genomic mapping. PARE, also
known as degradome-seq or genome-wide mapping of
uncapped transcripts (GMUCT) (69,70), has been used
to identify widespread mRINA cleavage events regulated
by miRNAs in Arabidopsis (13,71), rice (72) and limited
cleavages in mammals (10,14,15). Because extensive base
pairing between miRNAs and mRNAs leading to direct
RISC-mediated cleavage does not appear to be a major
mechanism of miRNA activity in mammals, the use of
PARE is most suited to plant systems, where it identifies
the large subset of miRNA targets that are subject to
direct cleavage (73).

Reverse transcription of targets

In a method for detecting miRNA-mRNA complexes de-
veloped by Vatolin and colleagues (74), endogenous
miRNAs are used as primers for cDNA synthesis of
target mRNAs. Because miRNAs bind their mRNA
target within the RISC, a strong detergent is used to dis-
associate these proteins to allow reverse transcriptase to
bind and synthesize cDNA. The cDNA can then be cloned
and sequenced to identify the bound mRNA. This method
has thus far only been applied to C. elegans, where it suc-
cessfully identified the well established interaction between
the miRNA /in-4 and /lin-14 as well as showing a novel
interaction between let-7 and its target K10C3.4 (75).

Proteomic approaches

Stable isotope labelling with amino acids in cell
culture. Stable isotope labelling with amino acids in cell
culture (SILAC) is a high-throughput method for quanti-
tative proteomics in which relative protein abundance is
measured by mass spectrometry of samples labelled with
different isotopes. Because a significant degree of miRNA
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activity is mediated at the level of translation (40), prote-
omic approaches have an inherent advantage of assaying
the ultimate effect of miRNAs. SILAC has been previous-
ly applied to measure the effect of an over-expressed
miRNA on the proteome by comparing miRNA-
transfected to mock-transfected cells. For example,
SILAC of HeLa cells transfected with miR-1 revealed
the repression of 12 proteins (from a set of 504 detected
proteins) for which there was a significant enrichment of
miR-1 seed sequence sites (55). Proteomic investigations
are more limited in their depth of coverage than other
gene expression strategies, but as technologies improve
this should become less problematic. Indeed, subsequent
uses of SILAC have demonstrated that single miRNAs are
capable of repressing the production of hundreds of
proteins (39,40), directly or indirectly. Using SILAC to
identify targets of miR-143, Yang and colleague’s (76)
compared miR-143 mimic- to control-transfected
MiaPaCa2 pancreatic cancer cells. They identified over
1200 proteins of which 93 were down-regulated more
than 2-fold. Luciferase reporter assays of 34 of these
showed that 10 were likely direct miR-143 targets.

Two-dimensional differentiation in-gel
electrophoresis. Two-dimensional differentiation in-gel
electrophoresis (2D-DIGE) profiling is another proteomic
approach that has been applied to the identification of
miRNA targets. It involves electrophoresis on a single
gel of two samples labelled with different fluorescent
dyes, separating the proteins by iso-electric focusing and
SDS-PAGE and then identifying them by mass spectrom-
etry. 2D-DIGE has been applied to the investigation of
miR-21 targets in MCF7 cells treated with anti-miR in-
hibitor of miR-21 (77). Mass spectrometry revealed seven
up-regulated proteins, of which three were validated
by western blot, qRT-PCR and reporter assays. In a
separate study of cells transfected with either a miR-29a
mimic or antisense inhibitor, over 100 differentially
regulated proteins were identified, with fluctuations in
level generally being modest (between 1.2 and 1.7-fold)
(78). Only 14 of these mRNAs contained miR-29a seed
sequences in their 3'-UTR, far less than comparable
gene expression analysis experiments (26).

Translation profiling

The analysis of mRNAs associated with elongating ribo-
somes identifies translationally active mRNAs. In the tech-
nique of ‘polysome profiling’, cyclohexamide is used to
trap elongating ribosomes. Centrifugation through a
sucrose gradient then separates mRNAs with no asso-
ciated ribosomes from those with bound ribosomes which
are presumably undergoing translation. The polysome pro-
file of an mRNA provides information on two key par-
ameters of translation; the fraction of the mRNA species
bound by at least one ribosome (referred to as ribosome
occupancy) and the average number of ribosomes bound
per 100 bases of coding sequence (referred to as ribosome
density) (44). Poly(A)" RNAs from bound and unbound
pools are isolated, amplified, coupled to Cy5 and Cy3
dyes, respectively, and competitively hybridized to DNA
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microarrays. Polysome profiling of HEK-293 T cells with
and without over-expression of miR-124 has been used to
determine the relative contribution of translational repres-
sion and mRNA degradation in mediating miRNA
activity (44). Translation profiles for ~8000 genes were
obtained, revealing around 600 putative miR-124 targets.
In the related method of ‘ribosome profiling’ or
‘ribosome footprinting’, cells are lysed after cyclohexamide
treatment then treated with RNAse I to degrade mRNAs
not protected by ribosomes. The resulting 80 S monosomes
are purified on sucrose gradients and the protected mRNA
fragments identified by high-throughput sequencing.
Ribosome profiling has been applied to HeLa cells trans-
fected with either miR-1, miR-155 or miR-223 (61). By
comparing the effect upon translation determined
through ribosome profiling with changes in mRNA level
obtained by microarray analysis, the authors concluded
that at least 84% of miRNA-mediated repression was at-
tributable to mRNA degradation (61). Although transla-
tional profiling methods do not directly measure protein
levels they provide quantative data at a greater depth
than currently possible by proteomic approaches, giving a
powerful methodology to determine miRNA activity.

FINDING MULTIPLE miRNAs THAT TARGET A
SINGLE mRNA

While a single miRNA can target many genes, multiple
miRNAs can regulate a single gene (79,80), and methods

to comprehensively identify miRNAs that regulate indi-
vidual genes of interest have been developed. In one
approach individual miRNAs are successively transfected
into a cell line that stably expresses a luciferase reporter
containing the 3’-UTR of the target mRNA of interest. In
a study aiming to identify miRNAs targeting p21/Waf,
cells expressing the luciferase-3’-UTR reporter gene were
individually transfected with 266 miRNA mimics that had
been bioinformatically predicted to target p21/Wafl (79).
Of these 266 miRNAs tested, 28 suppressed reporter
activity, including all of the miRNAs previously reported
to target p21/Wafl. Using a similar method, Jiang and
colleagues found that 7 out of 45 miRNAs tested repress
a CyclinD1 3’-UTR luciferase reporter (81).

To identify the miRNAs targeting the transcription
factor Hand2, Vo and colleagues (80) used an affinity
purification method. The 3’-UTR of Hand2 was fused to
an MS2 tag and cloned downstream of a GFP reporter,
which was then transduced into dissociated rat neonatal
cardiomyocytes. Complexes on the chimeric GFP-Hand2-
MS2 mRNA were isolated from cell lysates using an
affinity column containing bound MS2 binding protein,
and the associated miRNAs were identified using multi-
plex PCR miRNA arrays. One of the identified miRNAs
was miR-1, which had previously been found to target
Hand?2, thereby validating the affinity capture approach.
MiR-133a was also identified and its targeting of Hand2
was subsequently verified by mutating miR-133a binding
sites within the Hand2 3’-UTR, which abrogated its



capture by the affinity column. The targeting of Hand2 by
miR-133a was further verified by its effect on Hand2
mRNA and protein levels and in luciferase reporter
experiments.

These techniques can demonstrate instances where a
single gene is targeted by multiple miRNAs. In contrast
to the reporter assay approach, the affinity purification
method has the advantage that it is capable of
demonstrating direct binding, also it does not require fore-
knowledge of potential targeting miRNAs and does not
rely upon miRNA over-expression. A significant finding
was also made possible using the affinity purification
protocol that both miR-1 and miR-133a simultaneously
bind to the Hand2 3’-UTR and synergistically regulate
Hand2 expression. This was tested by co-transfecting
biotinylated miR-1 with the MS2-tagged Hand2 3’-UTR
followed by consecutive affinity purification with the MS2
binding protein column and streptavidin beads. miR-1
and miR-133a were both identified by qRT-PCR (80).
However, both of these techniques are limited to the
region of the mRNA chosen for inclusion in the hybrid
mRNA. Typically this is the 3-UTR, which means
miRNAs targeting the 5-UTR or coding region will not
be identified.

CONCLUSION

Each individual miRNA is likely to down-regulate the
abundance and/or translation of many mRNAs
(26,39,40,61). Compounding the complexity of miRNA
control, multiple miRNAs can act together on individual
mRNAs to produce additive or synergistic effects on
protein production (79,80). Thus, miRNA research will
increasingly focus upon miRNA-regulated networks
(82), in addition to identifying  individual
miRNA:mRNA interactions. Multiple methodologies are
now available to ascertain miRNA targeting, each with
intrinsic strengths and weaknesses as discussed above.
Combining multiple strategies is required to obtain a com-
prehensive high-confidence description of miRNA target-
ing networks.

ACKNOWLEDGEMENTS

We thank members of the Goodall lab for useful
discussion.

FUNDING

This work was supported by grants from the National
Health & Medical Research Council (NHMRC) (to
C.P.B., G.J.G.); the National Breast Cancer Foundation
(Research Fellowship to C.P.B.); the University of
Adelaide (PhD scholarship to D.W.T). Funding for
open access charge: National Health and Medical
Research Council and Cancer Research, South Australia.

Conflict of interest statement. None declared.

Nucleic Acids Research, 2011, Vol. 39, No. 16 6851

REFERENCES

1. Lewis,B.P., Shih,I.H., Jones-Rhoades,M.W., Bartel,D.P. and
Burge,C.B. (2003) Prediction of mammalian microRNA targets.
Cell, 115, 787-798.

2. Doench,J.G. and Sharp,P.A. (2004) Specificity of microRNA
target selection in translational repression. Genes Dev., 18,
504-511.

3. Brennecke,J., Stark,A., Russell,R.B. and Cohen,S.M. (2005)
Principles of microRNA-target recognition. PLoS Biol., 3, e85.

4. Lai,E.C., Tam,B. and Rubin,G.M. (2005) Pervasive regulation of
Drosophila Notch target genes by GY-box-, Brd-box-, and
K-box-class microRNAs. Genes Dev., 19, 1067-1080.

5. Place,R.F., Li,L.C., Pookot,D., Noonan,E.J. and Dahiya,R.
(2008) MicroRNA-373 induces expression of genes with
complementary promoter sequences. Proc. Natl Acad. Sci. USA,
105, 1608-1613.

6. Vasudevan,S., Tong,Y. and Steitz,J.A. (2007) Switching from
repression to activation: microRNAs can up-regulate translation.
Science, 318, 1931-1934.

7. Liu,J., Carmell,M.A., Rivas,F.V., Marsden,C.G., Thomson,J.M.,
Song,J.J., Hammond,S.M., Joshua-Tor,L. and Hannon,G.J. (2004)
Argonaute?2 is the catalytic engine of mammalian RNAI. Science,
305, 1437-1441.

8. Meister,G., Landthaler,M., Patkaniowska,A., Dorsett,Y., Teng,G.
and Tuschl,T. (2004) Human Argonaute2 mediates RNA cleavage
targeted by miRNAs and siRNAs. Mol. Cell, 15, 185-197.

9. Okamura,K., Ishizuka,A., Siomi,H. and Siomi,M.C. (2004)
Distinct roles for Argonaute proteins in small RNA-directed
RNA cleavage pathways. Genes Dev., 18, 1655-1666.

10. Bracken,C.P., Szubert,J.M., Mercer,T.R., Dinger,M.E.,
Thomson,D.W., Mattick,J.S., Michael,M.Z. and Goodall,G.J.
(2011) Global analysis of the mammalian RNA degradome
reveals widespread miRNA-dependent and miRNA-independent
endonucleolytic cleavage. Nucleic Acids Res., doi:10.1093/nar/
gkrl10.

11. Bartel,D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism,
and function. Cell, 116, 281-297.

12. Behm-Ansmant,I., Rehwinkel,J., Doerks,T., Stark,A., Bork,P. and
Izaurralde,E. (2006) mRNA degradation by miRNAs and GW182
requires both CCR4:NOT deadenylase and DCP1:DCP2
decapping complexes. Genes Dev., 20, 1885-1898.

13. German,M.A., Pillay,M., Jeong,D.H., Hetawal,A., Luo,S.,
Janardhanan,P., Kannan,V., Rymarquis,L.A., Nobuta,K.,
German,R. et al. (2008) Global identification of microRNA-target
RNA pairs by parallel analysis of RNA ends. Nat. Biotechnol.,
26, 941-946.

14. Karginov,F.V., Cheloufi,S., Chong, M.M., Stark,A., Smith,A.D.
and Hannon,G.J. (2010) Diverse endonucleolytic cleavage sites in
the mammalian transcriptome depend upon microRNAs, Drosha,
and additional nucleases. Mol. Cell, 38, 781-788.

15. Shin,C., Nam,J.W., Farh,K.K., Chiang,H.R., Shkumatava,A. and
Bartel,D.P. (2010) Expanding the microRNA targeting code:
functional sites with centered pairing. Mol. Cell, 38, 789-802.

16. Krol,J., Loedige,I. and Filipowicz,W. (2010) The widespread
regulation of microRNA biogenesis, function and decay.

Nat. Rev. Genet., 11, 597-610.

17. Jinek,M. and Doudna,J.A. (2009) A three-dimensional view of the
molecular machinery of RNA interference. Nature, 457, 405-412.

18. Lim,L.P., Lau,N.C., Weinstein,E.G., Abdelhakim,A., Yekta,S.,
Rhoades,M.W., Burge,C.B. and Bartel,D.P. (2003) The
microRNAs of Caenorhabditis elegans. Genes Dev., 17, 991-1008.

19. Stark,A., Brennecke,J., Russell,R.B. and Cohen,S.M. (2003)
Identification of drosophila microRNA targets. PLoS Biol., 1,
E60.

20. Lewis,B.P., Burge,C.B. and Bartel,D.P. (2005) Conserved seed
pairing, often flanked by adenosines, indicates that thousands of
human genes are microRNA targets. Cell, 120, 15-20.

21. Krek,A., Grun,D., Poy,M.N., Wolf,R., Rosenberg,L.,
Epstein,E.J., MacMenamin,P., da Piedade,l., Gunsalus,K.C.,
Stoffel,M. et al. (2005) Combinatorial microRNA target
predictions. Nat. Genet., 37, 495-500.

22. Grimson,A., Farh,K.K., Johnston,W.K., Garrett-Engele,P.,
Lim,L.P. and Bartel,D.P. (2007) MicroRNA targeting specificity



6852

23.

24.

25.

26.

217.

28.

29.

30.

31

32

33.

34.

35

36.

37.

38.

39.

40.

41.

42

43.

Nucleic Acids Research, 2011, Vol. 39, No. 16

in mammals: determinants beyond seed pairing. Mol. Cell, 27,
91-105.

Shkumatava,A., Stark,A., Sive,H. and Bartel,D.P. (2009)
Coherent but overlapping expression of microRNAs and their
targets during vertebrate development. Genes Dev., 23, 466-481.
Chi,S.W., Zang,J.B., Mele,A. and Darnell,R.B. (2009) Argonaute
HITS-CLIP decodes microRNA-mRNA interaction maps. Nature,
460, 479-4386.

Hendrickson,D.G., Hogan,D.J., Herschlag,D., Ferrell,J.E. and
Brown,P.O. (2008) Systematic identification of mRNAs recruited
to argonaute 2 by specific microRNAs and corresponding changes
in transcript abundance. PLoS ONE, 3, e2126.

Lim,L.P., Lau,N.C., Garrett-Engele,P., Grimson,A., Schelter,J.M.,
Castle,J., Bartel,D.P., Linsley,P.S. and Johnson,J.M. (2005)
Microarray analysis shows that some microRNAs downregulate
large numbers of target mRNAs. Nature, 433, 769-773.
Ritchie,W., Flamant,S. and Rasko,J.E. (2009) Predicting
microRNA targets and functions: traps for the unwary.

Nat. Methods, 6, 397-398.

Flicek,P., Aken,B.L., Beal,K., Ballester,B., Caccamo,M., Chen,Y .,
Clarke,L., Coates,G., Cunningham,F., Cutts,T. et al. (2008)
Ensembl 2008. Nucleic Acids Res., 36, D707-D714.

Bina,M. (2008) The genome browser at UCSC for locating genes,
and much more! Mol. Biotechnol., 38, 269-275.

Didiano,D. and Hobert,O. (2006) Perfect seed pairing is not a
generally reliable predictor for miRNA-target interactions.

Nat. Struct. Mol. Biol., 13, 849-851.

Lal,A., Navarro,F., Maher,C.A., Maliszewski,L.E., Yan,N.,
O’Day,E., Chowdhury,D., Dykxhoorn,D.M., Tsai,P., Hofmann,O.
et al. (2009) miR-24 Inhibits cell proliferation by targeting E2F2,
MYC, and other cell-cycle genes via binding to “seedless”” 3'UTR
microRNA recognition elements. Mol. Cell, 35, 610-625.

. Vella,M.C., Choi,E.Y., Lin,S.Y., Reinert,K. and Slack,F.J. (2004)

The C. elegans microRNA let-7 binds to imperfect let-7
complementary sites from the lin-41 3’UTR. Genes Dev., 18,
132-137.

Ameres,S.L., Martinez,J. and Schroeder,R. (2007) Molecular basis
for target RNA recognition and cleavage by human RISC. Cell,
130, 101-112.

Kedde,M. and Agami,R. (2008) Interplay between microRNAs
and RNA-binding proteins determines developmental processes.
Cell Cycle, 7, 899-903.

. Alexiou,P., Maragkakis,M., Papadopoulos,G.L., Reczko,M. and

Hatzigeorgiou,A.G. (2009) Lost in translation: an assessment and
perspective for computational microRNA target identification.
Bioinformatics, 25, 3049-3055.

Bentwich,I. (2005) Prediction and validation of microRNAs and
their targets. FEBS Lett., 579, 5904-5910.

Sethupathy,P., Megraw,M. and Hatzigeorgiou,A.G. (2006) A
guide through present computational approaches for the
identification of mammalian microRNA targets. Nat. Methods, 3,
881-886.

Easow,G., Teleman,A.A. and Cohen,S.M. (2007) Isolation of
microRNA targets by miRNP immunopurification. RNA4, 13,
1198-1204.

Selbach,M., Schwanhausser,B., Thierfelder,N., Fang,Z., Khanin,R.
and Rajewsky,N. (2008) Widespread changes in protein synthesis
induced by microRNAs. Nature, 455, 58-63.

Baek,D., Villen,J., Shin,C., Camargo,F.D., Gygi,S.P. and
Bartel,D.P. (2008) The impact of microRNAs on protein output.
Nature, 455, 64-71.

Kuhn,D.E., Martin,M.M., Feldman,D.S., Terry,A.V. Jr,
Nuovo,G.J. and Elton,T.S. (2008) Experimental validation of
miRNA targets. Methods, 44, 47-54.

. Lytle,J.R., Yario,T.A. and Steitz,J.A. (2007) Target mRNAs are

repressed as efficiently by microRNA-binding sites in the 5> UTR
as in the 3° UTR. Proc. Natl Acad. Sci. USA, 104, 9667-9672.
Kong,Y.W., Cannell,1.G., de Moor,C.H., HillLK., Garside,P.G.,
Hamilton, T.L., Meijer,H.A., Dobbyn,H.C., Stoneley,M.,
Spriggs,K.A. et al. (2008) The mechanism of
micro-RNA-mediated translation repression is determined by the
promoter of the target gene. Proc. Natl Acad. Sci. USA, 105,
8866-8871.

44.

45.

46.

47.

48.

49.

50.

SI.

52.

53

55.

56.

57.

58.

59.

60.

61.

62.

63.

Hendrickson,D.G., Hogan,D.J., McCullough,H.L., Myers,J.W.,
Herschlag,D., Ferrell,J.E. and Brown,P.O. (2009) Concordant
regulation of translation and mRNA abundance for hundreds of
targets of a human microRNA. PLoS Biol., 7, e1000238.
Yekta,S., Shih,I.H. and Bartel,D.P. (2004) MicroRNA-directed
cleavage of HOXB8 mRNA. Science, 304, 594-596.

Llave,C., Xie,Z., Kasschau,K.D. and Carrington,J.C. (2002)
Cleavage of Scarecrow-like mRNA targets directed by a class of
Arabidopsis miRNA. Science, 297, 2053-2056.

Elmen,J., Lindow,M., Schutz,S., Lawrence,M., Petri,A., Obad.,S.,
Lindholm,M., Hedtjarn,M., Hansen,H.F., Berger,U. et al. (2008)
LNA-mediated microRNA silencing in non-human primates.
Nature, 452, 896-899.

Elmen,J., Lindow,M., Silahtaroglu,A., Bak,M., Christensen,M.,
Lind-Thomsen,A., Hedtjarn,M., Hansen,J.B., Hansen,H.F.,
Straarup,E.M. et al. (2008) Antagonism of microRNA-122 in
mice by systemically administered LNA-antimiR leads to
up-regulation of a large set of predicted target mRNAs in the
liver. Nucleic Acids Res., 36, 1153-1162.

Krutzfeldt,J., Rajewsky,N., Braich,R., Rajeev,K.G., Tuschl,T.,
Manoharan,M. and Stoffel, M. (2005) Silencing of microRNAs
in vivo with ‘antagomirs’. Nature, 438, 685-689.

Ebert,M.S., Neilson,J.R. and Sharp,P.A. (2007) MicroRNA
sponges: competitive inhibitors of small RNAs in mammalian
cells. Nat. Methods, 4, 721-726.

Haraguchi,T., Ozaki,Y. and Iba,H. (2009) Vectors expressing
efficient RNA decoys achieve the long-term suppression

of specific microRNA activity in mammalian cells.

Nucleic Acids Res., 37, e43.

Bracken,C.P., Gregory,P.A., Kolesnikoff,N., Bert,A.G., Wang.J.,
Shannon,M.F. and Goodall,G.J. (2008) A double-negative
feedback loop between ZEBI-SIP1 and the microRNA-200 family
regulates epithelial-mesenchymal transition. Cancer Res., 68,
7846-7854.

. Hobert,O. (2007) miRNAs play a tune. Cell, 131, 22-24.
54.

Khan,A.A., Betel,D., Miller,M.L., Sander,C., Leslie,C.S. and
Marks,D.S. (2009) Transfection of small RNAs globally perturbs
gene regulation by endogenous microRNAs. Nat. Biotechnol., 27,
549-555.

Vinther,J., Hedegaard, M.M., Gardner,P.P., Andersen,J.S. and
Arctander,P. (2006) Identification of miRNA targets with stable
isotope labeling by amino acids in cell culture. Nucleic Acids Res.,
34, ¢107.

Tuddenham,L., Wheeler,G., Ntounia-Fousara,S., Waters.J.,
Hajihosseini,M.K., Clark,I. and Dalmay,T. (2006) The cartilage
specific microRNA-140 targets histone deacetylase 4 in mouse
cells. FEBS Lett., 580, 4214-4217.

Karginov,F.V., Conaco,C., Xuan,Z., Schmidt,B.H., Parker,J.S.,
Mandel,G. and Hannon,G.J. (2007) A biochemical approach to
identifying microRNA targets. Proc. Natl Acad. Sci. USA, 104,
19291-19296.

Park,S.M., Gaur,A.B., Lengyel,E. and Peter,M.E. (2008) The
miR-200 family determines the epithelial phenotype of cancer cells
by targeting the E-cadherin repressors ZEB1 and ZEB2.

Genes Dev., 22, 894-907.

Xu,G., Fewell,C., Taylor,C., Deng,N., Hedges,D., Wang,X.,
Zhang,K., Lacey,M., Zhang,H., Yin,Q. et al. (2010)
Transcriptome and targetome analysis in MIR155 expressing cells
using RNA-seq. RNA, 16, 1610-1622.

Le Brigand,K., Robbe-Sermesant,K., Mari,B. and Barbry,P.
(2010) MiRonTop: mining microRNAs targets across large scale
gene expression studies. Bioinformatics, 26, 3131-3132.

Guo,H., Ingolia,N.T., Weissman,J.S. and Bartel,D.P. (2010)
Mammalian microRNAs predominantly act to decrease target
mRNA levels. Nature, 466, 835-840.

Beitzinger,M., Peters,L., Zhu,J.Y., Kremmer,E. and Meister,G.
(2007) Identification of human microRNA targets from isolated
argonaute protein complexes. RNA Biol., 4, 76-84.

Hafner,M., Landthaler,M., Burger,L., Khorshid,M., Hausser,J.,
Berninger,P., Rothballer,A., Ascano,M. Jr, Jungkamp,A.C.,
Munschauer,M. et al. (2010) Transcriptome-wide identification of
RNA-binding protein and microRNA target sites by PAR-CLIP.
Cell, 141, 129-141.



64.

65.

66.

67.

68.

69.

70.

71.

72.

Matkovich,S.J., Van Booven,D.J., Eschenbacher, W.H. and
Dorn,G.W. 2nd (2010) RISC RNA Sequencing for
Context-Specific Identification of In Vivo MicroRNA Targets.
Circ. Res., 108, 18-26.

Mili,S. and Steitz,J.A. (2004) Evidence for reassociation of
RNA-binding proteins after cell lysis: implications for the
interpretation of immunoprecipitation analyses. RNA, 10,
1692-1694.

Zisoulis,D.G., Lovci,M.T., Wilbert, M.L., Hutt,K.R., Liang,T.Y.,
Pasquinelli,A.E. and Yeo,G.W. (2010) Comprehensive discovery

of endogenous Argonaute binding sites in Caenorhabditis elegans.

Nat. Struct. Mol. Biol., 17, 173-179.

Orom,U.A. and Lund,A.H. (2007) Isolation of microRNA
targets using biotinylated synthetic microRNAs. Methods, 43,
162-165.

Orom,U.A., Nielsen,F.C. and Lund,A.H. (2008) MicroRNA-10a
binds the 5"UTR of ribosomal protein mRNAs and enhances
their translation. Mol. Cell, 30, 460-471.

Gregory,B.D., O’Malley,R.C., Lister,R., Urich, M.A., Tonti-
Filippini,J., Chen,H., Millar,A.H. and Ecker,J.R. (2008) A link
between RNA metabolism and silencing affecting Arabidopsis
development. Dev. Cell, 14, 854-866.

Addo-Quaye,C., Miller,W. and Axtell,M.J. (2009) CleaveLand: a
pipeline for using degradome data to find cleaved small RNA
targets. Bioinformatics, 25, 130-131.

German,M.A., Luo,S., Schroth,G., Meyers,B.C. and Green,P.J.
(2009) Construction of Parallel Analysis of RNA Ends (PARE)
libraries for the study of cleaved miRNA targets and the RNA
degradome. Nat. Protoc., 4, 356-362.

Li,Y.F., Zheng.,Y., Addo-Quaye,C., Zhang,L., Saini,A.,
Jagadeeswaran,G., AxtelLM.J., Zhang,W. and Sunkar,R. (2010)
Transcriptome-wide identification of microRNA targets in rice.
Plant J., 62, 742-759.

73.

74.

75.

76.

77.

78.

79.

80.

82.

Nucleic Acids Research, 2011, Vol.39, No. 16 6853

Eckardt,N.A. (2009) Investigating translational repression by
microRNAs in Arabidopsis. Plant Cell, 21, 1624.

Vatolin,S., Navaratne,K. and Weil,R.J. (2006) A novel method to
detect functional microRNA targets. J. Mol. Biol., 358, 983-996.
Andachi,Y. (2008) A novel biochemical method to identify target
genes of individual microRNAs: identification of a new
Caenorhabditis elegans let-7 target. RNA, 14, 2440-2451.

Yang,Y., Chaerkady,R., Kandasamy,K., Huang,T.C., Selvan,L.D.,
Dwivedi,S.B., Kent,0.A., Mendell,J.T. and Pandey,A. (2010)
Identifying targets of miR-143 using a SILAC-based proteomic
approach. Mol. Biosyst., 6, 1873-1882.

Zhu,S., Si,M.L., Wu,H. and Mo.,Y.Y. (2007) MicroRNA-21
targets the tumor suppressor gene tropomyosin 1 (TPM1).

J. Biol. Chem., 282, 14328-14336.

Muniyappa,M.K., Dowling,P., Henry,M., Meleady,P., Doolan,P.,
Gammell,P., Clynes,M. and Barron,N. (2009) MiRNA-29a
regulates the expression of numerous proteins and reduces the
invasiveness and proliferation of human carcinoma cell lines.

Eur. J. Cancer, 45, 3104-3118.

Wu,S., Huang,S., Ding,J., Zhao,Y., Liang,L., Liu,T., Zhan,R. and
He,X. (2010) Multiple microRNAs modulate p21Cipl/Wafl
expression by directly targeting its 3” untranslated region.
Oncogene, 29, 2302-2308.

Vo,N.K., Dalton,R.P., Liu,N., Olson,E.N. and Goodman,R.H.
(2010) Affinity purification of microRNA-133a with the cardiac
transcription factor, Hand2. Proc. Natl Acad. Sci. USA, 107,
19231-19236.

. Jiang,Q., Feng,M.G. and Mo,Y.Y. (2009) Systematic validation of

predicted microRNAs for cyclin D1. BMC Cancer, 9, 194.
Peter,M.E. (2010) Targeting of mRNAs by multiple miRNAs: the
next step. Oncogene, 29, 2161-2164.



