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Abstract
In the past two decades, over 1000 clinical trials have failed to demonstrate a benefit in treating
stroke, with the exception of thrombolytics. Although many targets have been pursued, including
antioxidants, calcium channel blockers, glutamate receptor blockers, and neurotrophic factors,
often the focus has been on neuronal mechanisms of injury. Broader attention to loss and
dysfunction of non-neuronal cell types is now required to increase the chance of success. Of the
several glial cell types, this review will focus on astrocytes. Astrocytes are the most abundant cell
type in the higher mammalian nervous system, and they play key roles in normal CNS physiology
and in central nervous system injury and pathology. In the setting of ischemia astrocytes perform
multiple functions, some beneficial and some potentially detrimental, making them excellent
candidates as therapeutic targets to improve outcome following stroke and in other central nervous
system injuries. The older neurocentric view of the central nervous system has changed radically
with the growing understanding of the many essential functions of astrocytes. These include K+

buffering, glutamate clearance, brain antioxidant defense, close metabolic coupling with neurons,
and modulation of neuronal excitability. In this review, we will focus on those functions of
astrocytes that can both protect and endanger neurons, and discuss how manipulating these
functions provides a novel and important strategy to enhance neuronal survival and improve
outcome following cerebral ischemia.
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1. INTRODUCTION
Stroke is the third leading cause of death in the United States and results in substantial
health-care expenditures; the mean lifetime cost resulting from an ischemic stroke is
estimated at $140,048 per patient, and this estimation is higher for people over 45 years.
Nationwide in 2010, the estimated direct and indirect costs of stroke totaled $73.7 billion
[1]. Although many clinical trials have been completed in stroke patients, none of these have
demonstrated protective efficacy except for thrombolysis [2, 3]. In the case of cardiac arrest
and resuscitation only hypothermia has been shown to have clinical utility [4]. In some sense
the two therapies that have been effective thus far clinically have broad targets, and do not
only affect a single injury mechanism. In contrast, of the failed trials, many targeted neuron-
specific injury mechanisms [5]. This may reflect too narrow a view of what is needed for
brain preservation. A large body of work has shown that astrocytes play key roles both in
normal and pathological central nervous system functioning [6]. Astrocytes are the most
abundant brain cell type, and in addition to their multiple important homeostatic roles, they
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organize the structural architecture of the brain, help organize communication pathways, and
modulate neuronal plasticity (for recent review see [7, 8]). Thus, astrocytes are now thought
to be important potential targets for manipulation.

Ischemic stroke is caused by an interruption of cerebral blood flow that leads to stress, cell
death, and inflammation. Neurons are more susceptible to injury than astrocytes when
studied under some in vitro conditions [9, 10]. Neurons have less endogenous antioxidants
and are susceptible to excito-toxicity [10]. Both normally and after ischemia, astrocytes
support neurons by providing antioxidant protection [11, 12], substrates for neuronal
metabolism [13], and glutamate clearance REF. Although astrocytes are sometimes more
resilient than neurons, injury can result in impaired astrocyte function even when astrocytes
do not die. Impaired astrocyte function can amplify neuronal death [14]. Therefore, many
recent efforts have focused on the astrocyte-neuron interaction and how astrocyte function
can be improved after stroke to enhance neuronal support and survival [10, 15, 16]. A
growing body of data demonstrates that astrocytes play a multifaceted and complex role in
the response to ischemia, with potential to both enhance and impair neuronal survival and
regeneration [17]. Many recent studies focus on the astrocyte-neuron interaction and several
investigate ways in which astrocyte function can be improved after stroke to enhance
neuronal survival.

This review provides a brief overview of the pathophysiological events underlying ischemic
brain damage, and considers how these events affect astrocyte-mediated support of neurons.
In addition, we discuss some experimental approaches to enhance the neuronal supportive
role of astrocytes as a novel strategy against stroke. Finally, we explore how these
approaches may eventually be applied in the clinical setting to improve stroke outcome for
patients.

2. ASTROCYTE VIABILITY AFTER ISCHEMIA
2.1. In Vitro Studies

In vitro studies have provided substantial insight into the mechanisms governing the survival
of astrocytes following simulated ischemia. These investigations have shown that astrocytes
are generally more resistant than neurons to oxygen-glucose deprivation (OGD) performed
in media at physiologically normal pH, an in vitro model of ischemia [10, 18]. Most neurons
in astrocyte-neuronal co-cultures will die after 60–90 min of OGD, while astrocyte cultures
only suffer a similar extent of injury after 4–6 hours [9, 18, 19]. Different astrocyte
populations exist and astrocytes isolated from different brain regions such as cortex,
striatum, and hippocampus differ in their sensitivity to OGD [15, 20, 21]. Furthermore,
Lukaszevicz and colleagues [22] reported that protoplasmic astrocytes lose their integrity
faster than fibrous astrocytes, which may explain the regional differences in susceptibility to
ischemia between white matter astrocytes which are fibrous and grey matter astrocytes that
are protoplasmic. Although less susceptible to OGD-induced damaged in vitro studies have
highlighted certain elements that are highly toxic to astrocytes. For example, acidosis has
been found to be very effective in killing astrocytes [23–26], in contrast to neurons, which
are protected in acidic conditions [24, 26].

2.2. Focal Cerebral Ischemia
Much of the information about the recovery of astrocytes in vivo has been provided by
studies using immunohistological markers for astrocyte specific proteins, such as glial
fibrillary acidic protein (GFAP) and glutamine synthetase GS; Fig. 1. Using these markers
as tools, several investigations suggest that astrocytes are better preserved than neurons in
animal models of stroke outside the core where all cells die [27–29]. Though neuronal
markers are decreased as soon as 1 hour after MCAO, GFAP expression is preserved over
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the first 3 hours of reperfusion after 2 hour MCAO [29] and GS is increased 3 hours
following a 3 hour MCAO [28]. At later reperfusion periods, GFAP increases in the peri-
infarct area that later develops into the glial scar [29–32]. In contrast, Liu and colleagues
[33] reported the deterioration of some astrocyte markers prior to that of neuronal markers.
Discrepancy in findings may be due to differences in detection (i.e., protein vs. mRNA) and
injury paradigms.

2.3. Forebrain Ischemia
Excitotoxic neuronal injury is a common mechanism in both acute and chronic
neurodegenerative diseases. It has long been appreciated that inhibition of astrocyte
glutamate uptake [34, 35], and more recently inhibition of astrocyte mitochondrial function
[36], impairs neuronal survival from excitotoxic injury. Brief forebrain ischemia is a model
of the delayed hippocampal neuronal loss seen in patients following cardiac arrest and
resuscitation, and in part involves excitotoxicity. Increased generation of reactive oxygen
species (ROS) and mitochondrial dysfunction in CA1 astrocytes contributes to ischemia-
induced loss of GLT-1 and ultimately to delayed death of CA1 neurons [15]. Our studies
and those of other laboratories have demonstrated that selective dysfunction of hippocampal
CA1 subregion astrocytes, with loss of glutamate transport activity and immunoreactivity
for glutamate transporter 1 (GLT-1), occurs at early reperfusion times, hours to days before
the death of CA1 neurons [15, 37, 38].

The heterogeneous degeneration of astrocytic processes and mitochondria was tightly
associated with the appearance of disseminated selective neuronal necrosis and its
maturation after temporary ischemia [39]. By electronmicroscopy the same investigators
[40] found that focal infarction is exacerbated by temporary microvascular obstruction due
to compression by swollen astrocytic end-feet. However, hypoxia has multiple effects on
astrocytes and their ability to support neuronal viability [41]. For example, hypoxia induces
astrocyte-dependent protection of neurons following hypoxic preconditioning. Yet, hypoxia
induces processes in astrocytes that augment neuronal death in other situations, such as the
coincidence of hypoxia with inflammatory signaling.

3. REACTIVE ASTROGLIA: GOOD OR BAD AFTER STROKE?
The astrocyte response to ischemia has traditionally been viewed as detrimental to recovery,
as the astrocyte-rich glial scar has both physical and chemical inhibitory properties [42, 43].
As components of the glial scar, astrocytes exhibit hypertrophied, interdigitated processes
that form a physical barrier. Astrocytes produce inhibitory molecules including chondroitin
sulfate proteoglycans (CSPGs) that contribute to chemical inhibition [44, 45]. In the acute
setting, astrocytic gap junctions may remain open following ischemia [46], allowing
substances such as proapoptotic factors to spread through the syncytium, thereby expanding
the size of the infarct [47]. As discussed below, astrocytes can also produce a variety of pro-
inflammatory cytokines.

Many studies have shown that decreased astrogliosis often correlates with decreased infarct
size. Nonspecific inhibition of cell proliferation following ischemia using a cyclin kinase
inhibitor decreases astrocyte proliferation and results in improved functional recovery [48].
In addition, treatment with alpha-melanocyte stimulating hormone [49], cysteinyl
leukotriene receptor antagonist [50], cliostazol [51], and caffeic acid [52] result in reduced
infarct size accompanied by a decrease in astrogliosis. Treadmill exercise [28] and
acupuncture [53] are similarly associated with improved outcome and reduced astrogliosis.
Thus, results from several studies suggest that treatments that decrease infarct size are often
accompanied by attenuated astrocyte response. Despite the frequent association of decreased
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astrogliosis with improved outcome, it is difficult to determine cause and effect, since the
extent of astrogliosis likely reflects the severity of the injury, as well as influencing it.

In addition to their role in glial scar formation, astrocytes also respond to ischemia with
functions important for neuroprotection and repair. These include protecting spared tissue
from further damage [14], taking up excess glutamate as discussed above, rebuilding the
blood brain barrier [54, 55], and producing neurotrophic factors [10]. GFAP knockout mice
exhibit larger lesions than their wild-type littermates following focal ischemia [56], and
mice lacking both GFAP and vimentin have impaired astrocyte activation, decreased
glutamate uptake abilities, and attenuated PAI-1 expression after ischemia [57]. Application
of astrocyte-conditioned media after transient MCAO results in decreased infarct volume
and regained blood-brain barrier function [58], suggesting that factors released by astrocytes
following ischemia are important for neuroprotection.

Although few studies other than the use of animals lacking vimentin and GFAP have
specifically targeted astrocyte activation after ischemia, there is correlational evidence
suggesting that astrogliosis may be beneficial. Environmental enrichment, which results in
reduced infarct size and improved recovery following ischemia, also leads to increased
astrocyte proliferation [59, 60]. After focal ischemia, aged rats exhibit increased tissue
damage and increased astrocyte hypertrophy, but have decreased astrocyte proliferation
compared to young rats [61]. Systemic infusion of bone marrow stromal cells following
MCAO increases gliogenesis and decreases lesion size [62, 63]. In addition, administration
of transforming growth factor α (TGFα), a known mitogen for astrocytes [64], following
MCAO leads to reduced infarct size and improved functional recovery [65]. Furthermore,
ischemic preconditioning that produces a neuroprotective state leads to prolonged astrocyte
expression of Hsp27 [66]. Finally, mice lacking connexin 43, the gap junction connecting
astrocyte networks that is needed for proper neurotransmitter and potassium regulation, have
increased infarcts following MCAO [67]. Thus, astrocytes have the potential to be both
detrimental and beneficial following ischemic insult, making them promising targets for
manipulation to improve outcome.

4. ASTROCYTE-MEDIATED INFLAMMATION AFTER STROKE: A DOUBLE-
EDGED SWORD

Inflammation plays both detrimental and beneficial roles in brain ischemia, depending upon
the timing and severity of the inflammation. Within minutes after injury, injured neurons in
the core and penumbra of the lesion and glial cells in the core produce pro-inflammatory
mediators, cytokines, and reactive oxygen species, which activate both astrocytes and
microglia [68]. Activated astrocytes can produce the proinflammatory cytokines IL-6,
TNFα, IL-1α and β, interferon γ, and others [68–70]. High levels of these cytokines can be
detrimental to ischemic recovery [71–75] by directly inducing apoptosis of neuronal cells
and/or increasing toxic nitric oxide levels [76] and inhibiting neurogenesis [77]. Indeed,
inactivation of astrocyte NfκB signaling, shown to induce astrocyte production of pro-
inflammatory cytokines [78], decreases cytokine production and protects neurons after
ischemic injury [79]. Hsp72 overexpression is associated with lower NfκB activation and
lower TNFα [80]. In addition to cytokines, reactive astrocytes also produce chemokines
following ischemia [81]. Chemokines upregulate adhesion molecules in vascular endothelial
cells, resulting in attraction of immune cells, which may worsen ischemia-induced damage
[82]. Overall, some aspects of the local inflammatory response contribute to secondary
injury to potentially viable tissue and lead to apoptotic and necrotic neuronal cell death
hours to days after injury [83], while other aspects are beneficial.
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Although the potential benefits of inflammation after stroke have received relatively little
attention so far, indirect evidence suggests that some specific inflammatory reactions are
neuroprotective and neuroregenerative [84–91]. In addition to providing defense against the
invasion of pathogens, inflammation is also involved in clearing damaged tissue, and in
angiogenesis, tissue remodeling, and regeneration [89]. This is probably best studied in
wound healing, which is severely compromised if inflammation is inhibited [89, 91]. There
is also evidence suggesting that specific inflammatory factors can be protective in some
circumstances. IL-6, produced by astrocytes acutely after MCAO [69], is likely
neuroprotective early after ischemia [84]. Interestingly, ischemic preconditioning resulting
in protection appears to be dependent on TLR-4 signaling, and is accompanied by increased
TNFα, NFκB, and COX-2 expression [90]. Indeed, in vitro work has shown that
administration of TNFα in combination with Hsp70 results in decreased expression of pro-
apoptotic proteins following hypoxia [88]. Thus, it is important to consider these factors,
along with timing, when trying to determine the best strategy to reduce damage and improve
recovery and regeneration.

5. ASTROCYTE SUPPORT OF NEURONS AFTER STROKE
5.1. Antioxidant Production

One hallmark of the cellular response to ischemia is a rapid, dramatic increase in damaging
free radicals, including nitric oxide (NO), superoxide, and peroxynitrite [92]. Nitric oxide
synthetase levels increase as soon as 10 minutes after induction of MCAO [93], followed by
NO production that persists for at least one week after MCAO [94]. Nitric oxide can cause
cell death by inducing the release of cytochrome-c from mitochondria, leading to apoptosis
[95]. Nitric oxide can also induce necrotic death [96]. Furthermore, the production of nitric
oxide and other free radicals can modify oxidative metabolism and impair ATP production
[13, 19]. Changes in mitochondrial properties can further limit oxidative metabolism [97].
Not surprisingly, several studies have shown that antioxidant treatment enhances
neuroprotection and recovery after stroke [98–101].

The release of glutathione and SOD by astrocytes has been reported and is suggested to play
an important role in maintaining and enhancing neuronal survival, yet they are able to
reduce ascorbate for further neuronal antioxidant defense Fig. (2) [10, 102–106].
Interestingly, neurons cocultured with astrocytes exhibit higher levels of glutathione
compared with neurons cultured alone [107]. Although astrocytes upregulate SOD after
cerebral ischemia [108], they do not appear to increase levels of glutathione in ischemic
conditions [109]. It is unknown whether ischemia alters astrocytic ascorbate levels, but
osmotic swelling from ischemia results in increased astrocyte release of ascorbate in vitro
[110], suggesting that similar mechanisms may occur in vivo.

Several treatments that attenuate ischemic injury result in increased glutathione levels [111,
112]. SOD converts superoxide into oxygen and hydrogen peroxide. Similar to glutathione,
many treatments that ameliorate stroke damage are accompanied by an increase in SOD
[113, 114]. Furthermore, rodents overexpressing SOD1 have significantly smaller injuries
after both focal and global ischemia [115, 116], while mice with decreased SOD1 have
larger infarcts [117]. Finally, ascorbate can also reduce oxidative stress [118]. Treatment
with dehydroascorbic acid, a blood-brain-barrier-permeable precursor to ascorbic acid, is
protective after MCAO [119]. Dehydroascorbic acid is taken up by astrocytes and released
as ascorbic acid [12], a process increased by propofol [120], a treatment that can be
protective after stroke [121]. In summary, astrocytes are important producers of antioxidants
in the normal CNS, and astrocyte production of these molecules after stroke may enhance
neuronal survival and protect astrocyte function.
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5.2. Glutamate Regulation
Astrocytes are key players in the regulation of neuro-transmitters in the CNS. Astrocytes
make glutamine, the precursor for the neurotransmitters glutamate and GABA [122] Fig. (2).
Astrocyte production of neurotransmitter precursors is impaired after MCAO, and
alterations in neuro-transmitter levels occur throughout the brain following stroke, possibly
contributing to neuronal death [123, 124].

Astrocytes are primarily responsible for glutamate uptake in the normal brain using the
astrocyte specific glutamate transporters GLAST and GLT-1 (Fig. 2) [125–127], as excess
glutamate leads to cell death via excitotoxicity [128]. Glutamate transporter levels in
astrocytes decrease acutely following global ischemia [38, 129] and neonatal hypoxia-
ischemia [130], most likely exacerbating neuronal death as a result of glutamate-induced
excitoxicity. Despite the therapeutic potential of increasing astrocyte glutamate transport
after stroke, few groups have explored this possibility. Carnosine, shown to be protective
after focal ischemia, may partially be effective because it prevents loss of GLT-1 on
astrocytes, resulting in attenuated excitotoxicity [131]. In a more direct assessment of how
post-ischemic astrocyte glutamate transporters contribute to neuronal survival, our
laboratory has shown that upregulation of GLT-1 on astrocytes using ceftriaxone protects
CA1 neurons after global ischemia [129], similar to its effects in focal cerebral ischemia
[132].

5.3. Potassium Uptake and Energy Metabolism
Astrocytes also regulate neuronal activation by extracellular potassium uptake [133] Fig. (2).
Neurons release potassium after activation, and increased extracellular potassium leads to
neuronal hyperexcitability [133], a phenomenon that occurs in ischemic conditions [134]. In
addition to regulating neuronal activation, proper maintenance of ion gradients, such as
potassium, is important in regulating cell volume in both normal and ischemic conditions
[135, 136]. Astrocytes increase potassium transporter activity in response to transient in
vitro ischemia [137]. Due to its effects on both neuronal activity and cell volume, increasing
astrocytic potassium uptake may be a possible therapeutic target for stroke.

Astrocytes are also integral to normal maintenance of neuronal metabolism. When
astrocytes take up extracellular glutamate as a result of neuronal activity, the Na+/ K+-
ATPase, along with AMPA signaling, triggers astrocyte uptake of glucose from the blood,
as astrocytic endfeet contact capillaries [138, 139]. This glucose is then made into lactate, a
substrate for neuronal energy, to further “fuel” active neurons [140] Fig. (2). As mentioned
above, astrocytes produce glutathione. In addition to its antioxidant properties, glutathione is
needed for the conversion of methylglyoxal, a toxic by-product of metabolism, into D-
Lactate by glyoxalase 1 [141]. Although the role of astrocyte metabolism is relatively well-
established in normal tissue, the post-ischemic role of astrocyte metabolism maintenance is
less clear [142]. After ischemia, astrocytes upregulate glucose transporters in order to
provide energy to stressed/dying neuronal cells [143, 144]. Ethyl pyruvate, a derivative of
the energy substrate pyruvate, is neuroprotective after stroke only when astrocytes are
viable, suggesting that astrocytes are necessary for improvement in post-ischemic energy
metabolism [122].

6. NOVEL STRATEGIES TO IMPROVE THE NEURONAL SUPPORTIVE ROLE
OF ASTROCYTES

Although few studies have specifically targeted astrocytes for repair after stroke, there is
some evidence that this can be a successful strategy. Recent results indicate that induction of
BDNF in astrocytes by galectin-1 reduces neuronal apoptosis in ischemic boundary zone
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and improves functional recovery [145]. In addition, protection by pyruvate against
glutamate neurotoxicity is mediated by astrocytes through a glutathione-dependent
mechanism [146]. Our recent study demonstrated that enhancing astrocyte resistance to
ischemic stress by overexpressing protective proteins or antioxidant enzyme results in
improved survival of CA1 neurons following forebrain ischemia Fig. (3) [16]. Two well-
studied protective proteins, heat shock protein 72 (Hsp72) and mitochondrial SOD, were
genetically targeted for expression in astrocytes using the astrocyte-specific human GFAP
promoter. In both cases protection was accompanied by preservation of the astrocytic
glutamate transporter GLT-1, and reduced evidence of oxidative stress in the CA1 region
[16]. Similarly, selective overexpression of excitatory amino acid transporter 2 (EAAT2) in
astrocytes enhances neuroprotection from moderate hypoxia-ischemia [147].

7. TRANSLATING INSIGHTS INTO PROTECTION INTO CLINICAL
APPLICATIONS

Many factors have been identified that likely contribute to the failure in translation seen so
far with stroke therapies. Currently, the only approved stroke therapy is thrombolysis
induced by intravenous administration of recombinant tissue plasminogen activator [148];
however, because of a short therapeutic time window, only a small fraction of patients
benefit from this treatment. Hypothermia is the only accepted acute treatment to reduce
brain injury following cardiac arrest and resuscitation [4]. Thus far many clinical trials have
focused on treatments that would likely be beneficial to neurons, with fewer studies focused
on mechanisms that might benefit all cell types or specifically targeting other cell types,
such as astrocytes. Often the consequence of these treatments on the astrocyte response is
not considered. Several examples of past and ongoing clinical trials are discussed below,
with specific attention to how these treatments may alter astrocyte response or viability.

Several clinical trials have targeted manipulation of the inflammatory response to ischemia,
as stroke patients with systemic inflammation exhibit poorer outcomes [149]. Although anti-
inflammatory therapy decreases infarct size and improves neurological sequelae in
experimental animal models of stroke [150], human trials with anti-neutrophil therapy have
not shown a clear benefit [151, 152]. In addition, recent clinical trials in which anti-CD11/18
antibodies were administered to human subjects were unsuccessful [153]. Likewise, a
double-blinded, placebo-controlled clinical trial in which anti–ICAM-1 antibody was
administered within 6 hours of stroke symptoms showed disappointing results [151]. In
understanding these results it is important to recall that while experimental stroke is
relatively homogeneous concerning size, territory, and etiology, with more consistent
inflammatory response, human stroke is extremely heterogeneous [154], with different
vascular territories and extents of injury. In addition, these mediators are known to affect
many organ systems beyond the central nervous system. Systemic administration of anti-
inflammatory agents may have exacerbated the relative state of immunocompromise seen in
stroke patients, thereby confounding the outcome. Furthermore, inflammation and astrocyte
response are likely closely connected. Although there is little evidence for a direct
relationship between neutrophils and astrocytes, it has been shown that mice with a blunted
inflammatory response exhibit increased loss of GFAP-positive astrocytes after cortical stab
injury [155]. Because astrocytic glial scar formation is important in protection of spared
tissue from further damage [156], it is possible that treatments that drastically attenuate
inflammation lead to a stunted astrocyte response that is deleterious to recovery.

Another drug that has advanced to clinical study is DP-b99, currently in phase III studies for
acute stroke. DP-b99 is a membrane active chelator derivative of the known calcium
chelator, BAPTA spell out [157]. A lipophilic chelator of calcium, zinc and copper ions,
DP-b99 sequesters metal ions only within and in to cell membranes. This clinical trial is
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especially attractive because sequestration of calcium, zinc, and copper are potentially
beneficial not only to neurons, but also to astrocytes. It has been shown in Alzheimer’s
disease that beta amyloid increases astrocyte calcium influx, which causes decreased
glutathione levels [158]. Zinc chloride is toxic to astrocytes as well as neurons in vitro [159].
Similarly, astrocytes exposed to neocuprine exhibit increased copper influx and undergo
apoptotic cell death [160]. Approaches that benefit multiple cell types, including astrocytes,
are more likely to be successful.

Other current ongoing clinical trials focus on neuroprotective agents for the purpose of
aiding neurological recovery after stroke. Minocycline (Phase I), edavarone (Phase IV),
propanolol (a β-blocker; phase II and III), and more recently arundic acid have been
previously shown to be protective and enhance neuronal survival in stroke [161–165],
though by targeting different mechanisms. Some additional completed and ongoing trials are
summarized in Table 1. Preclinical research needs to consider these clinical results, and
assess effects on astrocytes as well as neurons.

Although anti-inflammatory strategies to diminish ischemic brain injury have failed thus far,
continued elucidation of the complex interactions involved in modulating the inflammatory
response may still enable novel therapeutic approaches that translate successfully into
clinical efficacy.

CONCLUSIONS
Traditionally, stroke research has focused on neurons and often ignored effects on glial cells.
It is increasingly evident that glia are vital to both normal CNS functioning and also play
important roles in neuropathological conditions. Although astrocytes form an inhibitory glial
scar following ischemia, they also perform functions necessary for neuronal survival and
well-being, such as maintaining low extracellular glutamate levels and providing antioxidant
protection. Because they have a great many functions, astrocytes are attractive candidates as
therapeutic targets. By striving to shift astrocytes towards a pro-reparative, neuronal-
supportive phenotype following stroke, future clinical therapies may well be more
successful in protecting neurons from ischemic damage and promoting repair.
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Fig. (1).
Expression of different astrocytic proteins following stroke. Increased expression of GFAP
is a hallmark of astrocytes activation, as is induction/re-expression of vimentin. Astrocytes
normally express glutamine synthetase (GS) and S100β, genes that are widely expressed in
both reactive and non-reactive astrocytes. The GFAP and S100β labelling are for the same
cell, while the Vim and GS staining labels are for of other cells. Scale bar, 50µm.
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Fig. (2).
Mechanisms of astrocyte support of neurons important in stroke. Antioxidant defense
includes release of glutathione and ascorbate. Regulation of extracellular levels of ions and
neuro-transmitters, especially K+ and glutamate, strongly influences neuronal excitability.
Elevated extracellular K+ triggers astrocyte glycolysis and enhances lactate and pyruvate
release which support neuronal metabolism. Sodium dependent glutamate uptake by
astrocytes activates the Na+/K+ ATPase, stimulating glycolytic activity and production of
lactate. Astrocytes and neurons are also coupled by the glutamate-glutamine cycle.
Astrocytes take up glutamate, convert it to glutamine, and release glutamine to the
extracellular space where it is taken up by neurons and used to synthesize glutamate to
replenish the neurotransmitter pool.
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Fig. (3).
Targeted over-expression of Hsp72 in astrocytes reduces the vulnerability of CA1 neurons
to forebrain ischemia. Selective overexpression of Hsp72 in astrocytes by expressing it from
the astrocyte specific GFAP promoter was achieved by unilateral stereotaxic injection of the
expression plasmid just above the CA1 region of the hippocampus (black arrows for
microinjection tracks) 2 days before rats were subjected to 15 min forebrain ischemia.
Selective loss of CA1 hippocampal neurons (between white arrows in middle panel) was
observed at 7 days reperfusion by cresyl violet staining. The loss of CA1 hippocampal
neurons was significantly reduced with astrocytic Hsp72 overex-pression (right panel)
compared to the neuronal loss seen with injection of control DNA (middle panel). Modified
from [16].
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Table 1

Overview of Some Completed and Ongoing Clinical Trials for Stroke

Mechanism and Compound

Anticoagulants

Ancrod® (Viprinex)

Aspirin added to IV TPA

Angiotensin II Receptor Antagonist

Diovan® (valsartan)

Losartan and amlodipine

Calcium Channel Blockers

Cilnidipine

Amlodipine

Inhibiton of Myeloperoxidases

Dapsone

Antiplatelet Therapy

Eptifibatide and rt-PA

Glutamate Antagonists

YM872

Granulocyte Colony Stimulating Factor

AX200 (G-CSF)

Free Radical Scavenging

NXY-059

Sources: http://clinicaltrials.gov/; http://strokecenter.stanford.edu/trials/

Cent Nerv Syst Agents Med Chem. Author manuscript; available in PMC 2011 December 8.

http://clinicaltrials.gov/
http://strokecenter.stanford.edu/trials/

