
RESEARCH ARTICLE Open Access

Parallelized short read assembly of large
genomes using de Bruijn graphs
Yongchao Liu1*, Bertil Schmidt2* and Douglas L Maskell1

Abstract

Background: Next-generation sequencing technologies have given rise to the explosive increase in DNA
sequencing throughput, and have promoted the recent development of de novo short read assemblers. However,
existing assemblers require high execution times and a large amount of compute resources to assemble large
genomes from quantities of short reads.

Results: We present PASHA, a parallelized short read assembler using de Bruijn graphs, which takes advantage of
hybrid computing architectures consisting of both shared-memory multi-core CPUs and distributed-memory
compute clusters to gain efficiency and scalability. Evaluation using three small-scale real paired-end datasets
shows that PASHA is able to produce more contiguous high-quality assemblies in shorter time compared to three
leading assemblers: Velvet, ABySS and SOAPdenovo. PASHA’s scalability for large genome datasets is demonstrated
with human genome assembly. Compared to ABySS, PASHA achieves competitive assembly quality with faster
execution speed on the same compute resources, yielding an NG50 contig size of 503 with the longest correct
contig size of 18,252, and an NG50 scaffold size of 2,294. Moreover, the human assembly is completed in about
21 hours with only modest compute resources.

Conclusions: Developing parallel assemblers for large genomes has been garnering significant research efforts due
to the explosive size growth of high-throughput short read datasets. By employing hybrid parallelism consisting of
multi-threading on multi-core CPUs and message passing on compute clusters, PASHA is able to assemble the
human genome with high quality and in reasonable time using modest compute resources.

Background
The emergence and widespread adoption of massively
parallel next-generation sequencing technologies has
given rise to the explosive increase in DNA sequencing
throughput at a substantially lower unit cost of data,
compared to conventional Sanger capillary-based tech-
nologies. However, these technologies introduce some
new challenges to the assembly of large genomes due to
two factors: (i) short read length and (ii) high throughput.
This poses a challenge to the bioinformatics community
to devise assembly software that can deal with a massive
amount of short reads in reasonable time using modest
and accessible compute resources.

Consequently, several assemblers for high-throughput
short reads have been recently developed. They can be
classified into two approaches: contig extension and de
Bruijn graph. The contig extension approach is based on
the base-by-base extension at the 3’ end of a contig
sequence by finding overlaps between the prefixes of
reads and the suffixes of the contig. SSAKE [1], VCAKE
[2], SHARCGS [3], Taipan [4], and PE-assembler [5] are
example assemblers using this approach. The de Bruijn
graph approach to assembly was first introduced in Pevz-
ner et al. [6], and several short read assemblers based on
de Bruijn graphs have been developed. Prominent exam-
ples include ALLPATHS [7], Velvet [8], ABySS [9] and
SOAPdenovo [10]. Due to the enormous cost in terms of
both memory and execution time, ALLPATHS was initi-
ally constrained to the assembly of small genomes and
recently has been extended to support large genomes
[11]. Velvet employs a bi-directed simplified de Bruijn
graph data structure, which requires accommodating the

* Correspondence: liuy0039@ntu.edu.sg; bertil.schmidt@uni-mainz.de
1School of Computer Engineering, Nanyang Technological University,
Singapore
2Institut für Informatik, Johannes Gutenberg University Mainz, Germany
Full list of author information is available at the end of the article

Liu et al. BMC Bioinformatics 2011, 12:354
http://www.biomedcentral.com/1471-2105/12/354

© 2011 Liu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:liuy0039@ntu.edu.sg
mailto:bertil.schmidt@uni-mainz.de
http://creativecommons.org/licenses/by/2.0

entire genome in the graph, resulting in a large amount
of memory consumption for large genomes. Further-
more, when joining contigs into scaffolds using paired-
end data, Velvet stores the read mapping locations and
paired-end information along with the graph, making it
infeasible for assembling large genomes. ABySS employs
a distributed de Bruijn graph data structure. It is imple-
mented using the message passing interface (MPI), and
produces contigs in parallel on a distributed-memory
compute cluster without the use of paired-end informa-
tion. SOAPdenovo employs a de Brujin graph data struc-
ture similar to that of Velvet, but uses a multi-threaded
design to parallelize compute-intensive portions on
shared-memory architectures. Besides those algorithms
that use directed de Brujin graphs, YAGA [12] employs a
bi-directed string graph, represented by a set of edges,
and produces contigs through path walking using a varia-
tion of the classic parallel list ranking problem. This algo-
rithm shows good parallel scalability for small microbial
genomes. However, to assemble the E.coli dataset (see
the Results and Discussion section), its execution time
(496 seconds) using 256 CPUs of a Blue Gene/L system
is longer than PASHA (325 seconds) on a single CPU
core (see the Results and Discussion section).
In this paper, we present PASHA, a parallelized short

read assembler for large genomes based on de Bruijn
graphs. Some of the concepts adopted in PASHA are
inspired by Velvet and ABySS. The primary contribution
of our algorithm is the usage of hybrid parallelism consist-
ing of small-scale shared-memory multi-threading on
multi-core CPUs and large-scale distributed-memory par-
allelism on compute clusters to overcome memory con-
straints and to achieve high speed for large genome
assembly. Furthermore, we incorporate several techniques
(e.g. a modified Tour-bus method [8] to remove bubbles
and a modified Pebble algorithm [13] to join contigs) in
the typical assembly pipeline to facilitate the improvement
of assembly quality. Evaluation using three small-scale real
paired-end datasets indicates that PASHA produces
higher-quality assemblies than Velvet, ABySS and SOAP-
denovo in less time. To demonstrate the capability of
assembling large genomes, we assembled 3.76 billion
paired-end short reads from the whole-genome sequen-
cing of a Yoruban male individual (NA18507) from Bent-
ley et al. [14], and obtained an NG50 contig size of 503,
with the longest correct contig size of 18,252, and an
NG50 scaffold size of 2,294.
The size of the assembly problem severely impacts on

the assembly algorithm. The PASHA and ABySS assem-
blers are implemented using MPI and are able to run on
both shared-memory and distributed memory computer
clusters. SOAPdenovo is designed using multi-threading
and thus is only suitable for shared-memory computers.
Because SOAPdenovo requires a computer system with a

large amount of shared memory (around 512 GB for this
assembly problem), we are not able to execute it to
assemble the Yoruban male individual genome on the
hardware resources available to us (a symmetric multi-
processing server with 48 CPU cores and 256 GB mem-
ory) and thus exclude it from the comparison. For the
complete assembly, PASHA took about 21 hours using
only modest computing resources, achieving competitive
assembly quality with faster execution speed, compared
to ABySS.

Methods
Even though de Bruijn graph-based assemblers successfully
alleviate the pressure on memory space and execution
speed by substituting reads with k-mers (a contiguous
sequence of k bases) as nodes, compared to the conven-
tional overlap-layout-consensus approaches, the memory
consumption and execution time is still prohibitive for
large genomes. For example, for the genomic data of a
Yoruban male individual, the total number of nodes in the
preliminary de Bruijn graph (a node corresponds to a dis-
tinct 27-mer) is about 7.73 billion. This motivates us to
design a scalable assembler for large genomes that is work-
able on modest and commonly used high-performance
computing resources.
PASHA is a parallelized algorithm for large genome

assembly, which overcomes the memory and execution
speed constraints by using hybrid computing architec-
tures consisting of shared-memory multi-core CPUs and
distributed-memory compute clusters. Figure 1 illustrates
the pipeline of our assembler. The pipeline comprises
four stages: (i) generating and distributing k-mers, (ii)
constructing and simplifying the distributed preliminary
de Bruijn graph, (iii) merging bubbles and generating
contigs after constructing a Velvet-like de Bruijn graph,
and (iv) scaffolding to join contigs into scaffolds. We have
implemented Stages (i) and (ii), which are suitable for
parallelization and the most memory-intensive, using
MPI. This makes our program compatible with both
shared-memory and distributed-memory computing sys-
tems. Each MPI process Pi comprises two threads T0 and
T1. T0 performs computations for the assembly pipeline,
and T1 performs communications between different pro-
cesses (see (i) and (ii) in Figure 1), as well as file I/O
operations. By employing two threads in a single process,
we intend to gain faster speed by overlapping the local
computation and remote communications with processes
(and file I/O). By distributing the de Bruijn graph over a
network of computers, we get a partition of the graph
with each part stored in a different computer. Hence, we
do not need a large amount of memory in a single com-
puter, making our algorithm workable even on a com-
pute cluster comprised of commonplace workstations or
personal computers. Since the size of a message is very

Liu et al. BMC Bioinformatics 2011, 12:354
http://www.biomedcentral.com/1471-2105/12/354

Page 2 of 10

small, sending messages one-by-one to remote processes
will incur large communication overheads. Thus, for the
messages that are not time-critical, we combine them
into packets to improve the communication efficiency. T0

and T1 are connected through a bi-directional message
queue. The maximal number of messages in the queue is
controlled by a maximal capability threshold. Any thread,
which tries to append a new message to the queue, will
be blocked if the queue reaches the threshold, and will be
resumed once the queue has spaces available. Any thread
that tries to retrieve a message from an empty queue will
be blocked until there is at least one message available.
For Stages (iii) and (iv), which exhibit limited parallelism
and are less memory-intensive, we use a multi-threaded
design, only compatible with shared-memory systems.
In our proof-of-concept implementation (the source

code is available for download at http://sites.google.com/
site/yongchaosoftware/pasha), we have used parts of the
source code from Velvet for Stages (iii) and (iv) with

some algorithmic and data structure modifications. The
use of existing open-source code significantly reduces
the development time for prototyping our algorithm,
and more importantly, our modifications make the two
stages feasible and practical to execute on a workstation
with limited system memory (i.e. 72 GB RAM in our
workstation), as well as providing better assembly quali-
ties. PASHA supports the standard FASTA and FASTQ
input formats for single-end and paired-end short reads
with different insert sizes. While some other assemblers
require users to tune a number of parameters to gain
the best assembly, PASHA only needs a single para-
meter “-k” (i.e. the k-mer size), making it relatively user
friendly.
Before describing PASHA in details, we firstly define

some terms to facilitate our discussion. Given a
sequence S of length l, we define S[i] as the i-th base in
the sequence, S[i] as the complement of S[i], Si as the
k-mer starting at position i (1≤i≤l-k+1) of S, Si as the

T0 T1 T0 T1 T0 T1

T0 T1 T0 T1 T0 T1

Short read data

P2

P0

P0

P1

P1

P2

(iii)

(i)

(ii)

(iv)

k-mers

linear chains of k-mers

contigs

scaffolds

T0

T1 T2

T3

T0

T1 T2

T3

Figure 1 Schematic diagram of the PASHA assembly pipeline. (i) k-mer generation and distribution over a number of MPI processes;
(ii) distributed preliminary de Bruijn graph construction and simplification over a number of MPI processes; (iii) Bubble merging and contig
generation; and (iv) scaffolding.

Liu et al. BMC Bioinformatics 2011, 12:354
http://www.biomedcentral.com/1471-2105/12/354

Page 3 of 10

http://sites.google.com/site/yongchaosoftware/pasha
http://sites.google.com/site/yongchaosoftware/pasha

reverse complement of Si, and Sc
i as the canonical k-mer

that is the lexicographically smaller of Si and Si. A
k-molecule of Si is a pair of complementary k-mer
strands consisting of the canonical k-mer of Si (i.e. Sc

i)
and the non-canonical k-mer of Si (i.e. the reverse com-
plement of Sc

i).

K-mer generation and distribution
In a de Bruijn graph, a node corresponds to a k-mer and
an edge between two nodes is created if and only if their
corresponding k-mers have a suffix-prefix overlap of k-1
bases. Hence, PASHA starts the construction of its pre-
liminary de Bruijn graph from the generation of all
k-mers from the input read data.
As mentioned above, PASHA employs an MPI-based

approach to k-mer generation and distributes them
among the processes. This distribution requires that the
location of any k-mer is deterministic and can be effi-
ciently computed from the k-mer itself. Since a k-mole-
cule is a pair of complementary strands, the location of a
k-mer and its reverse complement must be the same.
Before calculating the location of Si and Si, PASHA first
transforms Si and Si to their corresponding base-4 repre-
sentation by assigning numerical value {0, 1, 2, 3} to
bases {A, C, G, T}. To determine the location of Si, unlike
ABySS (which calculates the hash values of Si and Si, and
then performs an XOR operation on them), PASHA
computes the location from the canonical k-mer. Since
the base-4 representation of a k-mer is stored in a 64-bit
integer (thus limiting the maximum allowable k-mer size
to 31), the comparison can be theoretically completed in
one clock cycle on a 64-bit computing system. A
balanced distribution of k-mers among processes is criti-
cal to the performance of our algorithm in terms of both
execution time and memory space. An unbalanced distri-
bution would cause some processes to consume much
more memory for k-mer storage, thus resulting in a sys-
tem failure due to memory limitations on some compute
nodes. In PASHA, we first calculate a hash value Ik using
a linear congruential hash function from the base-4 pre-
sentation of the canonical k-mer. Then, the ID of the
process that owns this k-mer is computed as Ik % Np,
where Np is the number of processes. From our experi-
ments, our location determination method is able to
(roughly) balance the distribution of k-mers (e.g., for the
Yoruban Male genome assembly using 16 processes, the
average number of local 27-mers for each process is
483,194,335 ± 963,003).
To achieve memory efficiency, we use the sparse_-

hash_set template class in the Google Sparse Hash
library (http://code.google.com/p/google-sparsehash) to
distinguish and store k-mers. In PASHA, each process
holds a local sparse hash-set to store its k-mers. For
each process, thread T1 loads the reads from disk and

transfers the reads to thread T0 through the message
queue, where the short reads are arranged into batches
and a message contains a batch of reads. T0 receives
batches of reads from the queue, calculates the hash
values of all k-mers, and stores some of them in its local
sparse hash-set depending on the hash values. The
cooperation of the two threads overlaps the computa-
tion and the file I/O operations, thus reducing the
execution time. Since a k-mer and its reverse comple-
ment are considered equivalent in a k-molecule, we only
need to store the canonical k-mer into the sparse hash-
set to represent the k-molecule.
For any read containing non-A/C/G/T bases, PASHA

converts those non-A/C/G/T bases to the base “A” (as
Velvet does), not simply discarding the whole read as
ABySS does [9]. After completing the generation of
k-mers, each process writes its local k-mers to disk for
future use when constructing the preliminary de Bruijn
graph. Our distributed k-mer generation implementation
can also be used (directly or after modification) by other
tools, such as CUDA_EC [15] and Quake [16] to gener-
ate and count the occurrences of k-mers in genomic
data.

Distributed de Bruijn graph construction
The preceding stage only generates k-mers, and does not
record any graph-related information for a k-mer. How-
ever, to construct a de Bruijn graph, we need not only
the k-mers themselves, but also multiplicity and linkage
information. A common approach is to use a hash-map
implementation, using k-mers as keys, to provide fast
access to the graph-related information. However, this
approach will result in a large memory overhead. Conway
and Bromage [17] suggested a sparse bitmap data struc-
ture to represent the de Bruijn graph, achieving memory
efficiency at the cost of execution time. However, their
proof-of-concept assembler (functionally similar to our
Stages (i) and (ii)) takes about 50 hours and yields a
highly fragmented assembly, with an N50 contig size of
only 250, for the Yoruban male genome. Hence, we
exclude it from the following assessments. In PASHA, we
instead use a sorted vector data structure to store the
k-mers and their graph-related information. Each process
loads its local k-mers from disk and stores them in a
sorted vector. The sorted vector is sorted using the
k-mers as keys.
We use the same approach as ABySS to represent the

linkage information between nodes; i.e., the linkages are
compacted into 8 bits with each bit representing the pre-
sence or absence of each of the eight edges in the two
directions. However, to build the linkages between nodes,
PASHA employs a different approach. For each k-mer
(each node), ABySS checks the existence of all possible
neighbours by doing all possible base extensions in each

Liu et al. BMC Bioinformatics 2011, 12:354
http://www.biomedcentral.com/1471-2105/12/354

Page 4 of 10

http://code.google.com/p/google-sparsehash

direction. If a neighbour exists, it sets its corresponding
bit to represent the existence of the linkage. This
approach is effective but has a probability of introducing
spurious edges, which connect k-mers that are not adja-
cent in any read. Hence, PASHA builds linkages directly
from the adjacency information of k-mers in the input
reads, i.e., a linkage between two k-mers is created if and
only if the two k-mers are adjacent in at least one read.
While building linkages, for each process, thread T1

loads batches of reads from disk and transfers them to
T0 as the previous stage does. For each read S, T0 iter-
ates over each k-mer Si and identifies its location after
calculating the base-4 representation of its canonical
k-mer. If the k-mer belongs to it, T0 sets the corre-
sponding linkage bits calculated from the bases S[i-1]
and S[i+k], which are the extension bases in the left and
the right directions of Si. When the index is out of the
range, the corresponding extension base (and its com-
plement) is an invalid base Ø, indicating that no linkage
is created in that direction. Figure 2 shows all four cases
of the linkage construction between two adjacent k-mers
in a read. Because each process iterates all k-mers in all
input reads, no communication between processes is
required during the construction process. While con-
structing the linkages, we compute the multiplicity of
each k-mer at the same time. In PASHA, two bytes are
used to represent the multiplicity of a k-mer. After com-
pleting the linkage construction, we will get a distribu-
ted preliminary de Bruijn graph with each node
corresponding to a k-mer.

Graph simplification
The preliminary de Bruijn graph contains many linear
chains of nodes that can be merged to simplify the graph
without loss of information. We start the simplification
from the removal of spurious linkages. Generally, there are
three major kinds of spurious linkages: tips, low-coverage
paths and bubbles. A tip is a short and low-coverage dead
end, which is likely to be caused by sequence errors at the
beginning or the end of reads. A low-coverage path only
covers one or a few reads and is likely to be a chimeric

connection. Bubbles are redundant paths with minor dif-
ferences, which might be due to heterozygosity, internal
read errors or nearby tips connecting. At this stage, we
only remove tips and low-coverage paths, leaving the
removal of bubbles to the following stage.
Prior to the removal of longer tips, we first remove

low-frequency dead-end individual k-mers. This removal
relies on the assumption that the majority of true k-mers
should occur in several reads, i.e. the multiplicity of a
true k-mer is supposed to be above a minimum multipli-
city threshold M, which is automatically estimated from
the multiplicities of all k-mers. This removal work is con-
ducted round-by-round until no dead-end k-mers meet
the removal conditions. For each process, T0 identifies
the k-mers, which are dead-end and have a multiplicity
less than M, in its local collection of k-mers, and then
removes the k-mers and their linkages in the graph.
When removing linkages to k-mers in another process,
T0 packs a request message and lets T1 forward to the
remote process. T1 forwards the request from T0 to other
processes, and handles the requests on the removal of
the specific linkages to its local k-mers, from the other
processes.
In PASHA, we simply remove tips that are shorter than

2k. For each process, T0 generates the current linear
chain of k-mers, starting from a dead-end k-mer, by
extending the chain in the left or right directions base-
by-base. If the chain is longer than 2k, the chain is
released; and otherwise, the k-mers in the chain will be
removed as well as their linkages. If, during the extension
of a chain, a linked k-mer exists locally, T0 gets the
graph-related information of the k-mer directly from its
local sorted vector. Otherwise, T0 packs a request mes-
sage and lets T1 forward it to the remote process. T0 will
be blocked until receiving the response, forwarded back
by T1, from the remote process.
After completing the removal of tips, the graph is split

into different linear chains of nodes. All processes coop-
erate in parallel to generate the sequences corresponding
to the linear chains. The linear chains are generated
using two steps. The first step generates linear chains
starting from dead-end k-mers, where a chain is extended
in only one direction. The second step starts from an
arbitrary k-mer, where a chain must be extended in two
directions. In the first step each process Pi extends a lin-
ear chain from each active local dead-end k-mer until
another dead-end k-mer is met. In this case, Pi checks
the location process Pj of the dead-end k-mer to avoid
duplicates because Pj (if i ≠ j) might be generating this
linear chain at the same time. In our algorithm, Pi keeps
this linear chain only if Pi ≤ Pj, and releases it, otherwise.
This process will be conducted iteratively until there are
no local dead-end k-mers in each process. The second
step is completed by assigning processes one-by-one to

1 1(1) and c c
i i i iS S S S 1i1

c cdi iS Sandand i and 11 S11

Si Si+1
S[i+k]

1 1(2) and c c
i i i iS S S S 1i1

c cdi iS Sandand i and 11 S11

Si Si+1
S[i+k]S[i] []S i

1 1(3) and c c
i i i iS S S S 1i1

c cdi iS Sandand i and 11 S11

Si Si+1

1 1(4) and c c
i i i iS S S S 1i1

c cdi iS Sandand i and 11 S11

Si+1
S[i] []S i[]S i kk Si

[]S i kk

Figure 2 Linkage construction for two adjacent k-mers in a
read.

Liu et al. BMC Bioinformatics 2011, 12:354
http://www.biomedcentral.com/1471-2105/12/354

Page 5 of 10

generate linear chains. At any time, only one process Pi is
allowed to generate linear chains and the other processes
have to wait and process requests from Pi. Pi starts the
two-directional extension from each local k-mer until a
loop or a dead-end k-mer is found. In this case, the loop
is simply broken up and output as a linear chain. For
each sequence, the coverage is calculated by dividing the
sum of multiplicities of the k-mers in its corresponding
chain by the sequence length. If the coverage is lower
than the minimum coverage threshold, the sequence
should be given up since it is likely to be generated from
linear chains containing spurious connections. The
remaining sequences are written to disk for the use in
the next stage.

Bubble merging and contig generation
This stage consists of three steps. First, a Velvet-like de
Bruijn graph is constructed from the sequences produced
from the previous stage. To build the Velvet-like graph,
we form a node, as well as its twin node, from a sequence
and create linkages between nodes by aligning reads to
nodes. If two adjacent k-mers in a read belong to two dif-
ferent nodes, we create an edge connecting them if there
is no edge between them, and otherwise, update the
information of the existing edge. While aligning reads to
nodes, we do not record any mapping information about
the reads. We employ a multi-threaded implementation
to accelerate the alignment of reads to nodes on multi-
core CPUs, where a single read is aligned to the graph
nodes by a thread and locks are carefully employed to
guarantee the mutual exclusive access to critical sections
(e.g. the creation and updating of links between nodes).
Secondly, we detect and merge bubbles in the graph.

The “Tour-bus” method in Velvet is employed to detect
bubbles. The detected bubbles are merged into a single
path if the sequences of the parallel paths meet the user-
specified similarity requirement. In PASHA, we directly
use the source code of the “Tour-bus” method, but modi-
fied the conditions to merge the two paths. Two paths
are merged if they have at most a two-base-pair differ-
ence in length with ≥ 90% identity.
Finally, we simplify the graph after further removal of

short tips and low-coverage nodes, and then generate
contigs from nodes.

Scaffolding
The scaffolding work aims to find the correct ordering of
the assembled contigs, and then joins them into scaffolds.
The determination of the ordering of contigs relies on the
mapping information of paired-end reads onto the con-
tigs, and then the mapping information is transferred to
scaffolding linkages between contigs.
In PASHA, the scaffolding work starts from the con-

struction of a Velvet-like de Bruijn graph from the

assembled contigs. While aligning paired-end reads to
the graph nodes (we extend the k-mer based alignment
algorithm in Velvet to provide support for multi-thread-
ing), the mapping information of a read pair, such as
mapping locations and node identifiers, is recorded into
an in-disk database if the two reads successfully map
onto the graph. A similar multi-threaded design, as in
the previous stage, is employed to accelerate the graph
construction on multi-core CPUs.
Having completed the read mapping, the median insert

size, as well as its standard deviation, for each library is
estimated from the mapping information of paired-end
reads whose two reads map onto the same nodes. We
employ a modified Pebble algorithm [13] to do the scaf-
folding work. The scaffolding linkages are built from the
mapping information of paired-end reads in the in-disk
database. Velvet constructs linkages from the mapping
information of reads and read pairs. For a single read, if
it overlaps with more than one node, linkages will be cre-
ated between these nodes. For a read pair, both of which
have overlaps with nodes, a linkage is created between
two nodes that respectively have overlaps with the two
reads. In PASHA, we only use the mapping information
of read pairs to construct linkages, where a linkage is
considered reliable if we have at least three read pairs to
form the linkage.

Speed optimizations
In the representation of the preliminary de Bruijn graph,
PASHA employs a sorted vector data structure, instead
of a hash-map, to store k-mers and their graph-related
information. While reducing memory overhead, a sorted
vector causes an increase in the average search time of k-
mers. Given N k-mers stored in a sorted vector, the aver-
age search time is about logN, generally longer than the
(nearly) constant search time of a hash-map. In this case,
we build an acceleration table using the most significant
r bits (r = 24 by default) of a k-mer to speed up the
search. This acceleration table only results in a memory
increase of 2r times the size of type integer bytes, but is
expected to reduce the average search time to log(N/2r).
For Stages (i) and (ii), each MPI process has two

threads T0 and T1: one for communication and the
other for local computation. This mechanism is
expected to improve the execution speed by overlapping
communication and computation. However, when the
two threads communicate frequently, along with mem-
ory allocations and de-allocations at the same time, the
overhead incurred by system calls on memory opera-
tions may offset the performance obtained from the
overlapping. Thus, we use the tbb_allocator template
class in the Intel Threading Building Blocks library to
manage the memory allocation and de-allocation for the
communication between T0 and T1. The tbb_allocator

Liu et al. BMC Bioinformatics 2011, 12:354
http://www.biomedcentral.com/1471-2105/12/354

Page 6 of 10

template class does improve the execution speed
through its smart management of user memory alloca-
tion and de-allocation.

Results and Discussion
Experimental data
To assess PASHA, we use four paired-end short read data-
sets from four different genomes to conduct experiments
(see Table 1). The first three datasets: Bacillus, Bordetella
and E.coli have accession numbers DRR000002,
ERR007648 and SRR001665 in the NCBI Sequence Read
Archive (SRA), respectively. The reference genome of the
Bacillus dataset is Bacillus subtilis subsp. subtilis str. 168
with accession number NC_000964 in GenBank; the refer-
ence genome of the Bordetella dataset is Bordetella pertus-
sis Tohama I with accession number NC_002929; and the
reference genome of the E.coli dataset is Escherichia coli
str. K-12 substr. MG1655 with accession number
NC_000913. The Yoruban male dataset has the accession
number SRA000271 in NCBI SRA, which contains six
sub-datasets with accession numbers SRX000600,
SRX000601, SRX000602, SRX000603, SRX001539 and
SRX001540, respectively. The first four sub-datasets come
from the same library CT1194 and the last two sub-data-
sets from library CT1373. We have used the six sub-data-
sets (about 4.05 billion reads) to produce contigs and used
the first four sub-datasets to create scaffolds (about 3.76
billion 200bp-insert-size paired-end reads). The use of
these short read datasets is consistent for both PASHA
and ABySS to produce contigs or scaffolds.

Assembly quality assessment
We have assessed the assembly quality of PASHA by
comparing it to three leading assemblers: Velvet (version
1.0.17), ABySS (version 1.2.1) and SOAPdenovo (version
1.04) using the datasets in Table 1. All the tests are con-
ducted on a workstation with two quad-core 2.40 GHz
CPUs and 72 GB memory, and on a compute cluster
with 8 compute nodes connected by a high-speed Infini-
band switch. Each node of the cluster consists of two
quad-core 2.93 GHz CPUs and 24 GB memory, running
the Linux operating system.

The assembly quality of all assemblers is compared in
terms of NG50, NG80 and maximum contig or scaffold
sizes. The NG50 (NG80) contig or scaffold size is calcu-
lated by ordering all assembled sequences by their
lengths, and then adding the lengths from the largest to
the smallest until the summed length exceeds 50%
(80%) of the reference genome size. In this paper, for
each dataset, we use the same reference genome size
(shown in Table 1) to calculate the NG50 (NG80) contig
or scaffold size for all assemblers. This is different from
the calculation used in the ABySS and SOAPdenovo
papers, where they consider the total length of all
assembled sequences by each assembler as the reference
genome size. For the calculation of scaffold sizes, the
intra-scaffold gaps are included. For the calculation of
genome coverage, we split the scaffolds into their consti-
tuent contigs at the position of gaps that are filled by a
series of “N” bases. The genome coverage and the num-
ber of incorrect contigs are computed from the results
obtained from aligning contigs to their reference gen-
omes using BLAT version 34 [18]. A contig is consid-
ered correct if it has a full length alignment to the
reference genome with a minimum identity of 95% (the
number of matches dividing the contig length) and a
maximal error rate of 5%. The alignment length is cal-
culated by summing up the number of matches, the
number of mismatches, and the number of insertions in
the query and the target. The error rate is calculated by
dividing the sum of the number of mismatches and the
number of insertions in the query and the target by the
alignment length.
We first use the three small paired-end datasets (i.e.

Bacillus, Bordetella and E.coli) to evaluate the different
assemblers in terms of assembly quality and execution
speed on a single CPU core of the workstation. The
parameters of all the assemblers have been carefully
tuned with the intention to gain the highest assembly
quality for each dataset, where each assembler chooses
the k-mer size that produces the largest NG50 scaffold
size. Table 2, 3 and 4 show the assembly results of all

Table 1 Short read datasets for assembler assessment

Bacillus Bordetella E.coli Yoruban male

library 160bp 198bp* 200bp 200bp

read length 36 36 36 36~42

no. of reads 16,633,474 12,549,138 20,816,448 3,758,659,514

coverage 142× 111× 162× 44×

genome size 4,215,606 4,086,189 4,639,675 3,101,788,170**

* uses an estimated insert size from assembly due to the unavailability of the real
library insert size; ** uses the total length of all scaffolds in the GRCh37/hg19
build human reference sequence.

Table 2 Assembly results for Bacillus

PASHA Velvet ABySS SOAPdenovo

no. of scaffolds 20 80 66 98

NG50 1,435,675 670,481 424,309 487,364

NG80 182,534 117,643 124,700 96,291

max 2,044,786 919,263 890,628 918,694

mean 208,124 52,046 67,457 42,399

genome coverage 92.27% 98.69% 97.92% 97.60%

incorrect contigs (mean) 5(61,643) 1(44,055) 1(70,485) 2(22,680)

time (in seconds) 332 433 747 467

PASHA uses the parameters “k = 29”, Velvet uses “k = 29, -exp_cov = auto,
-cov_cutoff = auto”, ABySS uses “k = 29, n = 10” and SOAPdenvo uses “k =
23, insert_length = 160”.

Liu et al. BMC Bioinformatics 2011, 12:354
http://www.biomedcentral.com/1471-2105/12/354

Page 7 of 10

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_000964
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_002929
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_000913

four assemblers, where we only consider scaffolds of
length ≥ 100 bps. The tables show that for all the three
datasets, PASHA is able to produce more contiguous
assemblies with comparable genome coverage and mis-
assembly rates in terms of all measures relating to scaf-
folds. Moreover, PASHA achieves the fastest execution
speed on a single CPU core. PASHA uses a single MPI
process (having two threads) for the first two stages of
the pipeline, and a single thread for the last two stages.
However, due to the small sizes of datasets, thread T1

contributes little to the actual execution time by over-
lapping file I/O operations with T0.
To demonstrate the capability of PASHA to handle

large genomes, we have further assembled the genome of
a Yoruban male individual using the above compute
resources. The first two stages of PASHA are computed
on the 8-node cluster, and the last two stages run on the
8-core workstation. The contig generation of ABySS is
computed on the 8-node cluster and the scaffolding is
performed on the 8-core workstation. Both PAHSA and
ABySS use a k-mer size of 27 for the assembly. Tables 5
and 6 show the PASHA and ABySS assembly results both
with, and without, scaffolding between PASHA and
ABySS, where we only consider contigs and scaffolds of
lengths ≥ 100bps. Without scaffolding, PASHA produces

an NG50 contig size of 503 with a largest contig length of
18,981 and ABySS gives an NG50 contig size of 513 with
a largest contig length 15,909. As for genome coverage,
PASHA correctly aligned 98.88% of the contigs, covering
about 66.47% of the human genome, and ABySS correctly
aligned 99.18% of the contigs, covering about 68.90% of
the human genome. The longest correct contig has a
length of 18,252 for PASHA, indicating that the largest
contig failed to be aligned to the human genome, and a
length of 15,909 for ABySS. With scaffolding, PASHA
yields an NG50 scaffold size of 2,294 and a largest scaf-
fold length of 54,491, giving a genome coverage of about
66.94%. ABySS gives an NG50 scaffold size of 1,326 and a
largest scaffold length of 29,862, giving a genome cover-
age of about 71.52%. Overall, PASHA demonstrates com-
petitive assembly quality with ABySS in terms of contigs
and scaffolds.
In terms of execution speed, PASHA takes about

21 hours to complete the whole assembly, running on
32 cores (i.e. using 16 MPI processes) in the 8-node clus-
ter with 24 GB per node (a total memory size of 192 GB)
and on the 8-core workstation with 72 GB memory
(details are shown in Table 7). Using the same compute
resources, ABySS takes about 50.6 hours, about 2.38×
slower than PASHA. Hence, we may say that PASHA has
a higher performance-cost ratio than ABySS for the
assembly of genomes as large as the human genome.

Table 4 Assembly results for E.coli

PASHA Velvet ABySS SOAPdenovo

no. of scaffolds 64 179 124 166

NG50 164,390 95,486 96,308 105,781

NG80 63,677 43,814 43,972 41,901

max 297,975 268,283 268,372 221,692

mean 71,305 25,465 37,381 27,406

genome coverage 97.44% 98.67% 95.58% 97.97%

incorrect contigs (mean) 8(6,145) 5(9,909) 5(39,765) 8(7,202)

time (in seconds) 325 490 595 533

PASHA uses the parameters “k = 31”, Velvet uses “k = 31, -exp_cov = auto,
-cov_cutoff = auto”, ABySS uses “k = 33, n = 10” and SOAPdenvo uses “k =
23, insert_length = 215”.

Table 5 Assembly results for the Yoruban male genome
without scaffolding

PASHA ABySS

NG50 503 513

max 18,981 15,909

mean 581 543

median 283 261

genome coverage 66.47% 68.90%

no. of contigs 3,518,718 3,916,628

incorrect contigs (mean) 39,419(467) 31,189(413)

sum (bps) 2,045,433,773 2,125,482,148

Table 6 Assembly results for the Yoruban male genome
with scaffolding

PASHA ABySS

NG50 2,294 1,326

max 54,491 29,862

mean 1,948 1,170

median 973 636

genome coverage 66.94% 71.52%

no. of scaffolds 1,133,810 1,893,930

incorrect contigs (mean) 70,160(367) 27,367(726)

sum (bps) 2,208,249,938 2,216,254,604

Table 3 Assembly results for Bordetella

PASHA Velvet ABySS SOAPdenovo

no. of scaffolds 228 294 287 298

NG50 24,517 18,063 18,150 17,870

NG80 10,006 8,237 9,215 8,157

max 121,801 75,085 75,809 74,881

mean 16,508 12,797 13,520 12,583

genome coverage 70.44% 68.45% 53.67% 72.45%

incorrect contigs
(mean)

166
(5,521)

150
(6,834)

138
(12,172)

81(10,261)

time (in seconds) 207 292 484 293

PASHA uses the parameters “k = 31”, Velvet uses “k = 31, -exp_cov = auto,
-cov_cutoff = auto”, ABySS uses “k = 31, n = 10” and SOAPdenvo uses “k =
25, insert_length = 198”.

Liu et al. BMC Bioinformatics 2011, 12:354
http://www.biomedcentral.com/1471-2105/12/354

Page 8 of 10

Scalability
To evaluate the scalability of PASHA, we have carried
out the assemblies of the three small datasets on a dif-
ferent number of CPU cores. The first two stages of
PASHA are executed on the compute cluster using dif-
ferent numbers of CPU cores, and the last two stages on
a single node using four threads. Since PASHA uses two
threads for one MPI process, we start the evaluation
from two CPU cores.
Figure 3 shows the execution time of PASHA on differ-

ent numbers of CPU cores. From the figure, it can be
seen that PASHA is able to decrease the execution time
as the number of CPU cores increases. However, limited
by the execution time of the last two stages, the overall
execution time decreases slowly and will ultimately reach
a plateau. Furthermore, we have compared the execution
speed between PASHA and ABySS using the same num-
ber of CPU cores in the above cluster. Using the three
datasets, PASHA is about 2.25× faster on average than
ABySS. We did not compare the execution time with
SOAPdenovo since it is a multi-threaded algorithm for
shared-memory systems and requires a very large amount
of memory for the human genome assembly problem.

Conclusions
In this paper, we have presented PASHA, a parallelized
short read assembler for large genomes using de Bruijn
graphs. Taking advantage of both shared-memory multi-
core CPUs and distributed-memory compute clusters,

PASHA has demonstrated its potential to perform high-
quality de-novo assembly of large genomes in reasonable
time with modest compute resources.
Our evaluation using three small real paired-end data-

sets shows that PASHA is able to produce better assem-
blies with comparable genome coverage and mis-
assembly rates compared to three leading assemblers:
Velvet, ABySS and SOAPdenovo. Moreover, PASHA
achieves the fastest speed for all three datasets on a single
CPU. For the Yoruban male genome, PASHA is able to
complete the assembly in about 21 hours with modest
compute resources, which is about 2.38× faster than
ABySS running on the same compute resources. Without
scaffolding, PASHA yields an NG50 contig size of 503
with the longest correct contig length of 18,252, and with
scaffolding, it produces an NG50 scaffold size of 2,294.
PASHA achieves competitive assembly quality with
ABySS, but takes less execution time using the same
compute resources. For scalability, PASHA is able to
reduce the execution time as the number of CPU cores
increases, and is about 2.25× faster on average than
ABySS running on the same number of CPU cores.

Abbreviations
CPU: Central Processing Unit; MPI: Message Passing Interface; SRA: Sequence
Read Archive

Acknowledgements
The authors thank Dr. Zheng Zejun for providing the short read datasets as
well as their respective reference genomes, thank Dr. Liu Weiguo for
providing the experimental environments, and thank the anonymous
reviewers whose constructive comments helped to improve the manuscript.

Author details
1School of Computer Engineering, Nanyang Technological University,
Singapore. 2Institut für Informatik, Johannes Gutenberg University Mainz,
Germany.

Authors’ contributions
YL conceptualized the study, carried out the design and implementation of
the algorithm, performed benchmark tests, analyzed the results and drafted
the manuscript; BS conceptualized the study, participated in the algorithm
optimization and analysis of the results and contributed to the revising of
the manuscript; DLM conceptualized the study, participated in the analysis
of the results, and contributed to the revising of the manuscript. All authors
read and approved the final manuscript.

Received: 21 April 2011 Accepted: 25 August 2011
Published: 25 August 2011

References
1. Warren RL, Sutton GG, Jones SJ, Holt RA: Assembling millions of short

DNA sequences using SSAKE. Bioinformatics 2007, 23(4):500-501.
2. Jeck WR, Reinhardt JA, Baltrus DA, Hickenbotham MT, Magrini V, Mardis ER,

Dangl JL, Jones CD: Extending assembly of short DNA sequences to
handle error. Bioinformatics 2007, 23(21):2942-2944.

3. Dohm JC, Lottaz C, Borodina T, Himmelbauer H: SHARCGS, a fast and
highly accurate short-read assembly algorithm for de novo genomic
sequencing. Genome Res 2007, 17(11):1697-1706.

4. Schmidt B, Sinha R, Beresford-Smith B, Puglisi SJ: A fast hybrid short read
fragment assembly algorithm. Bioinformatics 2009, 25(17):2279-2280.

5. Ariyaratne PN, Sung WK: PE-Assembler: de novo assembler using short
paired-end reads. Bioinformatics 2011, 27(2):167-174.

0

50

100

150

200

250

300

2 4 8 16 32 64

Ex
ec

ut
io

n
tim

e (
s)

No. of CPU cores

DRR000002
ERR007648
SRR001665

Figure 3 Execution time of PASHA on different numbers of
CPU cores.

Table 7 Runtime of PASHA and utilized compute
resources for different stages

Stages Time (h) No. of CPUs

k-mer generation and distribution 0.7 32

de Bruijn graph construction and simplification 3.1 32

bubble merging and contig generation 11.6 8

scaffolding 5.9 8

overall 21.3 N/A

Liu et al. BMC Bioinformatics 2011, 12:354
http://www.biomedcentral.com/1471-2105/12/354

Page 9 of 10

http://www.ncbi.nlm.nih.gov/pubmed/17158514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17158514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17893086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17893086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19535537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19535537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21149345?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21149345?dopt=Abstract

6. Pevzner PA, Tang H, Waterman MS: An Eulerian path approach to DNA
fragment assembly. Proc Natl Acad Sci USA 2001, 98(17):9748-9753.

7. Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES,
Nusbaum C, Jaffe DB: ALLPATHS: de novo assembly of whole-genome
shotgun microreads. Genome Res 2008, 18(5):810-820.

8. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res 2008, 18(5):821-829.

9. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I: ABySS: a
parallel assembler for short read sequence data. Genome Res 2009,
19(6):1117-1123.

10. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K,
Li S, Yang H, Wang J, Wang J: De novo assembly of human genomes
with massively parallel short read sequencing. Genome Res 2010,
20(2):265-272.

11. Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ,
Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM, Aird D, Costello M, Daza R,
Williams L, Nicol R, Gnirke A, Nusbaum C, Lander ES, Jaffe DB: High-quality
draft assemblies of mammalian genomes from massively parallel
sequence data. Proc Natl Acad Sci USA 2011, 108(4):1513-1518.

12. Jackson BG, Regennitter M, Yang X, Schnable PS, Aluru S: Parallel de novo
assembly of large genomes from high-throughput short reads. 25th IEEE
International Symposium on Parallel & Distributed Processing (IPDPS) 2010,
1-10.

13. Zerbino DR, McEwen GK, Margulies EH, Birney E: Pebble and Rock Band:
heuristic resolution of repeats and scaffolding in the Velvet short-read
de novo assembler. PLoS One 2009, 4(12):e8407.

14. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J,
Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J,
Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA,
Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS,
Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, et al: Accurate
whole human genome sequencing using reversible terminator
chemistry. Nature 2008, 456(7218):53-59.

15. Shi H, Schmidt B, Liu W, Müller-Wittig W: A parallel algorithm for error
correction in high-throughput short-read data on CUDA-enabled
graphics hardware. J Comput Biol 2010, 17(4):603-615.

16. Kelley DR, Schatz MC, Salzberg SL: Quake: quality-aware detection and
correction of sequencing errors. Genome Biol 2010, 11(11):R116.

17. Conway TC, Bromage AJ: Succinct data structures for assembling large
genomes. Bioinformatics 2011, 27(4):479-486.

18. Kent WJ: BLAT–the BLAST-like alignment tool. Genome Res 2002,
12:656-664.

doi:10.1186/1471-2105-12-354
Cite this article as: Liu et al.: Parallelized short read assembly of large
genomes using de Bruijn graphs. BMC Bioinformatics 2011 12:354.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Liu et al. BMC Bioinformatics 2011, 12:354
http://www.biomedcentral.com/1471-2105/12/354

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/11504945?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11504945?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18340039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18340039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20019144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20019144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21187386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21187386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21187386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20027311?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20027311?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20027311?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18987734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18987734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18987734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20426693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20426693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20426693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21114842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21114842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21245053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21245053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11932250?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	K-mer generation and distribution
	Distributed de Bruijn graph construction
	Graph simplification
	Bubble merging and contig generation
	Scaffolding
	Speed optimizations

	Results and Discussion
	Experimental data
	Assembly quality assessment
	Scalability

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

