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Transcription factors derived from CCAAT/enhancer binding protein (C/EBP)� and C/EBP� genes control
differentiation and proliferation in a number of cell types. Various C/EBP isoforms arise from unique C/EBP�
and C/EBP� mRNAs by differential initiation of translation. These isoforms retain different parts of the
amino terminus and therefore display different functions in gene regulation and proliferation control. We
show that PKR and mTOR signaling pathways control the ratio of C/EBP isoform expression through the
eukaryotic translation initiation factors eIF-2� and eIF-4E, respectively. An evolutionary conserved upstream
open reading frame in C/EBP� and C/EBP� mRNAs is a prerequisite for regulated initiation from the different
translation initiation sites and integrates translation factor activity. Deregulated translational control leading
to aberrant C/EBP� and C/EBP� isoform expression or ectopic expression of truncated isoforms disrupts
terminal differentiation and induces a transformed phenotype in 3T3-L1 cells. Our results demonstrate that
the translational controlled ratio of C/EBP� and C/EBP� isoform expression determines cell fate.
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Transcription factors of the CCAAT/enhancer binding
protein (C/EBP) family have decisive roles during differ-
entiation in a number of cell types, including adipocytes,
hepatocytes, enterocytes, keratinocytes, certain cells of
the lung, mammary gland, the hematopoietic system, as
well as in ovulation (Birkenmeier et al. 1989; Cao et al.
1991; Samuelsson et al. 1991; Lin and Lane 1992; Scott et
al. 1992; Chandrasekaran and Gordon 1993; Piontkewitz
et al. 1993; Freytag et al. 1994; Müller et al. 1995; Screp-
anti et al. 1995; Tanaka et al. 1995; Flodby et al. 1996;
Pall et al. 1997; Sterneck et al. 1997; Swart et al. 1997;
Zhang et al. 1997; Nerlov et al. 1998; Radomska et al.
1998). C/EBPs exert their function by regulating both the
expression of tissue-specific genes and cell proliferation
(Christy et al. 1989; Kaestner et al. 1990; Park et al. 1990;
Umek et al. 1991; Lin et al. 1993; Ness et al. 1993; Buck
et al. 1994; Constance et al. 1996; Oelgeschläger et al.
1996; Timchenko et al. 1997; McNagny et al. 1998; Buck
et al. 1999; Müller et al. 1999). The importance of C/EBP
proteins initially has been demonstrated in tissue cul-
ture model systems of adipogenesis and hematopoiesis
(Lin and Lane 1992; Freytag et al. 1994; Hu et al. 1995;
Müller et al. 1995; Nerlov et al. 1998) and has now been
firmly established through analysis of the respective
knockout mice (Screpanti et al. 1995; Tanaka et al. 1995;
Wang et al. 1995; Flodby et al. 1996; Sterneck et al. 1997;
Zhang et al. 1997).

Several C/EBP� and C/EBP� protein isoforms corre-
sponding to full-length and amino-terminally extended
and truncated proteins can be detected in the cell. These
isoforms display contrasting functions in gene activation
and cell proliferation (Descombes and Schibler 1991; Lin
et al. 1993; Ossipow et al. 1993; Buck et al. 1994; Calk-
hoven et al. 1994, 1997; Freytag et al. 1994; Sears and
Sealy 1994; Nerlov et al. 1998; Kowenz-Leutz and Leutz
1999). Changes in the isoform ratio were observed in
inductive cellular processes such as acute phase response
(An et al. 1996), in liver development and liver regenera-
tion (Diehl et al. 1994; Rana et al. 1995; Timchenko et al.
1998), in mammary glands during lactation (Raught et al.
1995), and in tumorigenic conversion (Raught et al.
1996). These findings suggest that the expression of the
C/EBP protein isoforms is regulated and that the ratio of
isoforms is important in proliferation and differentiation
control.

Initially, differential translation initiation from inter-
nal AUG codons via a mechanism called leaky scanning
of ribosomes was proposed to be responsible for the
generation of truncated cellular C/EBP isoforms
(Descombes and Schibler 1991; Lin et al. 1993; Ossipow
et al. 1993). Recently, however, it has been suggested
that limited proteolytic cleavage accounts for amino-ter-
minally truncated C/EBP isoforms (Baer et al. 1998;
Welm et al. 1999). In view of the importance of C/EBP
proteins in the determination of cell fate, it is of consid-
erable interest to reveal how C/EBP isoforms are gener-
ated and how this process is regulated.
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Here we demonstrate that regulated initiation of trans-
lation from different sites is the prevailing mechanism
for the generation of different protein isoforms from
C/EBP� and C/EBP� mRNAs. The regulated expression
of different C/EBP isoforms depends on the integrity of
evolutionary conserved upstream open reading frames
(uORF) in both C/EBP� and C/EBP� mRNAs. Signal
transduction pathways regulating the function of the
translation initiation factors eIF-2 and eIF-4E determine
the ratio of C/EBP isoforms. Deregulated expression of
truncated C/EBP� and C/EBP� isoforms interferes with
terminal differentiation and induces cell transformation
in 3T3-L1 adipocytes. Hence, regulation of translation
initiation that determines C/EBP isoform ratio has a cru-
cial role in the control of cell proliferation and differen-
tiation in C/EBP�- and C/EBP�-expressing cells.

Results

Multiple C/EBP� and C/EBP� protein isoforms are
generated from different translation initiation sites

As shown in Figure 1, comparison of C/EBP� and
C/EBP� mRNAs from vertebrates revealed that the dis-
tribution and strength of potential translation initiation
sites designated A, B1, B2, and C are highly conserved.
All known C/EBP� genes have an upstream translation initiation AUG codon (site A) that may give rise to an

extended full-length protein isoform (Descombes and
Schibler 1991; Kowenz-Leutz and Leutz 1999). In
C/EBP�, an alternative CUG initiation codon is found at
the A site, except in human C/EBP� (see Discussion).
The most prominent C/EBP full-length translation prod-
ucts initiate at an AUG codon at site B1. In C/EBP� and
in chicken C/EBP� a second initiation site, B2, follows a
few codons downstream. Amino-terminally truncated
C/EBP� and C/EBP� isoforms may arise from transla-
tion initiation at the downstream site, C. Intriguingly,
all vertebrate C/EBP� and C/EBP� mRNAs contain an
additional initiation site, D, between sites A and B1,
from which a small uORF can be translated (site D, Fig.
1). A salient feature of this uORF is that it is always out
of frame with respect to the C/EBP coding frame and
terminates a few nucleotides 5� of site B1.

Translation initiation site null (�) mutations were in-
troduced in C/EBP� and C/EBP� cDNAs of rat and
chicken to determine whether isoform expression is ini-
tiated from multiple translation initiation sites. The re-
sulting expression plasmids were transiently transfected
into COS-1 cells, and protein expression was examined
by immunoblotting. As shown in Figure 2, mutations of
A, B1, B2, or C into noninitiation sites abolished expres-
sion of corresponding C/EBP� and C/EBP� isoforms. In
addition, mutations that abrogated expression of the full-
length isoforms simultaneously enhanced expression of
truncated isoforms. This obvious lack of a precursor—
product relationship suggested that C/EBP protein iso-
forms arise by differential usage of translation initiation
sites rather than by limited proteolysis. To unequivo-
cally distinguish between translational vs. proteolytic
generation of isoforms, additional artificial initiation

Figure 1. Representation of the vertebrate C/EBP� and
C/EBP� mRNA structure and comparison of the potential
translation initiation sites. (Top) Shaded areas indicate the
C/EBP coding region. The potential translation initiation sites
are designated A, B1, B2, and C. The solid box represents the
small uORF initiated at site D, which is out of frame with
respect to the C/EBP reading frame. (Below) Shading indicates
critical nucleotides at position −3 and +4 corresponding to the
optimal Kozak translation initiation consensus sequence (bot-
tom).

Figure 2. Identification of C/EBP� and C/EBP� translation ini-
tiation sites. Schematic representations of the C/EBP mRNAs
with the initiation sites indicated in relation to the protein
bands are shown at left. Wild-type cDNA (wt), constructs that
lack distinct translation initiation codons (�A, �B1, �B2, �C,
and �D) or an amino-terminal deletion construct (C) were tran-
siently transfected in COS-1 cells. C/EBP protein expression
was analyzed by immunoblotting of total cell extracts: (a) rC/
EBP�; (b) cC/EBP�; (c) rC/EBP�; (d) cC/EBP�.
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sites (X) were introduced, 20–37 codons upstream of site
C (Fig. 3). The rationale was that a proteolytic mecha-
nism should process the full-length precursors to trun-
cated isoforms regardless of the presence of site X,
whereas translation-based events should give rise to
novel proteins that initiate at the X site instead of the
wild-type C site. As shown in Figure 3, C/EBP constructs
that contain the X site gave rise to larger truncated iso-
forms at the expense of wild-type truncated isoforms.
These results confirm that C/EBP isoforms are generated
by a conserved translational mechanism.

Previously, it has been suggested that usage of respec-
tive initiation sites in chicken C/EBP� (cC/EBP�) may
depend on the small uORF between sites A and B1 (Calk-
hoven et al. 1994). Others suggested that the uORF de-
termines the frequency of initiation from the B1 site
only (Lincoln et al. 1998). To resolve whether the uORF
directs translation from internal initiation sites, two
types of C/EBP� and C/EBP� mutants were constructed
and analyzed: (1) mutation of the uORF initiation site
(�D); and (2) optimization of the translation initiation
sequence at position A (Aopt), which should prevent
leaky scanning of ribosomes to the downstream D site.
Figure 3 shows that both types of mutations almost en-
tirely abolished the translation of truncated isoforms
from the wild-type C or the X site. In addition, the �D
mutation reduced translation from the upstream A site,
whereas translation from B1 is enhanced [most clearly
visible with rat C/EBP� (rC/EBP�)]. These results show

that the uORF is essential for differential translation ini-
tiation from C/EBP� and C/EBP� mRNAs. To rule out
cell-type and species-specific effects, three other cell
lines, quail (QT6) fibroblasts, 3T3-L1 pre-adipocytes, and
human HeLa cells were examined for expression of
C/EBP� and C/EBP� wild-type and key mutants, �D, X,
and X�D. Similar results were obtained in all three cell
types (data not shown), suggesting that translational con-
trol of C/EBP isoform expression mediated by the uORF
is conserved during evolution and is not cell type spe-
cific.

To examine whether the efficiency of the uORF site D
selection for translation modulates C/EBP isoform ex-
pression we generated mutants of rC/EBP� in which site
D, normally in a suboptimal context, was either mutated
in a weaker non-Kozak site (d) or placed in stronger op-
timal Kozak context (Dopt). Figure 4a shows that the
C/EBP� isoform ratio shifts to a relatively more trun-
cated isoform with the increase of site D strength.
Hence, more efficient selection of uORF site D shifts the
ratio of C/EBP isofom translation to a relatively more
truncated isoform.

Next, we examined whether regulatory elements in
the 5�- and/or 3�-untranslated regions (UTRs) would be
required in addition to the C/EBP uORF to direct differ-
ential initiation of translation. The 5� and 3� UTRs were
deleted or exchanged against unrelated sequences of the
globin-3 gene, as shown in Figure 4b. It is evident that
expression of truncated C/EBP isoforms initiated at in-
ternal C sites was maintained regardless of the UTRs.
Subsequent mutation of the uORF initiation site con-
firmed that the uORF remained crucial for translation of
truncated isoforms (Fig. 4b, �D).

Finally, we determined whether the C/EBP� uORF
could autonomously direct translation initiation to in-
ternal sites. To do so, the rC/EBP� uORF was placed in
front of the coding sequence of MyoD (uORF–MyoD). As
shown in Figure 4c, a truncated MyoD protein was gen-
erated in addition to the full-length protein from the
uORF–MyoD construct. No such truncated MyoD pro-
tein was found when site D was mutated nor with wild-
type MyoD (data not shown). Taken together, these re-
sults show that the C/EBP uORF is required for transla-
tion initiation at multiple sites and that it may function
as an autonomous cis-regulatory mRNA element.

Translation regulation pathways control C/EBP
protein isoform expression

Initiation of translation is affected by a number of path-
ways that control the activity and level of eukaryotic
translation initiation factors (eIFs) (Hershey 1991; Morris
1995). The RNA-dependent protein kinase (PKR) affects
translation initiation by phosphorylation-induced inac-
tivation of the rate-limiting eIF-2�, a component of the
eIF-2 holocomplex (Meurs et al. 1990). We asked whether
interference with PKR or eIF-2 function would modify
C/EBP� and C/EBP� protein isoform ratios. For this pur-
pose we employed the pre-adipocyte 3T3-L1 cell line,
which undergoes C/EBP� and C/EBP� dependent differ-

Figure 3. Translation of truncated C/EBP� and C/EBP� pro-
teins from downstream initiation sites depends on the uORF.
Schematic representations of the mRNAs with potential initia-
tion sites indicated in relation to the protein bands are shown at
left. COS-1 cells were transiently transfected with C/EBP wild-
type (wt) and mutant constructs and analyzed for C/EBP protein
expression by immunoblotting. In �D mutants, the uORF trans-
lation initiation site is mutated to a noninitiation site. In the
Aopt mutant, the sequence context of site A is mutated to an
optimal Kozak sequence. The X mutants harbor an additional,
optimal translation initiation site upstream of site C. (a) rC/
EBP�; (b) cC/EBP�; (c) rC/EBP�; (d) cC/EBP�.
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entiation upon hormone treatment (Yeh et al. 1995b). In
these cells the eIF-2 pathway was constitutively acti-
vated by retroviral introduction of a kinase-inactive and
dominant-negative PKR mutant (PKR�6) (Koromilas et
al. 1992) or the eIF-2� mutant S52A (Choi et al. 1992),
which cannot be phosphorylated and thus resists inacti-
vation by PKR. Transgene-expressing and control (empty
vector) 3T3-L1 cultures were subjected to a standard dif-
ferentiation protocol and analyzed for C/EBP� and
C/EBP� protein isoform expression by immunoblotting.
Figure 5a shows that ectopic expression of either PKR�6
or eIF-2�S52A, shifts C/EBP� and C/EBP� isoform ex-
pression toward the truncated isoform. A similar shift in
C/EBP isoform expression was obtained by treating dif-

ferentiated 3T3-L1 adipocytes with the PKR inhibitor
2-aminopurine (2-AP) (De Benedetti and Baglioni 1983).

Figure 4. The uORF regulates translation from downstream
initiation sites. Schematic representations of the mRNAs are
shown at left. (a) The C/EBP� isoform ratio is modified by the
efficiency of the uORF translation. The wild-type suboptimal
sequence context of site D (wt) was placed in an optimal Kozak
consensus sequence (Dopt) or in a non-Kozak context (d). Ini-
tiation site sequences are shown at right. (b) cC/EBP� and
C/EBP� 5� UTRs were replaced by a 50-bp sequence of the �-glo-
bin leader, and the 3� UTRs were deleted. The uORF translation
initiation site D was left intact (–) or was mutated to a nonini-
tiation site (�D). (c) The Flag-tagged MyoD coding region was
placed downstream of a 5� �-globin leader sequence and the
rC/EBP� uORF sequence (D) or the uORF initiation site mutant
(�D) as indicated. All constructs were transiently transfected in
COS-1 cells. C/EBP or MyoD protein expression was analyzed
by immunoblotting.

Figure 5. The ratio of C/EBP� and C/EBP� protein isoform
expression is modulated by translation initiation factor activity.
(a) 3T3-L1 cells ectopically expressing PKR�6, eIF-2�S52A, eIF-
4E, and control cells (empty vector) were induced to undergo
adipogenesis and analyzed for expression of endogenous
C/EBP� and C/EBP� isoforms at day 4 of the differentiation
protocol by immunoblotting. (Fl) Full-length isoform; (Tr) trun-
cated isoform. Ratios of full-length vs. truncated C/EBP iso-
forms of three independent experiments are depicted below;
immunoblots of experiment 1 are shown. (b) PKR�6, eIF-2�SA,
and eIF-4E transgene expression were analyzed by immunoblot-
ting in transgene (+) and control (–) cells. (c) 3T3-L1 cells at day
4 of differentiation were treated with 5 mM 2-aminopurine (+2-
AP) or 1 µM rapamycin (+Rap) for 12 hr and compared with
control cultures for rC/EBP� protein expression. Bottom panels
show protein expression of endogenous PKR and 4E-BP1. The
respective hyperphosphorylated forms are indicated (-P).
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As shown in Figure 5c, concomitantly with 2-AP-in-
duced dephosphorylation and inactivation of PKR, ex-
pression of truncated C/EBP� isoform was enhanced.
These results show that high eIF-2 activity shifts the
ratio of C/EBP isoform expression toward a more trun-
cated isoform.

The FKBP12–rapamycin-associated protein (FRAP)/
mammalian target of rapamycin (mTOR) (Brown et al.
1994) enhances the level of accessible eIF-4E (Lawrence
and Abraham 1997): mTOR phosphorylates and inhibits
phosphatase PP2A, which keeps the inhibitory 4E-bind-
ing protein 1 (4E-BP1, also called PHAS1) in an active
unphosphorylated state (Lin et al. 1994; Pause et al.
1994; Brunn et al. 1997; Peterson et al. 1999). We gener-
ated 3T3-L1 cells that overexpressed eIF-4E by retroviral
transfer and subjected them to the standard differentia-
tion protocol. As shown in Figure 5a, enhanced levels of
eIF-4E shift C/EBP� isoform expression toward the trun-
cated isoform. On the other hand, when mTOR was in-
hibited by rapamycin, expression of the truncated
C/EBP� isoform was reduced concomitantly with the
dephosphorylation of 4E-BP1 (Fig. 5c). Similar results
were obtained with C/EBP� (data not shown). In conclu-
sion, two rate-limiting translation initiation factors con-
trol the ratio of C/EBP isoforms: At high eIF-2 and eIF-4E
activity relatively more truncated C/EBP isoforms are
expressed, whereas at lower eIF activity expression of the
full-length isoforms dominates.

To investigate the role of the uORF in conjunction
with eIF activity for the regulation of C/EBP� and
C/EBP� isoform expression, we transiently transfected
undifferentiated 3T3-L1 control cells and 3T3-L1 cells
expressing eIF-2�SA or eIF-4E transgenes with C/EBP�
wild-type or the corresponding mutated uORF (�D) ex-
pression constructs. Figure 6a shows that the expression
of truncated C/EBP isoforms depends on the uORF under
conditions of enhanced eIF activity as well. eIF-4E has
been implicated in the selection of upstream initiation
sites in bicistronic messengers (Tahara et al. 1991). We
examined the effect of increased eIF-4E levels on trans-
lation initiation from the uORF site D. To do so we fused
the uORF of C/EBP� in frame to the C/EBP� coding
sequence and tested the effect of eIF-4E on translation
initiation from D and B1. As shown in Figure 6b, over-
expression of eIF-4E enhanced translation initiation
from the uORF initiation site D at the expense of initia-
tion from site B1. These results indicate that the uORF is
crucial for the modulation of C/EBP� isoform ratio
through eIF activity.

Enhanced expression of the truncated C/EBP�
or C/EBP� isoform alters proliferation
and differentiation in 3T3-L1 cells

Terminal differentiated 3T3-L1 adipocytes form mono-
layers of contact-inhibited fat cells that store large
amounts of lipids. We noticed that interference with
translational control pathways altered the differentia-
tion program of 3T3-L1 cells. Increased eIF activity re-

duced contact inhibition and resulted in foci formation
in differentiating cultures (data not shown). To deter-
mine whether deregulated expression of C/EBP isoforms
might account for the altered growth properties, we sta-
bly introduced truncated C/EBP� or C/EBP� isoforms by
retroviral gene transfer and induced adipogenesis by the
standard protocol. As shown in Figure 7, sustained ecto-
pic expression of truncated C/EBP� or truncated C/EBP�
isoform gave rise to a heterogeneous population of pre-
dominantly small and spindle-shaped cells that were
poorly differentiated. The cells displayed reduced adher-
ence to the culture dish, formed foci, and continued to
multiply during differentiation, as shown by BrdU incor-
poration. Thus, up-regulation of truncated C/EBP iso-
forms prevents proliferation arrest and contact inhibi-
tion, interferes with terminal adipogenic differentiation,
and induces a transformed phenotype. Apparently,
proper translational regulation of C/EBP isoform expres-
sion is a prerequisite for terminal fat cell differentiation
and proliferation arrest.

Discussion

Aberrant translational control of C/EBP� and C/EBP�
isoform expression disrupts differentiation and induces
cellular transformation

In this paper we show that the availability and activity
of translation initiation factors determine the transla-
tion of C/EBP� and C/EBP� mRNAs into different tran-

Figure 6. The uORF is essential for the modulation of C/EBP
isoform expression through eIF activity in 3T3-L1 cells. (a) Un-
differentiated 3T3-L1 control cells and cells expressing eIF-
2�S52A or eIF-4E were transiently transfected with wild-type
rC/EBP� expression constructs (wt) or constructs with mutated
uORF initiation site (�D). Cell extracts were analyzed for rC/
EBP� expression by immunoblotting. (Fl) Full-length isoform;
(Tr) truncated isoform. Ratios of full-length vs. truncated
C/EBP isoforms of two independent experiments are depicted
below; immunoblots of experiment 1 are shown. (b) A construct
expressing a uORF–rC/EBP� fusion protein was cotransfected
with an eIF-4E expression construct or empty vector (–) in
COS-1 cells. uORF–rC/EBP� fusion protein expression was ana-
lyzed by immunoblotting of total cell extracts. A schematic
representation of the mRNA is shown at left.
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scription factor isoforms. The individual C/EBP� and
C/EBP� protein isoforms have different biological activi-
ties that determine cell fate. Full-length C/EBP� and
C/EBP� isoforms, translated from the B1 site, are tran-
scriptional activators and induce differentiation and cell-
cycle arrest in various cell types (Ness et al. 1993; Ossi-
pow et al. 1993; Buck et al. 1994; Freytag et al. 1994;
Müller et al. 1995; Wu et al. 1995; Nerlov et al. 1998).
Recently, it was shown that the extended C/EBP� iso-
form, generated from the A site, may recruit the chro-
matin remodeling SWI/SNF complex to activate a differ-
ent set of target genes in comparison to full-length
C/EBP� (Kowenz-Leutz and Leutz 1999). Truncated iso-
forms, initiated at the C site, display little if any trans-

activation and permit, or even induce, the cell cycle to
proceed (Lin et al. 1993). Furthermore, the truncated iso-
forms, even at substoichiometric levels, may counteract
the functions of full-length isoform levels (Descombes
and Schibler 1991; Ossipow et al. 1993; Raught et al.
1995; Calkhoven et al. 1997). Thus, the biological effect
evoked by C/EBP� and C/EBP� proteins will depend
strongly on the ratio of their isoforms. Full-length C/EBP
isoforms prevail in differentiating cells both in vivo and
in tissue culture, reflecting proliferation arrest and ex-
pression of tissue-specific C/EBP target genes. Enhanced
expression of the truncated isoform results in a trans-
formed phenotype of 3T3-L1 adipocytes. These cells lost
contact inhibition and continued to proliferate during

Figure 7. Constitutive ectopic expression of truncated C/EBP� or C/EBP� induces cellular transformation in differentiating 3T3-L1
cells. (a) 3T3-L1 control cells and 3T3-L1 ectopically expressing truncated rC/EBP� or truncated rC/EBP� were induced to undergo
adipogenesis. At day 8 of differentiation cells were fixed and stained with Oil Red O (lipid staining). Microscopic pictures of different
magnifications (as indicated) are shown. In parallel experiments the cells were incubated for 8 hr with BrdU, fixed and stained by
immunohistochemistry (right). (b) Ectopic and endogenous expression of C/EBP protein isoforms was analyzed by immunoblotting.
(Fl) Full-length isoform; (Tr) truncated isoform.
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differentiation, which suggests that down-regulation of
truncated C/EBP� isoforms is essential for cessation of
proliferation and terminal differentiation. Constitutive
activation of eIF-2 or eIF-4E, which deregulated C/EBP�
and C/EBP� isoform expression, induced a similar trans-
formed phenotype in 3T3-L1 adipocytes.

Deregulated eIF activity has been shown to transform
fibroblasts (Koromilas et al. 1992; Donze et al. 1995).
Although deregulated eIF activity will affect translation
of many genes, it is tempting to speculate that inad-
equate adjustment of C/EBP isoform ratios contributes
to neoplastic conversion in tissues that express C/EBP�
and/or C/EBP�. A correlation has been found between
enhanced eIF-2 activity and enhanced truncated C/EBP�
expression in mammary epithelial cancer cells (Raught
et al. 1996). In addition, up-regulation of eIF-4E is an
early event in colon cancer cells known to express
C/EBPs (Rosenwald et al. 1999). Also, the myxoid lipo-
sarcoma-specific chromosomal rearrangement of the
CHOP gene, TLS–CHOP, which is required for onco-
genic transformation, interferes with C/EBP function
(Zinszner et al. 1994).

Differential initiation of translation generates different
C/EBP isoforms

Initially, truncated C/EBP� and C/EBP� isoforms were
proposed to arise by a ribosomal scanning mechanism to
alternative translation initiation sites in their mRNAs
(Descombes and Schibler 1991; Lin et al. 1993; Ossipow
et al. 1993; An et al. 1996). In contrast, limited proteoly-
sis recently has been suggested to account for the gen-
eration of truncated isoforms (Baer et al. 1998; Welm et
al. 1999). We showed by a mutagenesis approach that
different C/EBP� and C/EBP� protein isoforms originate
from all evolutionary conserved translation initiation
sites (termed A, B1, B2, and C; Fig. 1). Elimination of
upstream initiation sites increases expression of trun-
cated C/EBP isoforms. Moreover, introduction of novel
initiation sites (X) between B and C sites results in pro-
duction of novel isoforms initiated at the X rather than
at the C site. Shift of translation initiation to down-
stream initiation sites once upstream sites were re-
moved, and substitution of the wild-type truncated prod-
ucts (C) by alternative products once an extra initiation
codon (X) was introduced argue strongly in favor of a
translational mechanism in the generation of truncated
C/EBP isoforms. Although we cannot rule out that lim-
ited proteolysis of C/EBPs might occur under specific
conditions (Welm et al. 1999), our results are incompat-
ible with precursor–product relationships between full-
length and truncated proteins and consistent with obser-
vations reported by Sears and Sealy (1994), who also
failed to find a precursor–product relationship by pulse-
chase labeling. Additional experiments, using bicistronic
contructs also ruled out the possibility that truncated
proteins are generated by internal ribosomal entry sites
in C/EBP mRNAs (data not shown). We conclude that
translational control is the prevailing mechanism of
C/EBP� and C/EBP� isoform expression in vertebrates.

The conservation of translation initiation site distri-
bution and sequence context further supports the experi-
mental data. The sequence context of initiation codons
determines the fidelity and frequency of their selection,
as has been described by Kozak (1989). Only two devia-
tions from the conserved initiation sites were found.
First, the A site in human C/EBP� is apparently absent.
However, an immunoreactive band corresponding to an
extended isoform was detected in extracts of the human
HL-60 leukemia cell line, indicating that translation
may be initiated from a functionally equivalent A site (a
GUG codon; C.F. Calkhoven, unpubl.). The second ex-
ception is that a B2 site is present in all C/EBP� isoforms
examined and in cC/EBP� but not in mammalian and
Xenopus laevis C/EBP�.

The C/EBP uORF mediates differential translation
initiation

A small uORF is located between the A and the B sites in
all vertebrate C/EBP� and C/EBP� mRNAs. The uORF
is out of frame with respect to the C/EBP reading frame
and terminates just upstream of the major initiation site
B1. Fusion of the uORF to the C/EBP reading frame re-
vealed that site D is selected for translation. Our data
show that the uORF has a crucial role in the regulation
of isoform expression. Three lines of evidence show that
the uORF is paramount for translation initiation at
downstream initiation sites. First, different types of mu-
tations that disrupt the function of the uORF concomi-
tantly abrogate translation initiation at downstream
sites. Second, the efficiency of translation from site C is
proportional to the efficiency of site D selection. Third,
the uORF mediates translation from downstream initia-
tion sites in a different mRNA context (MyoD transcript)
and thus displays an autonomous function.

The observation that removal of the uORF initiation
codon abolished initiation at the C site (or X site) and
optimization of the uORF site D enhances initiation at C
indicates that uORF translation is required for its func-
tion. This implies that translation reinitiation rather
than leaky scanning is the mechanism of downstream
initiation at C (or X). Translation from site B1 is not
dependent on the uORF. In contrast, it is inversely regu-
lated to the strength of the D site. This indicates that
translation from B1 mainly results from leaky scanning
over the wild-type D site (or the weak mutant site d).
However, the optimization of the D site (Dopt), which
does not allow leaky scanning of ribosomes (data not
shown), diminishes but does not completely abolish
translation from B1 (as one would expect with leaky
scanning as the only mechanism). Hence, immediate
reinitiation after uORF translation seems to occur as
well. Taken together, translation from site C appears to
depend strictly on uORF translation, whereas initiation
at site B1 can occur by either leaky scanning or by im-
mediate reinitiation.

Removal of the D site also revealed that the uORF is
involved in regulation of initiation at site A. We presume
that under certain cellular conditions translation of the
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uORF may cause cueing of ribosomes and thus increase
the probability of initiation at the weak initiation site A.
Although several details need to be solved, the data show
that a conserved uORF in vertebrate C/EBP� and
C/EBP� mRNAs directs the translation from multiple
translation sites.

Translational control and cell fate

Kinases PKR and mTOR, implicated in C/EBP isoform
translation, are involved in many cellular processes. A
major function of PKR is to mediate translational repres-
sion after virus infection and interferon signaling (Wek
1994). However, regulating PKR activity also appears to
be essential for normal cell proliferation and differentia-
tion. Others showed that both the inactivation of PKR in
quiescent cells or ectopic expression of the PKR phos-
phorylation-defective eIF-2�S52A mutant induces prolif-
eration and even transformation (Koromilas et al. 1992;
Meurs et al. 1993; Barber et al. 1994; Donze et al. 1995).
We also observed loss of contact inhibition and persis-
tent proliferation in differentiating 3T3-L1 cells express-
ing dominant-negative PKR�6 or eIF-2�S52A (data not
shown). Augmentation of rate-limiting eIF-2� enhanced
expression of truncated C/EBP forms in an uORF-depen-
dent manner. A paradigm of eIF-2 function and transla-
tional control is provided by the yeast transcription fac-
tor GCN4. In yeast, high levels of eIF-2 mediate multiple
translation reinitiation events after initial uORF trans-
lation (Mueller and Hinnebusch 1986; Hinnebusch
1994). In a similar fashion, elevated eIF-2 levels might
enhance translation reinitiation at C/EBP C sites after
translation of the uORF.

The FRAP/mTOR kinases are involved in the regu-
lation of several cellular processes, including cell pro-
liferation, transcriptional response to nutrients, and
mRNA translation (Brown et al. 1994; Zheng and
Schreiber 1997; Peterson and Schreiber 1998; Beck
and Hall 1999; Cardenas et al. 1999; Dennis et al. 1999;
Hardwick et al. 1999; Kuruvilla and Schreiber 1999). Our
data show that inhibition of FRAP/mTOR function by
rapamycin reduced expression of the truncated C/EBP
isoforms, whereas overexpression of eIF-4E enhanced ex-
pression of the truncated isoforms in an uORF-depen-
dent manner. Others have shown that eIF-4E is impli-
cated in selection of upstream initiation sites in bicis-
tronic messengers (Tahara et al. 1991). Accordingly, we
observed enhanced translation initiation from uORF site
D upon overexpression of eIF-4E (Fig. 6b). As the trans-
lation of the uORF determines reinitiation at the down-
stream site C (Fig. 4a), it is presumably eIF-4E-mediated
enhanced D-site usage that leads to increased expression
of truncated C/EBP isoforms. Our data are also in accor-
dance with that of Yeh et al. (1995a), who showed that
treatment of 3T3-L1 cells with rapamycin at the onset of
the differentiation program inhibits their clonal expan-
sion, a prerequisite for 3T3-L1 differentiation. It is pos-
sible that the observed repression of truncated C/EBP
isoforms is responsible for failure of clonal expansion.

Taken together, pathways that modulate the activity

of eIF-2 and eIF-4E alter the ratio of C/EBP isoforms in
conjunction with their uORF. According to the working
model shown in Figure 8, pathways that activate trans-
lation (e.g., by various growth factors) concomitantly en-
hance expression of truncated C/EBP isoforms, which in
turn supports proliferation. In contrast, pathways that
decrease eIF functions will preferentially shift C/EBP ex-
pression to full-length isoforms and thus support growth
arrest and differentiation. We suggest that the C/EBP
uORF acts as a mediator for translation factor activity to
adjust the ratio of C/EBP isoforms accordingly and so
determine cell fate.

It is noteworthy that in addition to C/EBPs, a number
of other key regulatory proteins involved in proliferation
and differentiation are regulated at the translational
level. Among these proteins are the CDK inhibitor p27
(Hengst and Reed 1996), cyclin D1 (Rousseau et al. 1996),
CLN3 (Polymenis and Schmidt 1997), thrombopoietin
(Ghilardi et al. 1998), PDGF2 (Bernstein et al. 1995),
BCL-2 (Harigai et al. 1996), AdoMetDC (Hill and Morris
1993), and c-Myc (Hann et al. 1992). Fewer than 10% of
vertebrate mRNAs have upstream initiation codons and/
or uORFs. However, two-thirds of the transcripts encod-
ing growth regulatory proteins (growth factors, cyto-
kines, oncogenes, etc.) have such features (Kozak 1987,
1991). An attractive possibility, therefore, is that the ex-
pression of mRNAs encoding critical proteins that deter-
mine cell fate are restricted in their translation to per-
missive eIF activities that are under environmental con-
trol. Only in a specific window of eIF activity such
proteins are generated or their composition adjusted to
allow proliferation or differentiation. It is evident that
such a safeguard, which controls entry into the cell
cycle, independently of transcriptional regulation, is also
prone to tumorigenic conversion.

Materials and methods

DNA constructs

C/EBP constructs All mutations were generated by site-di-
rected mutagenesis following the method of Kunkel (Ausubel et
al. 1993; Kunkel et al. 1991). cC/EBP� mutants were generated

Figure 8. Translation initiation factor activity determines cell
fate through modulation of the C/EBP isoform ratio.
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on the cC/EBP�wt–pSG5 template (Calkhoven et al. 1994) with
oligonucleotide primers �A (accctgg → ccccggg), 5�-ccgccccgtc-
cgaccccgggtttgccggagccc-3�; �B1 (ttcatgg → ttcctcg), 5�-ggctgtag-
gtgcttcctcgagcaagccaacttc-3�; �B2 (ccgatga → cggggag), 5�-cccg-
gcccccggggagcagcggccagcaccacc-3�; �C (ggcatgc → gggatcc), 5�-
ttccacgggatccacggggcc-3�; �D (accatgc → aggatcc), 5�-ccgggccct-
tcaggatccccggcaggctg-3�; Aopt (cgaaccctgg → gccaccatgg), 5�-cg-
cgccccgtcgccaccatggattgccggagc-3�; and X (gacctct → gccatgg),
5�-cgagttcctggccgccatggtccagcacagcaagc-3�. The C mutant was
generated by introducing an EcoRI site with primer 5�-ggggatttc-
gaattccacggcatg-3� and subsequent removal of the EcoRI frag-
ment containing the 5� UTR and amino-terminal C/EBP se-
quences. For the cC/EBP�–5� �-globin/�3� UTR and corre-
sponding �D mutants a HindIII site was introduced upstream of
site D with primer 5�-gcagagccgccgcaagcttgtccgaaccctgg-3�, and
the KpnI–HindIII 5� UTR fragment was exchanged for the KpnI–
HindIII fragment of pBAT (Annweiler et al. 1991) containing the
�-globin leader sequence. The 3� UTR was removed by ApaI–
BamHI digestion. A cC/EBP� (NF-M) EcoRI cDNA fragment
(Katz et al. 1993) was cloned into pSG5, and mutants were gen-
erated on the cC/EBP�wt–pSG5 template with the primers �A
(ttcatgc → tgaattc), 5�-ccccctttgcttgaattcaacgcctggtgg-3�; �B1
(tccatgg → tccattgaa), 5�-cgcctttaaatccattgaagtggctaatttctattacg-
aggcgg-3�; �B2 (tccatga → tctagaa), 5�-gggccgctctagaaccgaacttac-
cgtagg-3�; �C (ggcatgt → ggaattc), 5�-ggaccggggggaattccctcgc-
cctacggc-3�; �D (agcatgc → agcaagc), 5�-ggcctgggacgcagcttgcctc-
cccattcagcc-3�; Aopt (gctttcatgc → gccaccatgg), 5�-gcatcccccttt-
gccaccatggaacgcctggtggcc-3�; Dopt (cgcagcatgc → gccaccatgg),
5�-ggtggcctgggcgccaccatggctccccattcagcc-3�; and X (gagaccct-
gg → gccaccatgg), 5�-ggagccggtcttcgccaccatggactcttgcaaagg-3�.
The C mutant was generated by introducing an EcoRI site with
primer 5�-ccgtaaggaagaattcggagcggggccagg-3� and subsequent re-
moval of the EcoRI fragment containing the 5� UTR and amino-
terminal cC/EBP� sequences. For cC/EBP�–5� �-globin/�3�

UTR and corresponding �D mutants a HindIII site was intro-
duced upstream of site D with primer 5�-ccgtcttctcctccaagcttc-
cccctttgc-3�, and the KpnI–HindIII 5� UTR fragment was ex-
changed for the KpnI–HindIII fragment of pBAT (Annweiler et
al. 1991) containing the �-globin leader sequence. The 3� UTR
was removed by BamHI–EcoRI digestion after introduction of a
BamHI site downstream of the C/EBP� stop codon with primer
5�-cgctgctgaccccggatccggccgcgc-3�. A rC/EBP� wild-type clone
containing the cDNA sequence was generated by cloning a 590-
bp EcoRI–NotI PCR fragment (primers, 5�-ccggaattccattcgcgac-
ccaaagctgcg-3� and 5�-cgcggatccgatctggaactgcaagtgaggg-3�) from
genomic DNA containing the 5�UTR, together with the NotI–
BamHI rC/EBP� cDNA fragment (Landschulz et al. 1988) into
pSG5, which was used as template for further mutagenesis with
the primers �A (gtactgg → cggatcc), 5�-gggcgagttgggcggatccgtgg-
gcggcgg-3�; �B1 (cccatgg → cccatcg), 5�-ctctaactcccccatcgagtcg-
gccgac-3�; �B2 (ccgatga → cggatcc), 5�-cggccccggatccgcagccacct-
cc-3�; �C (gtcatgt → gtgaatt), 5�-ggcggtgcggtgaattccgcgggggcgca-
cgg-3�; �D (gccatgc → gggatcc), 5�-ccgaggctcgggatcccgggagaactc-
taactccc-3�; Aopt (ggggtactgg → gccgccatgg), 5�-gggcgagttgccgc-
catgggtgggcggcgg-3�; d (gccatgc → tgcatgc), 5�-ccgccgaggctctg-
catgccgggagaactc-3�; Dopt (ctcgccatgc → gccgccatgg), 5�-gctgga-
ggccgtcgacggccgccatggcgggagaactctaactcc-3�; X (gccgacctct →
gccgccatgg), 5�-cgagttcctggccgccatggtccagcacagccggc-3�; and
uORF+C/EBP� fusion (taactc → aactc), 5�-ccatgccgggagagct-
caactcccccatgg-3�. The C mutant was generated by cloning a
725-bp EcoRI–BamHI PCR fragment (primers 5�-gcgaattcatgtc-
cgcgggggcgcacggacc-3� and 5�-gcggatcctcacgcgcagttgcccatg-
gccttgacc-3�) into pcDNA3. A rat C/EBP�wt–pSG5 vector was
generated by cloning the IL-6–DBP EcoRI cDNA fragment (Poli
et al. 1990) into pSG5 and used as template for further muta-
genesis with the primers �A (ttcatgc → tgaattc), 5�-ggccccgcgt-

gaattcaccgcctgctggcc-3�; �B1 (cccatgg → cccattg), 5�-gcctttagac-
ccattgaagtggccaacttc-3�; �C (gccatgg → gcgatcg), 5�-cgacgcgccc-
gcgatcgcggccggcttccc-3�; �D (agcatgc → agaattc), 5�-ggcctg-
ggacgcagaattcctcccgccgcc-3�; Aopt (gcgttcatgc → gccaccatgg),
5�-gggccccgccaccatggcccgcctgctggc-3�; and X (gccgcactca → gcc-
gccatgg), 5�-gcctcccgccgccatggaggccgagccggg-3�. The C mutant
was generated by removal of the EcoRI fragment containing the
5� UTR and amino-terminal C/EBP sequences from the rC/
EBP�X–pSG5 construct. The MyoD–uORF–pSG5 [gccatgccgg-
gagaactctaa (uORF) ctcccccatgg (MyoD)] and MyoD–�uORF–
pSG5 [ggg atc (�D uORF) ccgggagaactctaactcccccatgg (MyoD)]
vectors were generated by combined cloning of a KpnI–NcoI
fragment containing the �-globin leader and rC/EBP�–uORF or
–�D sequences (from the cC/EBP�–5� �-globin/�3� UTR mu-
tants), together with a NcoI–XbaI fragment containing amino-
terminal Flag-tagged human MyoD coding region into pSG5.

pBabe–puro retroviral constructs rC/EBP�Tr–pBabe–puro was
generated by cloning the EcoRI–BamHI fragment from rC/
EBP�C–pSG5 into pBabe–puro (Morgenstern and Land 1990).
rC/EBP�pBabe–puro was generated by cloning the EcoRI frag-
ment from rC/EBP�C–pSG5 into pBabe–puro. A human eIF-2�

EcoRI–HindIII 1.6-kb fragment was cloned from SP65-2a (Ernst
et al. 1987) into pSG5. eIF-2�wt–pSG5 was used for creating the
S52A mutant (Choi et al. 1992) with the primer 5�-cttagtgaat-
tggccagaaggcgtatccg-3�. The BamHI eIF-2�S52A fragment from
eIF-2�S52A–pSG5 was cloned into pBabe–puro. Human PKR
(Meurs et al. 1990) was cloned by PCR from HeLa cells using the
primers 5�-gggaatcaacatccacacttccg-3� and 5�-gggagactgtgtcattg-
cactcc-3�, tagged with BamHI sites and cloned into pSG5. The
dominant-negative PKR�6 mutant (Koromilas et al. 1992) was
generated on PKR–pSG5 with primer 5�-ggtcaaagactaagtgcttct-
gtgataaagggaccttgg-3�, and the BamHI fragment was cloned into
pBabe–puro. Human eIF-4E (Rychlik et al. 1987) was cloned by
PCR from HeLa cells using the primers 5�-gattcagatcgatctaa-
gatgg-3� and 5�-cctatgagaatactcagaagg-3�, tagged with BamHI
sites, and cloned into pBabe–puro.

Cells and tissue culture

COS-1 cells (ATCC, CRL-1650) were propagated in DMEM,
F12, and 5% FCS (GIBCO); Hela cells (ATCC, CCL-2) in DMEM
and 10% FCS; 3T3-L1 cells (ATCC, CL-173) in DMEM and 10%
FCS (Seromed); QT6 cells (ATCC, CRL 1708) in DMEM, 8%
FCS, and 2% heat-inactivated chicken serum; and Phoenix E
cells (G.P. Nolan, Stanford University School of Medicine, Stan-
ford, CA; ATCC, SD 3444) in DMEM and 10% FCS in a hu-
midified atmosphere with 5% CO2 at 37°C. Induction of adipo-
genetic differentiation in 3T3-L1 cells was induced in 2-day
confluent cultures (designated day 0) with 2 days of incubation
in medium containing 10 µg/ml insulin (Sigma), 1 µM dexa-
methasone (Sigma), and 0.5 mM 3-isobutyl-1-methylxanthine
(Sigma) (days 1–2), followed by incubation in 10 µg/ml insulin
with medium exchange every second day (days 3–8) (Yeh et al.
1995b). Medium for pBabe–puro-infected 3T3-L1 cells con-
tained an additional 0.5 µg/ml puromycin (Sigma). Rapamycin
(Calbiochem) was used in a concentration of 1 µM, and
2-amunopurine (Calbiochem) was used in a concentration of
5 mM.

Oil-Red-O staining 3T3-L1 cells were washed with PBS, fixed
with 4% paraformaldehyde overnight at 4°C, stained with Oil-
Red-O solution for 5 min [2:3, 0.3% (wt/vol) Oil Red O (Sigma)
in isopropanol and water before filtering], and analyzed by
bright-field microscopy.
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BrdU labeling 3T3-L1 cells were labeled with BrdU for 8 hr
following the manufacturer’s protocol (BrdU Labeling and De-
tection Kit II, Boehringer Mannheim).

Retroviral methods

The ecotropic-packaging cell line Phoenix E was transiently
transfected with the calcium phosphate–DNA precipitation
method, and infectious virus was harvested after 48 hr. 3T3-L1
target cells (5 × 105) were infected as described in Pear et al.
(1993) and selected for puromycin (2 µg/ml) resistance.

Transfections

COS-1 cells were transfected with 5 µg of pSG5-based expres-
sion vector using DEAE–dextran/chloroquine as described by
Gonzalez and Joly (1995). HeLa and 3T3-L1 cells were trans-
fected with 0.75 µg of pSG5-based expression vector using Ge-
nePORTER (Gene Therapy Systems, Inc) following the protocol
of the manufacturer in six-well culture trays. Transfected cells
were harvested 24 hr after transfection. QT6 cells were trans-
fected with 5 µg of pSG5-based expression vector using the cal-
cium phosphate–DNA precipitation method as described in Au-
subel et al. (1993).

Western blot analysis

Cells were lysed rapidly in 0.5 M NaOH, neutralized by adding
0.5 M HCl, or directly lysed in RIPA buffer (150 mM NaCl, 50
mM Tris-HCl at pH 7.5, 1% NP-40, 0.1% SDS), supplemented
with SDS loading buffer, sonicated, and boiled. The proteins
were separated on a 12.5% SDS–polyacrylamide gel and electro-
blotted on PVDF membrane (Immobilon-P, Millipore). Western
blot analysis was performed, as described in Calkhoven et al.
(1994), followed by luminescent detection according to the
manufacturer’s protocol (Amersham Life Technologies, ECL
system). The following antisera were used: 1:1500 cC/EBP�

(Calkhoven et al. 1994) and 1:3000 cC/EBP�/NF-M (Katz et al.
1993); 0.5 µg/ml rC/EBP� (14AA), rC/EBP� (C-19), PKR (M-
515), PKR (K-17), 4E-BP1 (R-113), and eIF-2� (C-20); 1:2000 anti-
goat immunoglobulin HRP (Sc-2020) (all from Santa Cruz Bio-
technology Inc.); 0.5 µg/ml eIF-4E (E27620) (Transduction Labo-
ratories); 10 µg/ml anti-Flag M2 (IB13026) (Eastman Kodak
Company); 1:2000 anti-mouse immunoglobulin HRP (NA931)
and 1:5000 anti-rabbit immunoglobulin HRP (NA934) (Amer-
sham Life Technologies). Protein bands were quantified using
the FUJIFILM Science Lab/Image Gauge computer program.
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