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Abstract

Species-specific recognition between egg and sperm, a crucial event that marks the beginning of fertilization in
multicellular organisms, mirrors the binding between haploid cells of opposite mating type in unicellular eukaryotes such
as yeast. However, as implied by the lack of sequence similarity between sperm-binding regions of invertebrate and
vertebrate egg coat proteins, these interactions are thought to rely on completely different molecular entities. Here, we
argue that these recognition systems are, in fact, related: despite being separated by 0.6–1 billion years of evolution,
functionally essential domains of a mollusc sperm receptor and a yeast mating protein adopt the same 3D fold as egg zona
pellucida proteins mediating the binding between gametes in humans.
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Introduction
Like their counterparts in the vitelline (egg) envelope (VE)
of other vertebrates as well as invertebrates such as the
mollusc abalone (Aagaard et al. 2006), mammalian zona
pellucida (ZP) subunits ZP1–4 assemble into the nascent
egg coat using a common C-terminal ‘‘ZP domain’’ (Bork
and Sander 1992; Jovine et al. 2002). This conserved poly-
merization module consists of two domains, ZP-N and
ZP-C (Jovine et al. 2004; Wassarman and Litscher 2008)
(fig. 1). Recent crystallographic studies of sperm receptor
ZP3 revealed that the ZP-N domain defines a new subtype
of the immunoglobulin (Ig) superfamily of proteins, char-
acterized by two disulfide bonds with invariant 1–4, 2–3
connectivity, a unique E’ strand implicated in polymeriza-
tion, and a conserved Tyr residue in strand F (Monné et al.
2008). Moreover, they showed that—despite having a very
different sequence—ZP-C also adopts a b-sandwich fold
with the same basic topology as ZP-N, suggesting that
the two moieties of the ZP module might have originated
by duplication of a single ancestral Ig-like domain (Han et al.
2010). Additional copies of ZP-N are found within the
N-terminal region of some vertebrate ZP/VE components
(Callebaut et al. 2007; Monné et al. 2008) (fig. 1), where—as
in the case of mammalian ZP2—they can bind sperm
(Tsubamoto et al. 1999) and regulate gamete recognition
(Bleil et al. 1981; Gahlay et al. 2010). Notably, repeated se-
quences located within the N-terminal region of abalone
VE subunits VERL and VEZP14 (fig. 1) are also thought
to bind sperm (Swanson and Vacquier 1997; Aagaard
et al. 2010), but because of very low-sequence similarity,
no connection could be made between molluscan and
mammalian repeats.

Molluscan Egg Coat Protein Repeats Adopt
the ZP-N Fold of Mammalian ZP Proteins
Because rapid sequence divergence could mask potential
relationships between reproductive proteins from evolu-
tionary distant species (Swanson and Vacquier 2002), we
performed a fold recognition analysis using sequence–
structure comparison in FUGUE (Shi et al. 2001). Molluscan
repeat sequences were threaded against a local copy of the
HOMSTRAD database of structural profiles (de Bakker et al.
2001) that included an entry for the canonical ZP-N do-
main of VERL (Galindo et al. 2002), generated on the basis
of the crystal structure of ZP3 ZP-N (Monné et al. 2008;
Han et al. 2010). A high-confidence match was found be-
tween the sequence of VERL repeat 10 and the Ig-like fold
variant specific to ZP-N (supplementary fig. S1, Supple-
mentary Material online). An homology model of repeat
10 created on the basis of this sequence–structure align-
ment is structurally sound and exposes Asn side chains ex-
pected to be glycosylated (Swanson and Vacquier 1997)
(fig. 2). Moreover, it can be readily extended to all other
VERL repeats, as well as the VERL-like repeat of VEZP14
(Aagaard et al. 2010), because of significant sequence sim-
ilarity (supplementary figs. S1 and S2a–b, Supplementary
Material online). This suggests that all Cys within the repeat
array of VERL are engaged in ZP-N-specific Cys1–4, Cys2–3

disulfide bonds, with the exception of C201 and C294 (sup-
plementary fig. S3a, Supplementary Material online). These
additional Cys, located in repeat 2, may therefore be re-
sponsible for forming the intermolecular disulfides that
have been shown to mediate homodimerization of VERL
(Swanson and Vacquier 1997). This prediction was exper-
imentally confirmed by loss of VERL dimerization upon
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introduction of C201D, C294S substitutions within a re-
peat 1–4 fragment secreted by insect cells (supplemen-
tary fig. S3b, Supplementary Material online).
Considering that all other abalone VE subunits also con-
tain a ZP module (Aagaard et al. 2010), this data collec-
tively suggest that, as in mammals, the ZP-N domain
accounts for the majority of the structure of the
molluscan egg coat.

A Protein Domain Essential for Mating in
Yeast Also Shares ZP-N-Specific Features
Domain analysis with SMART (Letunic et al. 2009) indicates
that the N-terminal region of VEZP14, which contains the
protein’s VERL-like ZP-N repeat (Aagaard et al. 2010) (fig. 1),
is in turn related to yeast agglutinin-like proteins (supple-
mentary fig. S1, Supplementary Material online). These
highly glycosylated adhesion molecules mediate extracellu-
lar interactions, such as mating in Saccharomyces cerevisiae
and host invasion in Candida albicans, mainly using the last
of three N-terminal Ig domains (Ig III; fig. 1) (Dranginis et al.
2007). Although Ig III was initially modeled on the basis of Ig
Kol—the best template available at the time—(de Nobel
et al. 1996), FUGUE threading of Ig III sequences against
the current protein fold database identifies the ZP-N Ig

subtype as the top hit for this domain (supplementary
fig. S1, Supplementary Material online), a prediction sup-
ported by I-TASSER (Roy et al. 2010). Most importantly,
our ZP-N-based model of S. cerevisiae mating protein
a-agglutinin/Sag1p Ig III is not only physically realistic
(supplementary fig. S4, Supplementary Material online)
but also completely consistent with a large amount of
available biochemical data (fig. 3). Specifically, the model
agrees with circular dichroism spectroscopy studies of the
N-terminal half of a-agglutinin (Chen et al. 1995); ac-
counts for the experimentally determined disulfide bond
between C202 and C300 (Chen et al. 1995), which corre-
sponds to the canonical Cys1–4 disulfide of the ZP-N fold;
predicts burial of C227 and C256 (Cys2,3) (Chen et al.
1995); and is consistent with exposure of residues that
were shown experimentally to be accessible to proteases
(Chen et al. 1995), glycosylated (Chen et al. 1995), or in-
volved in binding to a-agglutinin (Cappellaro et al. 1991;
de Nobel et al. 1996). Moreover, Y270 of a-agglutinin is
positioned in correspondence of the conserved F-strand
Tyr that lies next to invariant Cys4 within the E’-F-G ex-
tension of the ZP-N fold (Monné et al. 2008; Han et al.
2010). Taken together, these considerations suggest that
this particular type of Ig-like domain may not be restricted
to multicellular eukaryotes as previously thought but also

FIG. 1. Domain architecture of human ZP subunits, mollusc VERL and VEZP14, and yeast a-agglutinin/Sag1p. Pink: ZP-N domain; cyan: ZP-C
domain; yellow: trefoil domain; violet: S/T-rich sequence repeat; dark blue: Sag1p Ig-like domains I, II; and dashed red box: SMART
Pfam:Candida_ALS match in VEZP14.

FIG. 2. Homology model of abalone VERL repeat 10 ZP-N domain, shown in side view using a cartoon representation with relevant residues
depicted as sticks. The model is consistent with burial of hydrophobic residues (a; brown), exposure of positively charged, negatively charged,
and polar side chains (b; blue, red, and cyan, respectively) and exposure of consensus sites for N-glycosylation (c; green).
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exist in specialized extracellular proteins of yeast that play
key roles in mating (S. cerevisiae Sag1p) or adhesion to
human tissues and biofilm formation (C. albicans Als1p
and Als3p).

Conclusions and Functional Implications
Although the rapid evolution of reproductive proteins
makes the direct comparison of their sequences generally
uninformative, relationships between these molecules
could in principle be recognized by identifying suitably in-
termediate sequences that connect them (Park et al. 1997)
or relying on conservation of common higher-order struc-
tural features. In this report, we have combined these ap-
proaches to detect unexpected structural similarities
between reproductive proteins from both vertebrates
and invertebrates, as well as yeast mating proteins. These

findings suggest that some of the molecular features that

regulate sexual interaction may be much more conserved
during evolution than previously appreciated (fig. 1 and

supplementary fig. S5, Supplementary Material Online).
In this regard, it is particularly remarkable that a-agglutinin

amino acids essential for interaction with a-agglutinin
(de Nobel et al. 1996) (fig. 4c) are positioned so that they
are exposed on the same face of the ZP-N fold as ZP2 and
VERL residues implicated in sperm binding (fig. 4a–b).
Moreover, specific adherence of Candida to human endo-
thelial and epithelial cells requires Als1p Ig III amino acids
centered around V285 (Fu et al. 1998; Loza et al. 2004; Shep-
pard et al. 2004; Dranginis et al. 2007), a residue that is also
predicted to be exposed on the same region of the ZP-N
domain (fig. 4c). Because threading per se simply estimates
the likeness that a known 3D fold is adopted by a given

FIG. 3. Stereograph of the model of Saccharomyces cerevisiae a-agglutinin/Sag1p Ig III. Conserved Cys residues: magenta; protease-accessible
residues: red; N-glycosylated residues: light blue; O-glycosylated residues: violet; residues that are essential, important, or play a minor role in
binding to a-agglutinin: cyan, orange, and yellow, respectively; and Y270: dark gray.

FIG. 4. Mapping of functionally important residues on the homology models of human ZP2 repeat 1 ZP-N (a), mollusc VERL repeat 1 ZP-N (b),
and yeast a-agglutinin/Sag1p Ig III ZP-N (c). Saccharomyces cerevisiae Sag1p Ig III residue V287, corresponding to functionally crucial residue
V285 of Candida albicans Als1p, is also indicated in (c). A top view of the proteins is shown, with N termini and Ig fold b-strands marked by
uppercase letters.
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sequence profile, it does not directly address the point of
whether the corresponding proteins share common ances-
try or just adopt a similar tertiary structure. Although this is
currently unfeasible due to lack of abalone genome sequen-
ces and absence of significant conserved syntheny between
yeast and human, future identification of related sequences
from additional lineages may make it possible to assess
whether the similarity that we have uncovered reflects
direct homology or is instead the result of convergent
evolution. Nevertheless, considering the widespread distri-
bution of the Ig fold, it is striking that reproductive protein
sequences from mollusc and yeast specifically match its
ZP-N variant, repeats of which had previously only been
detected in vertebrate egg coat proteins.

Supplementary Material
Supplementary methods and figures S1–S5 are available
at Molecular Biology and Evolution online (http://mbe
.oxfordjournals.org/).
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