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ABSTRACT

Motivation: Splice junction microarrays and RNA-seq are two
popular ways of quantifying splice variants within a cell.
Unfortunately, isoform expressions cannot always be determined
from the expressions of individual exons and splice junctions. While
this issue has been noted before, the extent of the problem on various
platforms has not yet been explored, nor have potential remedies
been presented.
Results: We propose criteria that will guarantee identifiability of an
isoform deconvolution model on exon and splice junction arrays and
in RNA-Seq. We show that up to 97% of 2256 alternatively spliced
human genes selected from the RefSeq database lead to identifiable
gene models in RNA-seq, with similar results in mouse. However, in
the Human Exon array only 26% of these genes lead to identifiable
models, and even in the most comprehensive splice junction array
only 69% lead to identifiable models.
Contact: whwong@stanford.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Alternative splicing is a common mode of gene regulation within
cells, being used by 90–95% of human genes (Pan et al., 2008; Wang
et al., 2008). Alternative splicing can drastically alter the function of
a gene in different tissue types or environmental conditions, or even
inactivate the gene completely. Therefore, it is not surprising that
alternative splicing is implicated in many diseases (Le et al., 2005;
Wang et al., 2003). Precise modeling of tissue- or cell- dependent
alternative splicing is therefore of utmost importance.

Alternative splicing can be studied by microarrays containing
probes targeting individual exons or junctions. Common array
designs include the Affymetrix Exon 1.0 ST array, which contains
four probes targeting observed and predicted exons, and the HJAY
array from Affymetrix, which contains eight probes targeting
observed and predicted exons and splice junctions. Except where
noted, we will restrict our attention to probes targeting RefSeq
transcripts.
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Current arrays are not guaranteed to produce identifiable estimates
for isoform-specific expression. For some genes the isoform
expressions are non-identifiable in the sense that the expressions of
the different isoforms are confounded with each other and also with
the probe-specific effects so that they cannot be estimated separately
no matter how many replicate experiments are performed to reduce
noise. As we will see below, non-identifiability can be substantially
reduced by the use of RNA-Seq. However, even in this case the sheer
complexity of some isoform sets may still render the estimation
problem non-identifiable based on current RNA-Seq protocols. In
view of these difficulties, it is important to have a method to detect
all isoform sets that are identifiable by a given array design or a given
RNA-Seq protocol. Such a method will be useful for understanding
the extent of non-identifiability in current transcriptome analysis
methods, and for finding ways in which this problem can be abated.

2 METHODS
To derive a characterization of identifiable isoform sets, we start with a
popular model for the analysis of exon and junction arrays (Anton et al., 2008;
Le et al., 2005; Pan et al., 2004; Wang et al., 2003), which was an extension
of the model originally proposed for oligonucleotide gene expression arrays
(Li and Wong, 2001).

yij = φj

∑
k

ωikδkj +εij (1)

where yij is the (known) intensity of probe j in array i, ωik is the (unknown)
concentration of isoform k on array i, φj is the (unknown) affinity of probe j,
δkj is the (known) preference of probe j for isoform k and εij is random error.
Here, we assume δkj = 1 if the probe is expected to bind to the transcript,
and 0 otherwise, although setting 0 < δkj < 1 to model cross-hybridization is
possible.

For any k-mer that belongs to an isoform of a gene, there is a maximum
set of isoforms that share this k-mer. All k-mers with the same maximum set
of isoforms are said to form a unique probe class. Here and in the sequel,
we only consider a k-mer that is unique in the sense that it is mapped to a
unique genomic locus (possibly to splice junctions produced from this locus).
For the purpose of identifiability, it is convenient to combine the probes
into unique probe sets, where a unique probe set is the set of all probes
on an array coming from a unique probe class. For example, all non-cross-
hybridizing constitutive probes targeting a particular gene would constitute a
unique probe set; also, all probes targeting a certain exon-skipping junction
constitute a unique probe set because these probes uniquely target the set
of isoforms in which this exon is skipped. We note that the concept of a
unique probe set is different from the concept of a probe set on an array,
since a unique probe set can contain probes from several array probe sets.
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Fig. 1. (a) Suppose e1 and e3 are constitutive exons and e2 is alternative.
Let t1 denote the exon-including isoform and t2 denote the exon-skipping
isoform. Let probes p1, p2 and p3 target e1, e2 and e3, respectively. Suppose
p1 has intensity (200, 400) in two arrays, and p2 and p3 each have intensity
(100, 100). The isoform that includes e2 must be expressed the same in both
arrays. The expression ratio of the skipped isoform cannot be determined,
however. If φ1 = φ2 = φ3, the skipped isoform is in a ratio of 1:3 in the two
arrays. If, however, φ1 = 2φ2 = 2φ3, the ratio becomes 0:1. In other words,
we do not even know whether the skipped isoform was present in the first
array. (b) If we let p3 target the exon skipping junction, with intensities
(0, 200), then the isoform abundances can be deconvolved up to a constant.
The skipped isoform ratio is 0:1 (c) The matrices � and D corresponding
to the case in (a). (d) The matrices � and D corresponding to the case
in (b). (e) The graph corresponding to D in (c) is disconnected, indicating
non-identifiability. R1 and R2 are the rows, C1 is the column. (f) The graph
corresponding to D in (d) is connected, indicating identifiability.

We let j index the unique probe sets, and yij be the average intensity for all
the probes in the unique probe set.

Model (1) translates in a fairly straightforward manner to a model for
RNA-Seq data. Let j index the probe classes. Then, yij is the number of
reads in run i which belong to class j, and φj is a sampling rate for feature j,
which is generally assumed to be proportional to the total number of k-mers
that belong to class j. As before, ωik are the isoform concentrations and δkj

are indicators of whether probe class j is contained in isoform k. Errors can
be modeled via the Poisson distribution (Jiang and Wong, 2009).

As noted in (Wang et al., 2003) this model can suffer from identifiability
issues. However, by adding appropriate junctions, this problem may become
identifiable (Fig. 1). Below we present a sufficient condition to guarantee
identifiability of the model, and use it to analyze existing and future designs
for exon and splice junction arrays. This condition is general and can apply
to any type of alternative splicing event, no matter how complex. See (Fig. 2)
for examples. An R script for checking this condition on a set of isoforms is
available at http://biogibbs.stanford.edu/˜djhiller/nonid_test.R .

Definition . Suppose that X is a M ×N matrix. Let G(X) = (U,V ,E) be
a bipartite graph corresponding to X, such that U has M nodes, V has N
nodes, and there is an edge between ui and vj iff Xij �= 0.

Theorem. Suppose there are I arrays, J probes and K isoforms. Model (1)
can be written in matrix form as

Y = ���+ ε

where � has elements ωik , � has elements δkj , and � has diagonal elements
φj and off-diagonal elements equal to 0. Model (1) is identifiable under the
following conditions:

(a) If the probe affinities are known (as in RNA-Seq), we must be able
to choose a set S of K probes which are independent in the following
sense: Let �1 be a K ×K matrix with elements equal to δkj with j ∈ S,
then �1 is invertible.

(a) (b)

(c) (d)

Fig. 2. Application of identifiability criterion to simple alternative splicing
events. In all of the following a probe has been placed on every exon and
every observed junction. (a) Mutually exclusive exons. Mutually exclusive
events are always identifiable. (b) Alternate 3′ or 5′ exon end. These events
are identifiable unless the alternative portion is on either end of the transcript.
(c) Alternative transcription start site or alternative polyadenylation site.
These events are not identifiable in arrays, where the probe effects are
unknown. However, they are identifiable in RNA-Seq if we assume that
the sampling rates are known. (d) Intron retention. These events are always
identifiable.

(b) If the probe affinities are unknown, we need two other conditions.
Let S′ be the set of probes not in S, and let �2 have elements
equal to δkj with j∈S′. Consider the matrix D = �−1

1 �2. Suppose
that � is of full rank (which will be true almost surely if the ωik

are considered random quantities over a continuous support space),
and I ≥K. Suppose further that the graph G(D) is connected. Then
the model is identifiable. On the other hand, suppose G(D) is not
connected, and we do not assume anything about �. Then the model
is not identifiable. (Fig. 1)

Proof: (a) For the known probe effect case, we can write

��� = (A+�)�� (2)

where A represents a perturbation of the transcript abundances that would
lead to the same observations yij . Since � is invertible, we can simplify:

A� = 0 (3)

By assumption, there exists a K ×K submatrix of � which is invertible.
Then � has a right inverse �R such that ��R = I , and

A��R = A = 0 (4)

Thus given any Ŷ , � and � there exists a unique estimate for �.
(b) Proof of sufficient condition for identifiability when probe effects are
unknown: we write

��� = (A+�)�(B∗�) (5)

where B∗ is a diagonal matrix with diagonal elements bj . A and B∗ represent
perturbations of the transcript abundances and the probe effects. We will
let B = (B∗)−1 − I , where B is a one-to-one mapping of B∗, assuming the
diagonal elements are all non-zero. Reducing (5), we have

��(B∗)−1 = (�+A)� (6)

⇒��((B∗)−1 −I) = A� (7)

⇒��B−A� = 0 (8)

We rewrite (8) as a system of block equations:

��1B1 −A�1 = 0 (9)

��2B2 −A�2 = 0 (10)

where

B =
[

B1 0
0 B2

]
,� = [�1,�2] (11)
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We can manipulate (9) into:

A = ��1B1(�1)−1 (12)

Substituting into (10), we get

�(�2B2 −�1B1(�1)−1�2) = 0 (13)

Since � is of full row rank, it follows that � is left invertible, so there exists
�L such that �L� = I . Canceling, we get:

�2B2 −�1B1(�1)−1�2 = 0 (14)

Premultiplying (14) by (�1)−1 gives us:

DB2 −B1D = 0 (15)

where D = �−1
1 �2. This means that for every i, j:

Dij(B
2
j −B1

i ) = 0 (16)

So Dij �= 0 implies that B2
j = B1

i . Then for each i and j, either B1
i = B2

j , or
Dij = 0. But since D is connected, for any i and j there exist probes m1, ...,mL

such that Dim1 �= 0, Dmlml+1 �= 0 and Dmlml−1 �= 0 for all even l such that
1 ≤ l<L, and DLj �=0. But then for all i and j, B1

i = B2
j , so B = (k−1)I for

some k. Then substituting B into (8):

(k−1)��−A� = 0 (17)

⇒A = (k−1)� (18)

In other words, given � and Ŷ there exist estimates of � and � which are
unique up to rescaling by k. Therefore, the model is identifiable.

Proof of necesarry condition for identifiability when probe effects are
unknown: suppose G(D) is disconnected. Starting from (13) we can get

��1(DB2 −B1D) = 0 (19)

Now suppose G(D) has two unconnected groups. Then we can partition
the diagonal elements of B1 and B2 into two groups such that elements in
the first group have the value k1, and those in the second group have k2,
but it is possible that k1 �= k2. Thus, there exist solutions of (15) other than
B1 = kI,B2 = kI . But these are also solutions of (13), so there are solutions
of (5) other than B = kI . Therefore, the model is not identifiable.

3 RESULTS AND DISCUSSION
We scanned 2256 alternatively spliced human genes (Supplementary
Material) for identifiability by the above criterion in four situations:
on the Human Exon Array; on the HJAY Array; on the simulated
array described below; and in RNA-Seq, in which the sampling
rates are known (Table 1). These genes represent a subset of the
4084 genes with multiple isoforms in the RefSeq database [Pruitt
et al., 2007, downloaded on April 15, 2008 from UCSC Table
Browser (Karolchik et al., 2004) for human genome assembly
hg18, NCBI build 36]. The remaining genes were excluded from
the analysis either because they could not be reliably mapped
to a transcript cluster on both arrays, or because the number of
RefSeq transcripts mapping to a transcript cluster was different than
the number of transcripts belonging to the original gene, usually
indicating that multiple genes mapped to the same cluster.

The simulated array was constructed as follows. First, we split
each gene into probe sets which were either whole exons or, in the
case that an exon could have multiple lengths, portions of exons.
A simulated probe was assigned to every exon of length ≥25 bp.
Additionally, a simulated probe was assigned to every junction
observed in the RefSeq database such that the total length of the
two exons spanned was ≥25 bp.

Table 1. Summary of the analysis with the Exon, HJAY and simulated arrays
and RNA-Seq for 2256 alternatively spliced human genes

Platform Unique
probesets

Percent
identifiable

No. of
probes/probeset

Human Exon 6342 26.1 4
HJAY 8339 69.0 8
Simulated 9325 96.4 NA
RNA-Seq 9325 97.0 NA

Column 2 gives the number of probesets which target unique combinations of isoforms.
Column 3 gives the fraction of alternatively spliced genes which lead to identifiable
models under that platform. Column 4 gives the number of probes per probeset for the
arrays. NA, not applicable

In RNA-Seq, 97% of the alternatively spliced genes lead to
identifiable gene models. On the simulated array, 96% of the
models are identifiable. However, the situation is not so good on
actual arrays: in the Exon Array only 26% of gene models were
identifiable; and in the HJAY array, which performed significantly
better, still only 69% of the gene models were identifiable. These
numbers appear to be relatively stable even when we include the
unmappable and inconsistent genes eliminated earlier. As a further
check, we performed a parallel analysis on 1118 mouse Refseq
genes (Supplementary Material; downloaded on August 4, 2009
from UCSC Table Browser for mouse genome assembly mm9, NCBI
build 37) using the Mouse Exon array, a mouse simulated array
constructed similarly to the human simulated array, and RNA-Seq
(Table 2). The mouse genes were chosen based on the same selection
criteria as the human genes. The similarity between the mouse and
human numbers is striking.

While the results for the simulated array and for RNA-Seq seem
encouraging, this analysis does not generally take into account
practical difficulties in placing probes on particular features. One
difficulty which we have attempted to account for is the difficulty
in placing probes on short exons. In practise, probes targeting
neighboring exon–exon junctions will supply much of the same
information as a probe targeting the missing exon would have.
A second concern is cross-hybridizing probes, which have not been
discarded from the current analysis. A form of cross-hybridization
particularly of concern for splice junction arrays is half junction
crosstalk (Srinivasan et al., 2005), which happens when a junction
probe is bound by a transcript that contains only one of the two
exons. However, as long as each unique probe class contains at least
one non-cross-hybridizing probe, the identifiability results would
not be affected. A third concern is that many probes may have to be
discarded due to poor sequence quality, for instance, abnormal GC
content. This concern indeed may account for at least some of the
discrepancy between the HJAY and simulated arrays. The second
and third concerns are at least partially addressed by RNA-Seq: the
problem of cross-hybridization is reduced to locations which share
high sequence similarity to other regions, and the problem of probe
selection is circumvented entirely, although it may be replaced by
the problem of low sampling rate on a particular feature.

Identifiability issues are critical for quantification of alternate
splice forms. A non-identifiable gene model may grossly mis-
estimate relative isoform abundances, even declaring a present
isoform absent or vice versa (Fig. 1). For this reason, the discrepancy
between the proportion of identifiable gene models on the HJAY
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Table 2. Summary of the analysis with the Exon and simulated arrays and
RNA-Seq for 1118 mouse genes

Platform Unique
probesets

Percent
identifiable

No. of
probes/probeset

Mouse Exon 2840 29.4 4
Simulated 4176 97.0 NA
RNA-Seq 4176 97.9 NA

NA, not applicable
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Fig. 3. Bar plot of the percent of gene models which are identifiable against
the number of isoforms in the gene model, using data from the human
simulated array. Overall, 96% of the gene models were identifiable.

array and the theoretical optimum is interesting, and it is worth
taking a closer look at the possible reasons for this discrepancy. As
we noted above, the exclusion of potential probe sets could explain
much of the gap. Another observation is that the model is especially
sensitive to the number of unique probe sets on the array. In the
HJAY array, an 11% reduction in the number of unique probe sets
leads to a 28% drop in identifiability. Even more striking, in the
Exon Array a 32% drop in the unique probe sets causes a 73% drop
in identifiability. This analysis suggests that too stringent of a probe
selection criteron may limit the ability to accurately deconvolve
isoform concentrations from expression data, particularly when all
the probes in a given probe class are eliminated. This analysis also
suggests the superiority of RNA-Seq as a tool for alternative splicing
analysis, because of its ability to reduce many of the problems
inherent in array-based methods.

A significant limitation in isoform deconvolution models is that
the probability of an identifiable gene model decreases sharply as the
number of transcripts increases (Fig. 3). This issue is less significant
when using the RefSeq database, because 97% of alternatively
spliced genes contain five or fewer transcripts. However, as we
include more transcripts, the results quickly deteriorate. In the HJAY
array, for example, when considering all 14 800 genes with multiple
transcripts in the Refseq and Ensembl databases (58 000 transcripts),
the rate drops modestly to 46.7 (Ensembl release 38, April 2006;
Hubbard et al., 2007). If we consider all 17 300 genes having
multiple predicted transcripts (3 00 000 transcripts), the rate drops

to 24.2%. Thus, model (1) is not suitable when we wish to include
an arbitrary number of transcripts. Instead, for each gene, we must
choose a small set of transcripts which we expect to account for
most or all of the transcripts in the cell type being studied. As an
alternative to using the RefSeq transcripts, a short list could also be
generated from a single run of RNA-Seq on a pooled sample. RNA-
Seq is likely to be better suited for novel isoform discovery, due to
the digital nature of the measurements and the decreased level of
uncertainty in the sampling rate.

We briefly consider the 3% of genes which are non-identifiable
even when using RNA-Seq, to see what are the most difficult
situations for current alternative splicing protocols. In 90% of these
cases, two alternative splicing events were separated by one or more
constitutive exons. Even in the remaining cases, one can always find
a subset of transcripts such that this subset contains an exon which
is constitutive and which separates two alternative splicing events.
Thus, a fundamental limitation of junction arrays and single end
RNA-Seq is that they are only able to assess local properties of
a transcript. It is possible that paired end sequencing technology
will be able to go further in addressing this challenge. In any case,
a possible solution for now would be, rather than to quantify the
concentration of each transcript, to quantify the rate at which a
particular alternative splice event (delineated by constitutive exons)
occurs.
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