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ABSTRACT
Background Open-source clinical natural-language-
processing (NLP) systems have lowered the barrier to
the development of effective clinical document
classification systems. Clinical natural-language-
processing systems annotate the syntax and semantics
of clinical text; however, feature extraction and
representation for document classification pose technical
challenges.
Methods The authors developed extensions to the
clinical Text Analysis and Knowledge Extraction System
(cTAKES) that simplify feature extraction,
experimentation with various feature representations,
and the development of both rule and machine-learning
based document classifiers. The authors describe and
evaluate their system, the Yale cTAKES Extensions
(YTEX), on the classification of radiology reports that
contain findings suggestive of hepatic decompensation.
Results and discussion The F1-Score of the system for
the retrieval of abdominal radiology reports was 96%,
and was 79%, 91%, and 95% for the presence of liver
masses, ascites, and varices, respectively. The authors
released YTEX as open source, available at http://code.
google.com/p/ytex.

INTRODUCTION
The rich clinical data stored in the electronic
medical record are important to clinical-decision
support, comparative effectiveness research, and
epidemiological and clinical research studies.1 2 The
electronic medical record stores much of the rele-
vant information in the form of unstructured free
text. Automated document classification and
information-extraction techniques are the keys to
accessing the clinical data locked in unstructured
text.
Methods for automated document classification

include rule-based and machine-learning tech-
niques.3 4 In the rule-based approach, experts
manually define classification rules. In the machine-
learning approach, algorithms construct classifiers
automatically using training data. Clinical natural
language processing (NLP) systems annotate
syntactic structure and semantic content within
clinical text, and typically store annotations in
a hierarchical data structure.5e7 In contrast, rule
and machine-learning classifiers typically operate
on ‘flat’ feature vectors. Converting between the
hierarchical document representation output by
NLP systems and the flat feature space required
by classifiers is one of the most time-consuming
and labor-intensive tasks in the development
process, and one of the most important: the power

of machine-learning algorithms depends on the
construction of a feature representation that makes
learning tractable.8 9 Our goal was to extend an
open-source clinical NLP system to simplify feature
extraction and the development of rule and
machine-learning based document-classification
systems.

BACKGROUND
Historically, clinical NLP systems were built for
specific healthcare systems, focused on specific
goals, and involved a large implementation effort.
Recently, open-source clinical NLP systems based
on modular frameworks have become available,
dramatically lowering the amount of resources and
level of expertise needed to develop effective clinical
document-classification systems. These include
the clinical Text Analysis and Knowledge Extrac-
tion System (cTAKES), the Medical Knowledge
Analysis Tool (MedKAT/P), Health Information
Text Extraction (HITEx), and the Cancer Text
Information Extraction System (caTIES).10e13 The
open-source WEKA data-mining toolkit has been
used in conjunction with these systems to develop
machine-learning based text classifiers.12 14 15

These systems annotate syntactic structures
such as sections, sentences, phrases (chunks),
tokens (words), and their part-of-speech; perform
named entity recognition and map spans of text to
concepts from a controlled vocabulary or ontology;
and identify the negation context of named enti-
ties. Different combinations of text annotations
may be appropriate for different classification tasks,
and finding the optimal feature representation is
critical to classifier development.16e18

The application motivating this study was the
automation of document classification in the
Veterans Aging Cohort Study (VACS), an ongoing,
prospective cohort study that follows HIV-infected
and demographically similar HIV-uninfected
veterans receiving medical care at eight Veterans
Health Administration (VHA) facilities.19 Central
to many VACS projects are medical chart reviews,
the objective of which is to extract a well-defined
set of information from a specific subset of medical
records. Automated document classification can
facilitate this process by identifying the reports
relevant to the chart review. We sought to deploy
and extend an open-source clinical NLP system and
develop a methodology for the rapid implementa-
tion of document classifiers to facilitate VACS chart
reviews.
We selected the cTAKES, a comprehensive clin-

ical NLP system based on the Unstructured Infor-
mation Management Architecture (UIMA) that has
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previously been deployed within the VHA.5 13 17 The cTAKES
stores annotations in the UIMA Common Analysis Structure
(CAS), a structured object graph superimposed over the
unstructured document text. One method for extracting
features is the development of a CAS Consumer, a custom
software component that accesses the CAS and exports anno-
tations in a user-specified format. However, it is impractical to
write software for each set of desired features. The Mayo Weka/
UIMA Integration (MAWUI) library provides tools for exporting
data from applications based on UIMA for use with the Weka
machine-learning environment.15 MAWUI requires the imple-
mentation of custom software components by the user to
extract features, and thus suffers from the same limitations as
the CAS Consumer. Another alternative for the extraction of
UIMA annotations is the Common Feature Extraction System
(CFE), which enables the declarative extraction of data from the
CAS using an XML-based Feature Extraction Specification
Language.20 One limitation of the CFE is that it cannot perform
aggregate calculations on document features; for example, the
CFE cannot output the number of times each term occurs
within a document, a commonly used feature in document
classification.21 The Automated Retrieval Console (ARC) is
a clinical document classification system based on cTAKES.17

The ARC is designed to enable end users with little knowledge
of NLP or machine learning to develop document classifiers; it
does this by training machine-learning algorithms on various
combinations of cTAKES annotations to classify documents.
The ARC does not support functionality that more advanced
users require, such as rule-based classifier development,
manual feature selection, and customizable feature representa-
tion. A further limitation is that the gold standard document
corpus must be curated within the ARC user interface; this is
incompatible with the typical chart review process, which
requires the review of thousands of notes and the storage of
chart abstraction data in a format amenable to subsequent
analyses. A limitation of both the CFE and ARC is their inability
to integrate other structured data sources such as administrative
data, pharmacy, and laboratory values with the document
representation.

To simplify feature extraction and classifier development, we
extended cTAKES to store document annotations in a relational
database. This approach enabled seamless integration with other
structured data sources stored in relational databases; enabled
the development of rule-based classifiers using the structured
query language (SQL); and enabled the declarative extraction of
document annotations for use with WEKA, simplifying the
development of machine-learning based classifiers.

DESIGN OBJECTIVES
We evaluated the ease of document classifier development by
applying our system to a document corpus derived from a chart
review to screen for and confirm cases of hepatic decompensa-
tion in VACS.22 As part of this chart review, trained abstractors
reviewed over 13 000 radiology reports from over 395 patients;
fewer than 400 reports asserted the presence of a clinical
condition indicative of hepatic decompensation. Our objective
for this use case was to quickly develop classifiers that accurately
identified these reports, thereby dramatically reducing the effort
involved in future screens of hepatic decompensation in the
VACS study. Abstractors would still have to review the auto-
matically identified reports to extract needed information;
therefore, our goal was to develop document classifiers with
high recall (sensitivity)dgreater than 90%dand acceptable
precision (positive predictive value)dgreater than 80%.

METHODS
We extended the cTAKES pipeline to improve NLP capabilities,
simplify feature extraction, and facilitate document classifier
development. We constructed a gold standard document corpus
of radiology reports suggestive of hepatic decompensation. We
then applied the system as follows: (1) developed rule-based
classifiers, (2) performed system tuning in which we iteratively
improved document annotation by modifying the system
configuration, and (3) evaluated machine-learning algorithms for
document classification.

YTEX pipeline
The cTAKES is a modular pipeline of annotators that combines
rule-based and machine-learning techniques to annotate
syntactic constructs, named entities, and their negation context
in clinical text. cTAKES uses the OpenNLP Maximum Entropy
package for sentence detection, tokenizing, part-of-speech
tagging, and chunking; uses the SPECIALIST lexical variant
generator for stemming; and uses an algorithm based on NegEx
for negation detection.23e25 The cTAKES DictionaryLookup
module performs named entity recognition by matching spans
of text to entries from a dictionary. We used the cTAKES
distribution included with ARC, which is distributed with
Unified Medical Language System (UMLS) database tables for
use with the DictionaryLookup module.26 The UMLS Meta-
thesaurus unifies over 100 source vocabularies and assigns each
term a concept unique identifier (CUI).
We modified cTAKES as follows: we developed regular-

expression-based named entity recognition and section detection
annotators (NamedEntityRegex and SegmentRegex); we
adapted the latest version of the NegEx algorithm to cTAKES for
negation detection (Negex); and we developed a module to store
annotations in a relational database (DBConsumer; see figure 1).
The annotators we developed are highly configurable; refer to
the online appendix for a detailed description of all modifications
to the cTAKES pipeline and configurations used in this study.
cTAKES can annotate demarcated sections from documents

that conform to the Clinical Document Architecture format,
which is not used in the VHA. To identify document sections,
we developed an annotator that identifies section headings and
boundaries based on regular expressions.
The DictionaryLookup algorithm performs named entity

recognition by matching spans of document text to word
sequences from a dictionary. Some clinical concepts are too
complex, have too many lexical variants, or consist of non-
contiguous tokens, making them difficult to represent in
a simple dictionary. To address this issue, we developed an
annotator that uses regular expressions to identify such
concepts.
The cTAKES negation-detection algorithm is based on an

older version of the NegEx algorithm and has limited support for

Figure 1 Yale clinical Text Analysis and Knowledge Extraction System
Extensions (YTEX) pipeline. New annotators developed as part of this
study are shaded in gray. DB, database.
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long-range detection and post-negation triggers. To address these
issues, we replaced the cTAKES negation-detection algorithm
with an annotator based on the latest version of the Java
General NegEx package, which supports long-range detection
and post-negation triggers.27

In order to efficiently extract different feature sets from
documents annotated with cTAKES, we developed a module
that stores cTAKES annotations in a relational database. UIMA
annotations are limited in complexity and obey a strict class
hierarchy. These restrictions on the structure of UIMA annota-
tions facilitate a high-fidelity relational representation. We used
an object-relational mapping tool (Hibernate) to map UIMA
annotations to relational database tables using a table-per-
subclass strategy; refer to the online appendix for a detailed
description of the data model.28 YTEX supports SQL Server,
Oracle, and MySQL databases. The effort involved in mapping
new or modified annotations to the database is minimal, making
this approach applicable to any UIMA annotation.

Storing annotations in a relational database greatly simplifies
the development of rule-based classifiers: document feature
vectors can be retrieved using SQL queries, and rules can be
implemented using SQL ‘case’ statements.

Machine-learning document-classification techniques often
employ the ‘bag-of-words’ or ‘term-document matrix’ repre-
sentation of documents.21 In this representation, documents
occupy a feature space with one dimension for each word or
term; words may be a word from a natural language or may be
a technical identifier. The value of each dimension is typically
either an indicator, asserting the presence of the word in the
document, or a numeric value, indicating the term frequency.
This feature space is typically high-dimensional and sparse, that
is, the feature vectors mostly contain zeros. Most statistical
packages support specialized file formats for efficient handling
and exchange of sparse data sets. To use the bags-of-words
document representation with WEKA, we developed a tool for
exporting annotations obtained via SQL queries in the WEKA
sparse file format. The tool takes as a parameter an SQL query
that retrieves instance id, attribute name, and attribute value
triples; it executes the query and rotates rows into columns to
produce a sparse matrix representation of the data (figure 2).
This transformation is similar to the SQL ‘pivot’ operator but
differs in that it can create a matrix with an arbitrary number of
columns.

The generic nature of the tool allows classification on any unit
of text: the instance id can refer to a document, sentence, or
phrase. The attribute name represents a dimensiondfor

example, a stemmed word or concept identifier; and the attri-
bute value may be numeric or categorical. The tool enables the
integration of other relational data sources with document
annotation datadfor example, administrative, pharmacy, or
laboratory data. Refer to the online appendix for sample SQL
statements used to export document annotations and adminis-
trative data for use with WEKA.

Reference standard document corpus construction
To develop a gold-standard classification of radiographic findings
indicative of hepatic decompensation, we used the results of
a chart review designed to screen for and confirm cases of
hepatic decompensation in the Veterans Aging Cohort Study
(VACS) (figure 3). For the chart review, subjects enrolled in
VACS were screened for radiographic findings of hepatic
decompensation at enrollment by evaluating for suggestive
International Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM) diagnostic codes, and laboratory
abnormalities up to 1 year before through 6 months after entry
into the cohort to identify possible prevalent cases. Additionally,
a random sample of 100 patients who did not screen positive
by the above criteria was selected to ensure the absence of
hepatic decompensation events. Two trained data abstractors
reviewed reports of abdominal ultrasounds, abdominal CT
scans, and MRI studies, and recorded onto structured data-
collection forms the following information: presence and
quantity of ascites (fluid within the peritoneal cavity); presence
and location of varices (dilated veins within the esophagus and
stomach), and presence, number, and dimensions of liver masses.
Two endpoint adjudicators with expertise in chronic liver
diseases reviewed data forms and determined whether these
outcomes of interest (ie, ascites, varices, liver masses) were
present or absent. Disagreement on classification of the finding
resulted in a review by a third reviewer to adjudicate the out-
come. All findings were recorded in an electronic ‘adjudication
database.’
As part of this study, we randomly selected the data-

abstraction forms of 236 patients with ICD-9-CM diagnostic
codes and/or laboratory abnormalities suggestive of hepatic
decompensation and transcribed them to a database. We then
linked the abstraction data to the original radiology reports, and
defined a gold-standard classification of radiology reports. We
labeled radiology reports included in the chart review ‘abdom-
inal radiology reports.’ We assigned additional class labels to
these reports indicating the presence of ascites, varices, and/or
liver masses based on the data-abstraction forms (figure 4).

Figure 2 Bag-of-Words Exporter pivots instance id, attribute name,
attribute value triples into a sparse matrix.

Figure 3 Development of the gold standard. ICD, International
Classification of Diseases, Ninth Revision; VACS, Veterans Aging Cohort
Study.
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Rule-based classifier development
We initially classified documents using manually developed
rules. These interpretable classifiers allowed us to explore the
feature space, optimize feature representations, and understand
and rectify NLP errors that caused misclassification. We imple-
mented the rules as SQL case statements, operating on feature
vectors retrieved via SQL queries. For example, to identify radi-
ology reports that assert the presence of varices, we focused on
named entity annotations that contain CUIs related to varices,
and represented documents as vectors with a column for each
concept. Refer to the online appendix for sample SQL state-
ments and a list of features we used in classification rules.

The ability to filter, aggregate, and transform document
annotations using SQL queries allowed us to easily experiment
with different representations of document concepts and their
semantic and syntactic context. We found the following feature
selection and representation approaches effective: filtering out
concepts located within certain document sections; representing
the negation status of concepts using a ‘relative negation count’;
combining different concepts in a single feature; and using
within-sentence concept co-occurrence.

The document section to which a term belongs is an impor-
tant feature for document classification: for the discrimination
of abdominal radiology reports from other radiology reports,
terms in the title had far more importance than terms in
the document body. For the identification of documents
that assert the presence of a clinical condition (ie, ascites, varices,
or liver masses), we found that filtering out terms from
the clinical history section of documents improved classifier
performance.

We combined distinct UMLS concepts under a single feature,
thereby reducing the number of features needed and simplifying
rule development. For example, the distinct UMLS concepts
‘Ascites’ (C0003962), ‘Peritoneal Fluid’ (C0003964), and intra-
abdominal collection (C0401020) could for the purposes of this
classification task be grouped under a single feature ‘Ascites.’

For the identification of liver masses, within-sentence co-
occurrence was an important feature. For example, the sentence
‘A rounded, echogenic focus is seen in the left lobe of the liver ’
contains the terms ‘echogenic focus’ and ‘liver ’. We used co-
occurrence of these terms within a sentence as a simple heuristic
to infer the presence of a liver mass. Knowing that both these
terms are in the same document is insufficient to infer the
presence of a liver mass.

Concepts can be negated and affirmed within the same
document as a result of errors in the negation detection

algorithm, or due to deeper semantic content; exclusively
considering affirmed or negated terms obscures this information.
To address this issue, we represented the negation context of
concepts using a ‘relative affirmation count’: the number of
times a concept was affirmed minus the number of times it was
negated within a document.
For example, the rule for the classification of varices compares

the number of affirmed varices terms to the number of
negated varices terms outside of the ‘Clinical History’ section
of the document (figure 5). If any particular varices term is
affirmed more than negated, the document is classified as
‘varices positive.’ Refer to the online appendix for a description
of other rule-based classifiers.

System tuning
To improve classifier performance, we performed multiple iter-
ations of system tuning: (1) we generated document annota-
tions with YTEX; (2) we classified documents using rule-based
classifiers; (3) we manually examined all misclassified docu-
ments, and modified rules to resolve misclassification errors
where necessary; (4) we reconfigured YTEX to rectify NLP
errors; (5) we forwarded incorrectly labeled radiology reports
to endpoints arbitrators (VLR and ZD-S) who reviewed
these documents and updated document labels and patient
adjudication databases.
We found that many classification errors were due to prob-

lems in named entity recognition (NER) and negation detection.
To address these issues, we reconfigured the NER and negation-
detection modules: we added entries to the dictionary used by
the DictionaryLookup module; we configured regular expres-
sions for use with the NamedEntityRegex module; and we
modified the list of negation triggers used by the NegEx module.
Refer to the online appendix for a detailed description of the
regular expressions, dictionary entries, and negation triggers
used for this study.
Upon evaluation of misclassified documents, we noticed

that lexical variants of clinical concepts needed for classification
were not included in the UMLS. For example, ultrasounds were
often denoted with the term ‘echogram,’ which is not contained
in the UMLS. We added additional entries to the YTEX UMLS
dictionary to identify these concepts.

Figure 4 Dimensions of the document corpus.

Figure 5 Varices classification rule. If any one of the varices terms is
affirmed more than it is negated, the tree assigns the document the class
label ‘varices positive.’
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Some clinical concepts consisted of non-contiguous tokens,
making them difficult to capture in a dictionary. For example,
the following phrases were used to note the presence of ascites
in radiology reports: ‘fluid is noted in the subhepatic area’, ‘free
fluid around the liver is noted’, or ‘free fluid in the perihepatic
region’. In these examples, the term ‘fluid’ is separated from the
term ‘liver ’ or ‘hepatic’ by several variable words. We configured
regular expressions to identify these concepts.

Evaluation of machine-learning algorithms
Although the accuracy of the rule-based classifiers was satis-
factory, we explored whether machine-learning algorithms could
improve classification accuracy by using additional features that
we overlooked, or features that could not easily be used in
simple rule-based classifiers. For example, radiology reports that
asserted the presence of hepatocellular carcinoma often asserted
the presence of liver masses; machine-learning algorithms may
leverage such associations to improve classification accuracy. We
trained and evaluated the following machine-learning algo-
rithms: decision trees (C4.5 algorithm), machine-learning
analogs of rule-based classifiers29 30; random forests, ensembles
of decision trees31; and SVMs, which have been successfully
applied in document classification.3 32e34

To test whether system tuning and feature representation
improved classifier performance, we evaluated classifiers against
different representations of the document corpus:
< baseline: this dataset represents the annotations generated by

the un-tuned pipeline;
< simple: this dataset employs a bag of affirmed terms

document representation, which ignores document section
and negated terms;

< rich: this dataset uses the rich document feature representa-
tion that leverages the syntactic and negation context of
named entities as described above.
We exported the document corpus in the WEKA sparse file

format, split the corpus into a training set and a held-out test
set, performed cross-validation on the training set, selected the
optimal algorithm, and performed a final evaluation of classifier
accuracy against the held-out test set. We used the cross-vali-
dation results to estimate classifier accuracy for varices, as we
did not have enough reports for a held-out test set. Refer to the
online appendix for a detailed description of the different corpus
representations and machine learning process.

The datasets we exported had over 4000 features. For feature
selection, we ranked features from the training set by mutual
information and evaluated classifier performance using a 4-fold

cross-validation on the top n features, with n varying between 1
and 500. Accuracy peaked with fewer than 500 features for all
classification tasks. We then performed a 4-fold cross-validation
25 times with the optimal algorithm and number of features on
the training set to generate empirical distributions for the
information retrieval metrics specificity, precision, recall, and
F1-Score with which we assess classifier performance. These are
defined as follows35:
specificity: TN/(TN+FP);
precision (positive predictive value): P¼TP/(TP+FP);
recall (sensitivity): R¼TP/(TP+FN);
F1-score: (2*P*R)/(P + R);
TP: true positives (classified as positive when in fact positive);
FP: false positives (classified as positive when in fact negative);
TN: true negatives (classified as negative when in fact negative);
FN: false negatives (classified as negative when in fact positive).

RESULTS
Cross-validation results
Classifiers trained on the tuned dataset that employed the rich
feature representation performed significantly better than clas-
sifiers trained on the untuned dataset, and the dataset based on
a simple feature representation (table 1). An exception was
varices, in which classifiers trained on the simple feature repre-
sentation performed best; this difference was however not
statistically significant (p¼0.0157). These results show that
tuning NER, negation detection, and optimizing the feature
representation significantly improved classifier performance.
On the rich data set, classifiers achieved optimum perfor-

mance with only the features used by our rule-based classifiers;
additional features did not add predictive power to the classifier.
The decision trees ‘learned’ from the rich dataset were similar or
identical to the rule-based classifiers. Because of their similarity
to machine-learned trees, we did not explicitly evaluate the
performance of the rule-based classifiers.
On the rich dataset, simple decision trees using few features

achieved optimal performance. For the identification of
abdominal radiology reports and liver masses, classifiers
trained on other datasets required more features and the more
complex random forest and SVM algorithms to attain optimal
performance.

Performance on test set
For each classification task, we selected the best classifier and
evaluated it against the held-out test set (table 2).

Table 1 Classifier parameters, information retrieval scores, and probability mean of the simple/baseline
F1-score, and how they differ from rich F1-scores

Task Dataset Classifier Features Specificity Precision Recall F1-score p Value

Abdominal Rich Tree 10 0.997 0.996 0.997 0.997

Radiology Baseline Svm 75 0.994 0.960 0.928 0.944* 0

Reports Simple Svm 30 0.991 0.938 0.939 0.938* 0

Ascites Rich Tree 1 0.983 0.928 0.939 0.932

Baseline Tree 1 0.976 0.895 0.893 0.893* 0

Simple Tree 1 0.962 0.855 0.989 0.916* 0.0047

Liver masses Rich Tree 2 0.979 0.830 0.781 0.800

Baseline Tree 8 0.975 0.782 0.696 0.728* 0

Simple Random forest 125 0.970 0.710 0.528 0.595* 0

Varices Rich Tree 1 0.995 0.894 0.94 0.911

Baseline Svm 4 0.992 0.863 0.905 0.871* 0.0033

Simple Tree 1 0.995 0.904 1.000 0.946 0.0157

*Significant at 0.01 level.
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DISCUSSION
We achieved the goal of rapidly developing accurate document
classifiers to facilitate the hepatic decompensation chart review.
The extensions we developed greatly simplified the development
of rule and machine-learning based document classifiers,
allowing us to complete classifier development in a total of five
man days. This included developing rule-based classifiers, tuning
the NLP system, and training and evaluating machine-learning
classifiers. The system we developed classified radiology reports
from eight VHA sites with high accuracy; we were able to meet
the goals of >90% recall and >80% precision for the classifica-
tion of abdominal radiology reports and varices; the system,
however, failed to meet these goals for the classification of
reports that assert the presence of liver masses. To achieve these
results for this use case, we tuned named entity recognition and
negation detection, and explored various feature combinations.
Interpretable rule-based classifiers simplified tuning the NLP
pipeline and exploring feature representations.

Through an examination of misclassified documents, we
recognized issues where further work is required. Common
causes of misclassification included lack of temporal context,
lack of location context, and lack of pronominal anaphora or co-
reference resolution; refer to the online appendix for a detailed
discussion and examples of misclassification. These issues are the
focus of active research in the clinical NLP field36e41; we will
address these issues in future work.

Tuning named entity recognition (NER) and negation detec-
tion significantly improved classifier performance: this is
demonstrated by the relative performance of classifiers evaluated
on annotations derived from the tuned and untuned pipelines
(rich vs baseline). We improved NER by adding lexical variants
of clinical concepts to the dictionary, and by using regular
expressions to identify clinical concepts. We used the NegEx
algorithm for negation detection, and updated the default
negation triggers. The resulting system was optimized for clas-
sification tasks specific to this study. Evaluations of cTAKES
estimate the F1-score of NER to be 0.82413; thus, in general, it
may be necessary to tune NER for specific classification tasks.
Our tuning approach is generally applicable, and can be used to
optimize NER and negation detection for other problem
domains.

Choosing an optimal feature representation significantly
improved classification performance. Text classification systems
have used combinations of words, phrases, word sense, UMLS/
SNOMED concepts, and others; no single feature representation
is optimal for all document classification tasks.16e18 42 Finding
the optimal representation for a given classification task requires
exploration and experimentation with multiple feature repre-
sentations. Domain knowledge can be incorporated in the
feature representation via feature selection, and by combining
multiple features to create new variables.42 We simplified this
process by storing document annotations in a relational data-
base, allowing us to efficiently explore the feature space and
optimize the feature representation.

Storing annotations in a relational database also greatly
simplified the development of both rule and machine-learning

based classifiers. The relational representation inherently
supports the rule-based document classification approach: we
implemented classification rules as SQL case statements, oper-
ating on feature vectors retrieved via SQL queries. To support
machine-learning approaches, we developed highly configurable
tools to extract document features from the database in
a bag-of-words representation for use with the WEKA toolkit.
We applied the lessons learned from this study to other chart

reviews within VACS. The most laborious step of this study was
the construction of a gold standard document corpus: this
required the transcription of chart abstraction data from paper
forms to a database, and linking these data to specific radiology
reports. In general, the information captured as part of medical
chart reviews is insufficient to construct a gold-standard corpus:
the structured data produced by chart reviews typically
synthesizes findings from multiple notes in the patient chart.
However, in order to automate document classification and
information extraction, notes must be linked to the information
extracted from them. To address this issue, we have developed
databases that integrate the chart-review data-abstraction
process with manual document annotation, yielding gold stan-
dard corpora that we can use to develop document classifiers. We
have developed databases for chart reviews to confirm cases of
cancer from pathology, progress, and radiology notes; to study
cases of community acquired pneumonia from microbiology,
radiology, and progress notes; and to identify homeless veterans
from progress notes. Future work will focus on developing
document classifiers to assist these studies.

CONCLUSIONS
cTAKES is a comprehensive clinical NLP system that serves as
a foundation for the development of clinical document classifi-
cation and information-extraction systems. The Yale cTAKES
Extensions (YTEX) simplify feature extraction and the devel-
opment of rule and machine-learning based classifiers. We have
released YTEX as open source.43

We used these tools to develop document classifiers that
identify radiology reports with findings suggestive of hepatic
decompensation. YTEX enabled us to efficiently explore the
feature space; create a feature representation that leverages
domain knowledge, the syntactic structure of the documents,
and the negation context of concepts; and quickly develop rule
and machine-learning based classifiers. In the future, we will
apply these tools to identify reports relevant to medical chart
reviews performed as part of other VACS studies.
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