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ABSTRACT
Objective Prescription drugs can be associated with
adverse effects (AEs) that are unrecognized despite
evidence in the medical literature, as shown by
rofecoxib’s late recall in 2004. We assessed whether
applying information mining to PubMed could reveal
major drugeAE associations if articles testing whether
drugs cause AEs are over-represented in the literature.
Design MEDLINE citations published between 1949 and
September 2009 were retrieved if they mentioned one of
38 drugs and one of 55 AEs. A statistical document
classifier (using MeSH index terms) was constructed to
remove irrelevant articles unlikely to test whether a drug
caused an AE. The remaining relevant articles were
analyzed using a disproportionality analysis that identified
drugeAE associations (signals of disproportionate
reporting) using step-up procedures developed to control
the familywise type I error rate.
Measurements Sensitivity and positive predictive value
(PPV) for empirical drugeAE associations as judged
against drugeAE associations subject to FDA warnings.
Results In testing, the statistical document classifier
identified relevant articles with 81% sensitivity and 87%
PPV. Using data filtered by the statistical document
classifier, base-case models showed 64.9% sensitivity
and 42.4% PPV for detecting FDA warnings. Base-case
models discovered 54% of all detected FDA warnings
using literature published before warnings. For example,
the rofecoxibeheart disease association was evident
using literature published before 2002. Analyses
incorporating literature mentioning AEs common to the
drug class of interest yielded 71.4% sensitivity and
40.7% PPV.
Conclusions Results from large-scale literature retrieval
and analysis (literature mining) compared favorably with
and could complement current drug safety methods.

BACKGROUND
The U.S. Food and Drug Administration (FDA)
requires pharmaceutical manufacturers to demon-
strate that their products are efficacious in
premarketing clinical trials, while not causing
major adverse effects (or AEsdunintentional
noxious effects or diseases caused by drugs taken at
normal doses).1 However, this process is usually
conducted in selected populations and typically
lacks statistical power for detecting many AEs.2 To
aid this process, researchers have analyzed large AE
databases, including the FDA’s Adverse Events
Reporting System (AERS), using numerous statis-
tical learning algorithms. Often, drug safety
researchers assess drugeAE associations in three
stages: screening of disproportionality analyses to
detect those drugs that co-occur with particular

diseases in a statistically significant fashion; initial
assessment and investigation from a biological and
clinical perspective; and in-depth investigation to
confirm or reject signals using expert opinion, liter-
ature reviews, and other data from randomized
controlled trials (RCTs) and epidemiologic studies.3 4

Agencies and researchers have had some success in
using these methods to identify and regulate
harmful drugs.5 However, the process has been
imperfect, as illustrated by the late recall of rofe-
coxib in 2004, which was approved for marketing
in 1999, but was unexpectedly shown to increase
the risk of myocardial infarction in a clinical trial in
2004 and in later epidemiologic studies.6 7

Current use of literature reviews and expert
opinion to discover or confirm drugeAE relation-
ships4 5 8 implies that systematically analyzing the
medical literature could complement AE discovery
techniques and provide useful information to
regulatory agencies at all stages of the investigative
process detailed above. This additional input could
help prioritize the tens of thousands of drugeAE
associations under consideration by the FDA and
other regulatory authorities. One approach might
involve conducting systematic reviews using search
strategies that have been developed for extracting
articles relevant to drug safety,9 but using indi-
vidual literature reviews to confirm or accept
potentially millions of drugeAE hypotheses raises
practical difficulties and increases the type I error
rate. However, analyzing the literature within the
disproportionality framework described above
could overcome such challenges; we hypothesize
that scientists will show greater interest in true
drugeAE pairs as evidenced by published clinical
trials, reviews, and studies of biological mecha-
nisms. Supporting this hypothesis, biomedical
researchers have used similar analyses of the
medical literature to elucidate biological path-
ways.10 11 If true, disproportionality analyses
similar to those used in analyzing AERS should
reveal important drugeAE pairs for which there
exist relatively more published reports when
compared to other drugs and other AEs. However,
this analysis faces two major challenges. First,
a naive analysis might include many articles that do
not test whether a drug causes a disease, including
articles in which the drug treats a disease. Second,
model performance needs to be judged against
a plausible set of true positive and true negative
results, because any predictive process is subject to
excessive false positives or false negatives (or both).
We aimed to prototype a process for collecting

and analyzing relevant literature while minimizing
false positive and false negative drugeAE associa-
tions. We first improved the data collection process
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by excluding irrelevant articles using supervised statistical
learning techniques that automatically filter citations using
MEDLINE indexing terms.12 13 We then used statistically valid
machine learning algorithms (from an emerging area of statis-
tical analysis related to simultaneous inference) to identify
significant drugeAE links from the several thousands of such
pairs while controlling the overall probability of errors.14e18

Finally, we evaluated whether the literature mining process
might have detected drugeAE associations that were the
subjects of FDA warnings. We used the entire literature in some
analyses and simulated prospective analyses by restricting the
data to literature available prior to the warnings.

METHODS
Data sources and document retrieval strategies
Our primary data were publicly available PubMed records from
the National Library of Medicine (NLM). Although PubMed
appears dissimilar to AERS, these records also contained
drugeAE pairs: articles mentioning a drug could be associated
with all diseases in the citation to create a set of drugeAE pairs.
We tabulated these reports into a contingency table, in which
each cell ij contained the total number of pairs containing Drugi
and AEj2 5 (figure 1 illustrates the entire process for hypothetical
data).

We randomly selected a sample of widely used drugs (along
with a positive controldrofecoxib) and obtained all PubMed
articles mentioning the drug (119 026 articles on September 5,
2009). We obtained data on potential AEs from PubMed using
a search strategy based on NLM’s Medical Subject Headings
(MeSH) index, which comprehensively describes human diseases
within PubMed.19 We divided MeSH terms related to human
diseases into categories based on human organ systems. For
example, articles mentioning ‘eye’ or ‘eye diseases’ or ‘ocular
physiology ’ were classified under ‘eye diseases.’ The final
strategy grouped 2461 terms into 55 categories; in addition,
these terms implicitly encompassed lower-level terms in the
MeSH hierarchical structure. Further granularity was possible,
but many diseases formed logical groups and collapsing cate-
gories may reduce the false negative rate of disproportionality

analyses.20 In addition, this classification scheme may measure
scientific interest more accurately by combining clinical and
basic laboratory research for similar topics. We assigned each
article retrieved for drugs to one or more AE categories and
tabulated counts for each drugeAE combination (figure 1). As
described below, we adjusted these article counts by removing
articles that did not test whether the drug caused the AE. The
corrected count in each cell of the table was used to test the
hypothesis of independence between the drug and the AE.
We also used NLM’s Structured Product Labels database to
obtain each drug’s major AE warnings and approved therapeutic
indications.21

Using statistical document classification to exclude irrelevant
articles
We reduced bias by limiting the input data to relevant articles
that test whether a drug and an AE are causally related. Prior
work suggested that up to 98% of search results are irrelevant to
AEs22; including such articles would skew results toward false
positive drugeAE linkages. For example, if an article described
patients whose dyslipidemia was treated with simvastatin who
subsequently developed rhabdomyolysis, an unfiltered search
would have yielded one correct drugeAE pair (simvastatine
rhabdomyolysis) and one incorrect drugeAE pair (simvastatine
dyslipidemia). Researchers manually exclude irrelevant
articles in systematic reviews, but this approach was not feasible
on a large scale. A strategy retaining articles that contained
several key terms (including ‘toxicity,’ ‘contraindications,’ and
‘poisoning’) had excellent sensitivity (98%) but 3% positive
predictive value (PPV).22 To counter these difficulties, we
developed two automated methods for excluding treatment
indications and other irrelevant drugedisease pairs.
First, we excluded FDA-approved treatment indications noted

in NLM’s Structured Product Labels database.21 This step may
have excluded instances where the therapy paradoxically
increased the risk of its treatment target, such as hormone
replacement therapy and ischemic heart disease.23 24 Of note,
the hormone replacement therapy case was atypical because it
was widely used to prevent ischemic heart disease prior to
a definitive RCT being conducted. We assumed that pre-
marketing clinical trials had sufficient power for determining
efficacy. (We will relax this assumption in future work and use
the statistical classifier below to eliminate purely therapeutic
articles because we believe that literature mining could provide
value by aggregating information on post-marketing studies
conducted in broader populations that do not meet RCT
inclusion criteria.)
Second, we adapted document classification methods from

other biomedical domains and used suggestive MeSH indexing
terms to exclude irrelevant articles.12 19 22 25 26 NLM has devoted
a great deal of time to assigning MeSH terms and subheadings to
the vast majority of PubMed articles based on reviews by
multiple indexers.19 Retrieved PubMed articles contained readily
available information for statistically modeling drugeAE rela-
tionships, despite the fact that drugs and AEs were indexed
separately. For example, if an article included a disease index
term modified by the subheading ‘chemically induced’ and
a drug index term modified by the subheading ‘adverse effects,’
the article likely tested whether the drug caused that disease. As
a result, MeSH indexing terms were used to exclude off-label
treatment indications, incidental mentions, and instances in
which the drug was used to treat the AE of another drug.
To implement a statistical document classifier, we first

constructed training data using 678 randomly selected articles

Figure 1 Contingency table creation. This figure illustrates contingency
table creation using hypothetical data. First, we retrieve all citations
involving selected drugs and adverse effects (AEs). DrugeAE pairs are
constructed by intersecting the different reports. We then use
a statistical document filter to remove irrelevant pairs. Finally, the list of
drugeAE pairs is tabulated into a table in which the cells contain the
total number of appropriate drugeAE mentions.
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(which comprised 1599 drugeAE pairs). We determined the
outcome variable (each drugeAE pair ’s relevance) by reviewing
the associated article’s title, abstract, and full text (if the rela-
tionship between drug and harmwas unclear in the abstract); we
created 54 independent variables related to how the drug and
disease in question were described in associated MeSH terms and
subheadings. We then modeled relevance as a function of these
numerous independent variables (MeSH data). We used
a shrinkage and selection method for regression called Lasso that
minimized the usual sum of squared errors, with a bound on the
sum of the absolute values of the coefficients.27e29 This method
shrank coefficients of less important variables to zero, resulting in
fewer independent variables with better predictive power. We
developed and tested several Lasso-based supervised learning
models for predicting relevance.28 The shrinkage factor was
determined by a tenfold cross-validation of the entire training
data. Using coefficients derived from the Lasso procedure, we
considered drugeAE pairs with an estimated probability of
relevance greater than 0.5 to be relevant, after testing revealed
that this threshold minimizes the error rate. We verified the
method by randomly selecting three-fourths of the coded articles
to derive an empirical model, while calculating performance
characteristics on the remaining coded test data (the remaining
one-fourth of the data). We compared the predicted scores with
the actual scores to obtain average performance characteristics
for 20 simulations: sensitivity (% of relevant articles correctly
predicted, also known as recall), PPV (% of predicted relevant
articles that are actually relevant, also known as precision), and
the error rate (% of articles that are correctly classified as relevant
or irrelevant). Finally, we calculated predicted relevance scores for
uncoded drugeAE pairs by applying coefficients derived using
training data to extracted MeSH variables. We retained those
articles tagged as relevant and created a contingency table using
predicted counts for drugeAE article pairs (figure 1).

To test the robustness of the Lasso document classifier
described above, we evaluated two additional statistical
methods and two non-statistical filters. (Of note, as with the
Lasso model, each of these models used data in which FDA-
approved treatment indications were removed.) We developed
one model that used standard (linear) logistic regression to
model relevance as a function of the same MeSH-derived inde-
pendent variables discussed in relation to Lasso. However, this
method did not discard less important variables. Also, we
applied the gradient-boosting method (GBM), a non-parametric
tree-based prediction approach based on boosting.28 Boosting
improved the classifier (in this case, classification trees) by
optimally combining a sequence of classifiers, each of which
were iteratively built to give more weight to the training
observations that were misclassified in previous classifiers. We
evaluated these models’ performance using the same metrics
given for the Lasso method. We also applied a non-statistical
filter (adapted from earlier research),21 which classified articles as
relevant if any of three terms (‘adverse effects,’ ‘chemically
induced,’ and ‘toxicity’) were present anywhere in the arti-
cledregardless of whether the terms were linked to drugs or
diseases of interest. Finally, we used minimally filtered data from
which only FDA-approved treatment indications had been
removed. We computed performance statistics for the non-
statistical filters based on the entire sample because their
development did not involve training procedures.

Statistical identification of drugeAE associations
Our statistical analysis compared the observed number of
drugeAE literature citations with the expected count under the

null hypothesis of independence of drugs and AEs, while
controlling type I error rates. As in prior drug toxicity analyses
and illustrated in figure 1, we constructed a contingency table of
drugs versus AEs with n3m cells for the n drugs and m AEs. Each
cell contained the count of predicted relevant citations
mentioning both the drug and the AE. The observed count xi,j
was the number of events observed for the (i,j)th cell. The
expected count was Npi.p.j, where pi. and p.j denoted the
marginal probabilities of observing the drug and the AE under
the hypothesis of independence and N was the total count of
AEs for the sample of drugs. Accordingly, the p value for the
(i,j)th cell was P(X$xi,j) where X was a Poisson random variable
with mean Npi.p.j, which was calculated using standard Poisson
or normal distributional approximations; this resulted in 2090
hypotheses and p values (from 38 drugs355 possible AEs).
While we aimed to retrieve the greatest number of true signals

of disproportionate reporting (SDRsdtrue drugeAE associa-
tions), we also needed to limit the number of false drugeAE
associations. Using the common 5% level of significance (a), we
expected to retrieve 105 SDRs (even in the absence of true SDRs)
from 2090 hypotheses. However, we controlled overall error
rates by adapting methods that have emerged under the label of
Simultaneous Inference; these methods effectively analyzed
a large number of genomics microarray data while controlling
familywise type I error rates and false discovery rates.14e18 30

After ordering all p values from largest to smallest, step-down
methods find the smallest p value violating or greater than the
error measure threshold and reject all null hypotheses with
smaller p values. Step-up procedures work in an opposite
manner.15 17 Dalal and Mallows proved that valid step-up
procedures exist and demonstrated the existence and mono-
tonicity of a sequence of error measure thresholds. They
computed this sequence such that the probability that the total
count of false positive drugeAE pairs did not exceed some
criterion k is greater than or equal to 1�a.14 We applied the
above procedure with k¼1 and a¼0.01 to the drugeAE
contingency table to obtain positive drugeAE associations.18

We visualized these analyses using a heat map of the p values;
heat maps have been used successfully in diverse areas including
genetic cluster analysis and clustering of graphical user interface
elements.31 32

Evaluating empirical findings against a reference standard
In our base-case analysis, we compared positive drugeAE asso-
ciations to a reference set of true associations obtained from the
‘Warnings’ section of Structured Product Labels and also from
FDA Enforcement Reports; we excluded three of a total of 2090
drugeAE hypotheses whose labeling information was not
definitive. Although a perfect reference set was unavailable in the
absence of complete knowledge of various medications’ biological
effects, associations considered by drug manufacturers and
regulatory authorities to be strong were a plausible proxy.4 21 33

True negatives and false positives were difficult to identify
because purportedly safe drugs might be found to carry excess
risk later. However, drugeAE associations that were absent from
product labels from well-studied drugs that have been marketed
for at least 6 years were considered to be plausible true negatives.
To assess the predictive validity over time, we tested drugeAE

associations using only data available until a certain point in
time. For example, rofecoxib would have been considered to
have a true association with heart disease by the beginning of
2004 if the literature collected until the end of 2003 indicated
this association. However, the relative paucity of literature in
earlier years precluded precise measurement prior to 1990. Thus,
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we censored those results in which drugeAE associations
became known to regulatory agencies by 1990 and were recog-
nized by our algorithms using data available by 1990. However,
if the drugeAE association was known prior to 1990, but our
processes identified it using literature available after 1990, we
counted this as a ‘delayed true positive.’ After censoring, we
calculated the percentage of true SDRs that would have been
detected prior to or concurrent with an FDA warning.

In the base-case analysis described above, we restricted our
analysis to articles in which the exact drug was mentioned.
However, drugs often share both benefits and AEs with
members of the same class.34e36 In a secondary analysis, we
incorporated these ‘class effects’ by revising our search methods
to capture all articles from each drug class. For example, the
base-case analysis captured only articles that explicitly mention
atenolol, while the secondary analysis incorporated articles
mentioning any member of its class (b-blockers). After excluding
irrelevant drugeAE article mentions as before, we incorporated
all class-based drugeAE article counts into a contingency table
after weighting them appropriately. We empirically tested class
weights (which have unknown importance) by varying the
weight assigned to the class-based drugeAE article pairs from
0 (the base-case scenario without class effects) to 1 (where drugs
assume the characteristics of their class). We selected the
optimal weight by choosing the weight associated with the
highest F measure (the harmonic mean of PPV and sensitivity
with each weighted equally).37

We also conducted sensitivity analyses on the initial data-
filtering Lasso step by examining whether data transformed by
alternate document classifiers performed better at discovering
positive and negative SDRs. We applied our standard SDR
algorithm to the four contingency tables created using the
alternate document classifiers (logistic, GBM, non-statistical
filtering, and minimal filtering). We compared sensitivity and
PPV for each alternate table to the base-case (Lasso) results. As in
the primary analysis, we also calculated whether true drugeAE
associations could be detected using only literature available at
the time the FDA warning was issued. We further conducted
sensitivity analyses on the statistically permissible false positive
rate by varying k between 0 and 10 and a between 0.1 and 0.001.
We conducted all analyses using the R statistical package v 2.9.

RESULTS
Data characteristics and filtering
For the primary analysis, we retrieved 119 026 unique articles
and 228 920 drugedisease mentions involving at least one of the
included drugs (table 1). After removing FDA-approved thera-
peutic indications, we retained 123 587 drugedisease mentions.
For the sensitivity analysis, we also retrieved 293 454 unique
articles and 834 437 drugedisease mentions pertaining to at least
one of the included drug classes; 460 498 remained after
removing FDA-approved therapeutic indications.

We tested the performance of several document classifiers in
removing other irrelevant drugedisease mentions. (table 2).
Lasso (10.2% error, 81.2% sensitivity, and 87% PPV) and GBM
(10.2% error, 79.7% sensitivity, and 88.3% PPV) performed
equally well, although Lasso had better sensitivity and GBM had
better PPV. The logistic filter had the poorest error rate of the
three statistical filters, but performed substantially better than
the non-statistical and minimal filters. Based on Lasso’s exten-
sive record in the published literature and its good performance
here, we used the Lasso-based method to remove irrelevant
drugedisease mentions in base-case analyses. We retained the
other filters for performing sensitivity analyses.

After applying the Lasso document classifier, we converted
15 565 predicted relevant drugeAE article pairs (and 9133 unique
articles) into a contingency table with 2087 cells; each cell
contained the count of relevant articles mentioning a drugeAE
hypothesis. After using the Lasso filtering process to exclude
irrelevant classedisease mentions, we converted the remaining
50 891 classeAE mentions into contingency tables that are used
in the disproportionality analyses below.

Identification of drugeAE associations using disproportionality
analyses
We used a heat map to visualize the p values for each cell where
we clustered the drugs (harms) according to their similar p value
profiles across harms (drugs) and represented cells with high and
low p values along a spectrum of yellow to red (figure 2). These
data were drawn from literature published until 2009 but did
not incorporate class effects. The graphical representation of
hierarchical clustering (a dendrogram) for drugs is shown on the
left axis. Several notable features emerged. First, many drug
classes were grouped together accurately using only their
distribution in the AE literature. For example, rosiglitazone
maleate and pioglitazone hydrochloride were known to be
members of the same class of drugs but could also be grouped
together using their distribution in the AE literature. We saw
other appropriate grouping including the COX-2 inhibitors
celecoxib and rofecoxib. Our successful grouping of chemicals
using literature characteristics alone gives credence to our
hypothesis and method. Second, the heat map demonstrated
many associations, as seen in the numerous cells with lower p
values. Many corresponded to known associations such as

Table 1 Data characteristics

Sample characteristic n

Unique drugs 38

Unique diseases 55

Primary analysis

Median publication year 2000

Publication year (range) (1959e2009)

Unique articles 119 026

Drug article mentions 155 655

Total drugedisease mentions 228 920

Excluding primary treatment indications 123 587

Final, excludes all irrelevant drugedisease mentions 15 565

Including class effects (for sensitivity analyses):

Median publication year 1998

Publication year (range) (1949e2009)

Unique articles 293 454

Drug article mentions 552 498

Total drugedisease mentions 834 437

Excluding primary treatment indications 460 498

Final, excludes all irrelevant drugedisease mentions 50 891

Table 2 Comparison of document relevance filters on training data
(N¼1599 abstracts)

Filter Sensitivity (%) PPV (%) Error (%)

Minimal filtering 100.0 32.9 67.1

Non-statistical filtering 95.6 46.1 38.3

Logistic algorithm* 82.6 79.4 12.6

Lasso* 81.2 87.0 10.2

GBM* 79.7 88.3 10.2

*Results of 20 random trials on test data. Lasso corresponds to the base-case statistical
model.
GBM, gradient-boosting method; PPV, positive predictive value.
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rosiglitazone maleate and congestive heart failure. The
remainder of this section describes the results of our process for
selecting the most significant associations while minimizing
false positive associations.

We then calculated SDRs for the entire sample (table 3). The
base-case scenario, which assumes that class effects were
unimportant (class weight¼0), revealed 64.9% sensitivity and
42.4% PPV, and a 4.6% overall error rate. Of the detected true
positive associations, after censoring 13 drugeAE associations for
which no determination can be made, 54% (20/37) were present
using the literature available at the time of the safety alert.

Sensitivity generally rose and PPV fell as class effects were
assigned greater weight and specific information about the drugs
was given less importance (table 3). Selection of a specific weight
depended on the trade-off between PPV and sensitivity. Using
the F measure, the optimal choice corresponded to a 20% class
weight (71.4% sensitivity, 40.7% PPV; see row 3 of table 3). Of
true positive associations detected using this weighting scheme,
and after censoring 15 drugeAE associations for which no
determination could be made, 60% (24/40) were present using
the literature available at the time of the safety alert. Notably,
adding class effects increased the number of censored drugs by

Figure 2 Heat map representation of
contingency table. Each cell represents
the probability of the observed count
exceeding the expected count under the
assumption of independence of adverse
effects (AEs) and drugs. p Values were
represented using a spectrum of low
(red) to high (yellow). Drugs were
clustered together on the basis of their
similarity across harms. Harms were
clustered together on the basis of their
similarity across drugs.
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albuterol
alendronate sodium
escitalopram oxalate
sertraline hydrochloride
zolpidem tartrate
fexofenadine hydrochloride
cetirizine hydrochloride
gabapentin
hydrochlorothiazide
valsartan
atenolol
metoprolol tartrate
furosemide
spironolactone
carvedilol
amlodipine besylate
pantoprazole sodium
esomeprazole sodium
lansoprazole
naproxen
celecoxib
rofecoxib
clopidogrel bisulfate
allopurinol
ibuprofen
azithromycin
amoxicillin
ramipril
lisinopril
pravastatin sodium
atorvastatin calcium
fenofibrate
rosuvastatin calcium
glyburide
glipizide
metformin hydrochloride
pioglitazone hydrochloride
rosiglitazone maleate

Table 3 Primary analysis

Article weight* (%) TP FP FN TN Sensitivity (%) PPV (%) Censored Positive before FDA Positive after FDA F measure

0y 50 68 27 1942 64.9% 42.4% 13 20 17 51.3%

10 51 70 26 1940 66.2% 42.1% 13 23 15 51.5%

20 55 80 22 1930 71.4% 40.7% 15 24 16 51.9%

30 57 94 20 1916 74.0% 37.7% 19 25 13 50.0%

40 59 105 18 1905 76.6% 36.0% 19 25 15 49.0%

50 58 121 19 1889 75.3% 32.4% 20 26 12 45.3%

60 58 134 19 1876 75.3% 30.2% 22 26 10 43.1%

70 59 146 18 1864 76.6% 28.8% 22 26 11 41.8%

80 62 154 15 1856 80.5% 28.7% 22 26 14 42.3%

90 62 165 15 1845 80.5% 27.3% 24 26 12 40.8%

100 62 168 15 1842 80.5% 27.0% 24 26 12 40.4%

There are 2087 potential AE associations in the sample, of which 77 were the subject of an FDA warning. DrugeAE associations are considered positive before the FDA if the association is
detected using literature published before or concurrent with the FDA warning. A drugeAE association was considered positive after the FDA warning if the association is detected using
literature published after the FDA warning. Positive drugeAE associations for which timing with respect to FDA warnings could not be definitively determined are censored. For all models, the
number of statistically allowable false positives (k) and the significance threshold (a) are set to 1 and 0.01, respectively.
*Weights to articles directly mentioning the drugs of interest are always 1. Weights for articles mentioning members of the same class as the drugs of interest are varied between 0 and 1.
yBase-case model.
FDA, U.S. Food and Drug Administration warning; F measure, harmonic mean of PPV and sensitivity; FN, false negative; FP, false positive; TN, true negative; TP, true positive; PPV, positive
predictive value.
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discovering several additional drugeAE associations using earlier
literature.

We linked general cardiovascular diseases with rofecoxib
(using literature available by 2001) and with celecoxib (using
literature available by 2002). These results persisted with and
without class effects. Then again, the FDAwarned consumers in
2001 that rosiglitazone potentially exacerbated or unmasked
congestive heart failure,38 but this association was only evident
in base-case models using literature released prior to 2003.

Sensitivity analyses
We tested the robustness of the Lasso-derived document filter by
comparing base-case results with those obtained using data
derived from alternate filters (table 4). Using unfiltered data
yielded slightly higher sensitivity (67.5% vs >60%) but
substantially worse PPV (12.8% vs >40%) in all comparisons
with statistical filters. All performed similarly in detecting
drugeAE associations using literature published prior to the
FDA warning. Overall, the three statistical filters performed
similarly, suggesting that switching filters would not have
improved the results. Of note, the base-case (Lasso) model that
included class effects (table 3) had superior sensitivity and PPV
when compared to the non-statistical and minimal filters in
table 4. This suggests that the statistical relevance filtering did
not remove valuable information, despite the great reduction in
the number of included drugeAE article mentions (122 598 to
less than 16 000 for all statistical filters).

In addition, key results (including the rofecoxibe
cardiovascular disease association) persisted despite varying key
model parameters k and a (the number of allowable false
positives and the significance threshold, respectively) across
wide ranges.

DISCUSSION
Our methods for collecting, filtering, and analyzing the medical
literature showed promise for detecting early SDRs among
a large set of drugeAE hypotheses. We combined several recently
developed approaches that improved PPV while maintaining
reasonable sensitivity rates, including detecting the link between
rofecoxib and cardiovascular diseases using literature published
several years prior to rofecoxib’s recall. Although researchers
often referenced previously published literature to discover or
confirm SDRs, prior work primarily analyzed AE databases,
healthcare claims data, and clinical trials. Our results support
the hypothesis that analyzing the medical literature within
a disproportionality framework could supplement current
methods for discovering drugeAE relationships.

Unfiltered literature was too statistically noisy to allow
accurate signal detection.22 However, our use of a two-stage
filter for removing treatment indications and other irrelevant
articles limited the dataset to an enriched set of articles that
tested whether drugs cause potential AEs. To our knowledge,

this was the first validated filter for retrieving articles related to
particular drugeAE pairs. This literature-based method discov-
ered true drugeAE associations with greater than 70% sensitivity
and 40% PPV. Furthermore, we detected numerous associations
prior to FDA warning, suggesting that literature mining did not
simply provide a lagging indicator of widely known drugeAE
associations. These results persisted in several sensitivity anal-
yses. Statistical learning tools using data such as AERS reported
higher sensitivity rates for dozens of true positive drugeAE
associations. However, these tools often detected thousands of
additional drugedisease pairs of unclear importance, suggesting
a lower PPV than a literature mining approach.5 39

In accord with several prior studies, we gauged performance
against a gold standard of drugeAE associations that were
presumed to be true. In the absence of complete knowledge of
a medication’s true biological effects, some expert judgment is
always required. In contrast to other studies that chose to use
alternate gold standard drugeAE associations,5 39 we chose to
use FDA warnings for the set of drugs and AEs under consider-
ation for several reasons. First, although imperfect, the FDA
decision-making process requires review of prior clinical trials,
biological evidence, data mining results, and expert judgment,
along with substantial documentation.4 21 33 This certainly
makes their decision-making process superior to our own judg-
ment regarding historical drugeAE associations (although we
believe that this work will aid their processes in the future).
Second, prior gold standard lists did not overlap with our dataset
of drugeAE associations (and these all required some expert
judgment as well). Finally, FDA warnings appear to strongly
influence drug sales and policy,40 making them a de facto stan-
dard in the US market, and a respected source elsewhere. Given
these reasons, FDA warnings served as a plausible gold standard
for this study and for future work. Our methods carried several
limitations. First, we relied entirely on PubMed records, which
had been regarded as insufficient for literature reviews.9

However, PubMed offered a large sample of available literature
and was substantially more accessible than data sources such as
EMBASE. Second, literature-based statistical learning methods
may only duplicate AERS analyses and discovered drugeAE
associations may already be under consideration. However, the
early retrieval of rofecoxib toxicity suggested that literature-
based methods might prove complementary. Furthermore,
researchers currently reference the literature when evaluating
statistical analyses of AE databases, RCTs, and epidemiologic
data. Therefore, signals from the literature could improve
regulatory decision-making by providing additional statistically
robust information to all stages of the investigative process.
Third, MEDLINE indexing typically requires several months,
which delayed data retrieval. Fourth, we weighed all
articles equally regardless of quality. It is possible that giving
greater weight to high-quality meta-analyses41 and large RCTs41

would have changed the results. We plan to explore additional

Table 4 Evaluating document classification strategies in detecting drugeAE associations

Filter
DrugeAE
article mentions Sensitivity (%) PPV (%) Censored

Positive
before FDA

Positive
after FDA

Minimal filtering 122 598 67.5% 12.8% 17 21 14

Non-statistical filtering 36 613 66.2% 22.0% 13 21 17

Logistic algorithm 15 372 66.2% 42.9% 13 20 18

Lasso* 15 505 64.9% 42.4% 13 20 17

GBM 14 145 62.3% 41.4% 13 20 15

*Base-case document-filtering strategy.
AE, adverse effects; FDA, U.S. Food and Drug Administration warning; GBM, gradient-boosting method; PPV, positive predictive value.
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weighting schemes in future research. Fifth, only one author
reviewed the training set, which may make estimates less
generalizable. However, the final results were robust when
judged against our reference set, despite any classification errors,
suggesting that the problem was relatively small. Finally, our
results may only pertain to the small group of included drugs.
However, increasing the number of drugs and AEs in the
contingency table will increase the number of drugeAE
hypotheses; this may aid identification by increasing the relative
signal strength of important drugeAE associations.

Drug safety has benefited from systematic reviews and from
the application of statistical learning techniques to spontane-
ously generated AE data. We described an approach for identi-
fying major drugeAE associations that combined large-scale
literature analysis with statistical learning techniques. We
dramatically improved PPV and sensitivity rates with respect to
major known drugeAE associations by applying successive
filters and incorporating drug class effects. Regulatory agencies
and drug safety researchers may be able to use these techniques
to improve decision-making about drug safety. In addition, we
anticipate improving drugeAE detection by optimizing model
parameters, by applying these methods to additional drugs and
data sources (including unpublished literature), and by
combining these signals with those obtained from standard
spontaneously generated AE data.
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