
Machine-learned solutions for three stages of clinical
information extraction: the state of the art at
i2b2 2010

Berry de Bruijn, Colin Cherry, Svetlana Kiritchenko, Joel Martin, Xiaodan Zhu

ABSTRACT
Objective As clinical text mining continues to mature, its
potential as an enabling technology for innovations in
patient care and clinical research is becoming a reality. A
critical part of that process is rigid benchmark testing of
natural language processing methods on realistic clinical
narrative. In this paper, the authors describe the design
and performance of three state-of-the-art text-mining
applications from the National Research Council of
Canada on evaluations within the 2010 i2b2 challenge.
Design The three systems perform three key steps in
clinical information extraction: (1) extraction of medical
problems, tests, and treatments, from discharge
summaries and progress notes; (2) classification of
assertions made on the medical problems; (3)
classification of relations between medical concepts.
Machine learning systems performed these tasks using
large-dimensional bags of features, as derived from both
the text itself and from external sources: UMLS, cTAKES,
and Medline.
Measurements Performance was measured per
subtask, using micro-averaged F-scores, as calculated by
comparing system annotations with ground-truth
annotations on a test set.
Results The systems ranked high among all submitted
systems in the competition, with the following F-scores:
concept extraction 0.8523 (ranked first); assertion
detection 0.9362 (ranked first); relationship detection
0.7313 (ranked second).
Conclusion For all tasks, we found that the introduction
of a wide range of features was crucial to success.
Importantly, our choice of machine learning algorithms
allowed us to be versatile in our feature design, and to
introduce a large number of features without overfitting
and without encountering computing-resource
bottlenecks.

INTRODUCTION
Clinical text-mining systems have great potential
but are hard to properly evaluate. Mostly for
privacy reasons, sizeable data collections are rarely
shared between studies, and when task objectives,
metrics, and gold standards also differ, studies
become very hard to compare. One place where
rigid system evaluations have been coming together
is in the i2b2 natural language processing (NLP)
challenges. The fourth i2b2 challenge in 2010 was
designed around a three-stage scenario consisting of
(1) extraction, from discharge summaries and
progress notes, of medical problems, tests, and
treatments; (2) classification of assertions made on
medical problems; and (3) classification of relations
between medical concepts. Combined, these three

stages represent a realistic chain in practically
applicable text mining. With such chains, valuable
structured information can be derived from free-
text data sources that otherwise would remain
largely untapped. As clinical text mining continues
to mature, its potential as an enabling technology
for improved patient care as well as more efficient
clinical research is increasingly becoming a reality.

BACKGROUND
Uzuner and DuVall1 describe the 2010 i2b2 NLP
challenge in full detail in their article in this issue. To
summarize: participants were provided with 349
human annotated documents and 827 non-annotated
documents to be used for system development and
training. The test data set comprised 477 documents
for which human annotations had also been
collected. The documents were anonymized hospital
discharge summaries and progress reports, collected
from four different sources. A typical document had
81 lines, 664 tokens, and 3728 characters (medians
over 349+477 documents). Documents were preseg-
mented on sentence and token boundaries.
The challenge consisted of three tasks:

1. Identifying medical concepts of types ‘problem,’
‘test,’ and ‘treatment’dwhich included identi-
fying the concept boundaries and reporting the
concept type. The primary evaluation metric
was F-score for getting boundary and type right,
and the secondary metric (‘inexact’ F-score)
allowed the boundary to be off.

2. Asserting for each ‘problem’ concept whether the
context describes it as ‘present,’ ‘absent,’ ‘possible,’
‘conditional,’ ‘hypothetical,’ or ‘associated with
someone else.’ The second task, as well as the third,
was evaluated through micro-averaged F-scores.

3. Establishing the relationship between pairs of
concepts, with concepts occurring in the same
sentence and one being a ‘problem’ concept.
Types of relationships were from a closed set;
examples are ‘treatment is given for the
problem,’ ‘treatment is not given because of
the problem,’ ‘treatment worsened the problem,’
‘test revealed the problem,’ and ‘problem indi-
cates another problem.’
Training material was released 2 months before

the challenge to allow for system development. The
challenge protocol involved three consecutive 24 h
time windows to submit system outputs for tasks
1, 2, and 3. Immediately after each deadline, ground
truths were released for that task so that the next
task would not need to rely on imperfect system
output on a previous task. Teams were allowed
three system submissions per task.
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Methods
We developed systems for each of the three tasks within the
challenge. All systems were built around a (semi-) supervised
machine learning paradigm where elements of the source texts
were represented as bags of features. Patterns between features
and desired (‘ground truth’) output in the training texts were
learned by the system, and this allowed it to generate output for
observed feature patterns in test texts. While the three systems
employed different learning mechanisms, the feature sets were
mostly similar.

Feature representation for each token in feature space
consisted of:
< token features, including casefolding, punctuation, prefix/

stem patterns, word shape information (eg, ‘Chem-7’
becomes ‘Aa-0’), and character n-grams;

< context features, including token features from four tokens
before to four tokens after the word, word bi/tri/quad-grams,
and skip-n-grams (word sequences with wild-cards, eg, ‘onset*
pain’);

< sentence features, including sentence-length indicators, case-
folding patterns, presence of digits, enumeration tokens at
the start, a colon at the end, and whether verbs indicate past
or future tense;

< section features: including headings, assumed to be the most
recently seen all-caps line ending with a colon, and subsection
headings, assumed to be the most recently seen mixed-case
line ending with a colon;

< document features, including upper-case/lower-case patterns
seen across the document, and a document length indicator.
In addition to these surface or text-oriented features, we used

concept mapping features, which were mostly derived from
existing annotation tools. These were cTAKES,2 MetaMap3

(UMLS), and ConText.4 Inspired by Miller et al,5 we also used the
Brown clustering algorithm6 to create 7-bit hierarchical word
clusters from the provided unlabeled data. These clusters tend to
be a mixture of semantic concepts and parts-of-speech; for
example, some clusters contain mostly past-tense verbs, while
others contain mostly drug names. Cluster granularity was opti-
mized by cross-validation at seven hierarchical levels, resulting in
128 clusters. Additionally, a few simple pattern matching
expressions from our own libraries were applied to cluster words
and terms into more general concepts, including negations,
auxiliary verbs, words indicating uncertainty, family members,
and prepositions. For Task 3, we used the output from Charniak’s
syntactic parser with its improved, self-trained biomedical parsing
model,7 after transferring these into Stanford dependencies.8

Extracted features included words, their tags (eg, POS tags), and
arc labels on the dependency path between the minimal trees that
cover the two concepts, along with the word and tags of their
common ancestor, and the minimal, average, and maximal tree
distances to the common ancestor.

In most cases, the features were binarydthat is, either
‘present’ or ‘absent’dand represented in a sparse vectordthat is,
only ‘present’ features are written out. Throughout the devel-
opment phase, inclusion of potential groups of features
depended on validation within the training data, either using
a single hold-out set or through n-fold cross-validation. Post-hoc
re-estimates of the relative contribution of feature groups to the
test-set scores are reported in the Results.

System design: task 1dConcepts Task
The Concepts Task concerns the identification of key concepts
anywhere in the source text, and includes determining the exact
boundaries of the concept, as well as the class of the concept

(‘problem,’ ‘test,’ or ‘treatment’). Concepts are non-overlapping
and non-nested.
In our system, concept tagging is carried out using a discrim-

inative semi-Markov HMM, trained using passive-aggressive
(PA) online updates. Semi-Markov models9 are Hidden Markov
Models that tag multitoken spans of text, as opposed to single
tokens. This allows us to conduct information extraction
without requiring a Begin/Inside/Outside (BIO) tagging
formalism; instead, we need only four tags: outside, problem,
treatment, and test. Outside is constrained to tag only single
words, while the others can tag spans up to 30 tokens in length.
The semi-Markov model provides two major advantages over

BIO. First, by labeling multitoken spans, labels cohere naturally.
This allows the tagger to perform well without tracking the
transitions between labels. Second, semi-Markov models allow
much greater flexibility in feature construction, as one has access
to the entire text of the concept as it is tagged, allowing easy
inclusion of whole-concept features such as concept length.
Semi-Markov models are generally trained as Conditional

Random Fields. However, we found Conditional Random Field
training to be too slow and memory-intensive for our large
feature sets. Instead, we carry out training using an online
algorithm similar to Collins’ structured perceptron,10 called the
PA algorithm.11 In particular, we use a loss-driven variant with
a 0e1 cost. PA learning makes several passes through the
training set. Per pass, each training example is visited once and
decoded to find the max-loss response. The weight vector is
then adjusted with the smallest possible update that will
separate the correct tagging from the max-loss response by
a margin of 1. During development, PA consistently outper-
formed a structured perceptron.
Since the PA algorithm has no explicit regularization, it is

helpful to average the parameter values over all updates.10 We
report the results using this averaged weight vector. We used
cross-validation to discern that 15 passes through the training
data were sufficient for good performance. The complete system
trained in about 2.5 h on modern hardware.
Throughout development, we explored an effective feature

space that spanned 4.2 million features from the feature groups
described above; 1.1 million features were assigned non-zero
weights. We did not find overfitting to be an issue. All of our
standard features were word-level features. In the case of
a multiword concept, the features for all of its words were
combined in a bag. All features were paired with one of our four
tags (problem, treatment, test, outside). We began with a stan-
dard part-of-speech tagging feature set, as described by Ratna-
parkhi.12 We then added token features and concept-mapping
features for the word being tagged and for adjacent words. For
sentences immediately following a section heading, we included
each word from the heading as a feature of the concept. We also
included word-level features extracted from cTakes and UMLS
output.
Our system design included four innovations that substan-

tially deviate from existing best practices:
1. Begin/end annotation. As stated above, our semi-Markov

system has only four tags, which are applied to multiple
tokens at a time. However, this coarse tagging does not
predict concept boundaries well. This may give an advantage
to BIO, which crucially singles out the beginning of a concept
in its tag set. Fortunately, we can include the same
information (without modifying our tag set) by annotating
when word-level features are extracted from words that begin
or end a concept. When a concept contains only one word, it
both begins and ends the concept. Thus, we maintain the
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advantages of semi-Markov modeling while also building rich
representations of concept boundaries.

2. Semi-supervised learning through clustering. We ran the
Brown clustering algorithm6 on the provided unlabeled
clinical data. These clusters generated word-level back-off
features, allowing us to accurately tag previously unseen
words in the test data, as long as those words were seen in
the unlabeled data.

3. Semi-Markov features. In addition to bag-of-token-features,
we found several useful features that look at all of the words in
a concept at once. These describe (a) whether brackets (mis)
matched; (b) which cTAKES and UMLS labels were encoun-
tered together inside a concept; (c) sequences of function
words and wildcards (eg, ‘the * with the *’); and (d) the number
of prepositions in concepts of three words or longer.

4. Annotated outside tags. In general, we found transition
features in the form of tag bigrams and trigrams, such as
‘<test> <outside> <problem>’ to be harmful. However, by
augmenting the outside tags for common words with their
lexical items, we created meaningful (and beneficial) tag n-
grams, such as ‘<test> <for> <problem>.’ We annotated
outside tags for the 20 most common tokens, which included
primarily function words and punctuation.
The contributions of these innovations, as determined

through ablation experiments on the official test data, are
included in the Results.

For the official test runs, we selected three system variations:
(1.1) the complete system; (1.2) a system that did not use UMLS
or cTAKES features; and (1.3) a self-training-system, where the
complete system tagged the unlabeled data to generate addi-
tional tagged training data, and was then retrained.13

System design: task 2dAssertions Task
The Assertions Task is phrased as follows: for every ‘problem’

concept in a text, assert whether that concept was found to be
present, absent, possible, conditional, hypothetical, or associated
with someone else.

This task, being a multiclass categorization problem, allows
us to use machine learning classification methods for generating
predictions about the class of a new instance based on features
that are shared with instances for which the class is already
known. Our system implementation solved this task in two
stages. In stage 1, assertion class predictions were generated for
every word that was part of a ‘problem’ concept. In stage 2,
a secondary classifier predicted a class for the complete concept
based on the separate per-word predictions from the ensemble of
stage-1 classifiers.

In stage 1, each word was represented as a large, sparse, binary
feature vector, from the feature groups described above. Three
classifiers were trained and applied independently: (1) the SVM-
multiclass from the SVM-light/SVM-struct library,14 which
outputted one score per class per word; (2) LibSVM,15 where six
classifiers were trained and applied in a one-class-versus-rest set-
up, resulting in one score per class per word; and (3) our multi-
class PA learner (see Task 1), outputting one score per class per
concept. The reason for using the three classifiers was the
observation of some independence between respective outputs.
This independence was consistent throughout development,
although it diminished as the feature representation becamemore
sophisticated. The stage 2 classifier used SVM-multiclass with
a linear kernel, default parameter settings and a C-parameter
value of 20 000, as selected using a development set.

Given this general architecture, we produced three variants for
our official submission:

< System 2.1: the complete two-stage process, as described
above.

< System 2.2: a simplified system. Stage 1 consisted of SVM-
multiclass alone, predicting word-level classes. Stage 2
remained unchanged.

< System 2.3: designed to improve minority class recall, even if
overall performance suffered. The output of System 1 was
over-ruled when the LibSVM score on ‘associated-with-
someone-else’-versus-rest exceeded a manually set threshold
for any of the words in a concept. The same was then done
for ‘hypothetical,’ ‘conditional,’ and ‘possible’dmimicking
the order specified in the challenge guidelines. If none of the
scores over-ruled System 1 output, the original output was
retained.
While the general design is straightforward, the specifics of

our architecture deviated from common practice on three points:
(1) the parallel use of different classifiers, since these consistently
showed some level of independence throughout development;
(2) the use of millions of features; and (3) generation of
predictions on a word-by-word basis, rather than for an entire
concept, followed by an aggregation step (the stage-2 classifier).
The last design decision allowed for very simple integration of
features between resources such as UMLS or cTAKES, even if the
exact concept boundaries mismatched.

System design: task 3dRelations Task
The goal of the Relations Task was to determine the relationship
between a pair of concepts provided that the two concepts
appear in the same sentence and at least one is a ‘problem’

concept. Including the ‘no relationship’ classes, this task defines
six treatmenteproblem relations, three testeproblem relations,
and two problemeproblem relations.
We trained three separate classifiers to categorize treat-

menteproblem, testeproblem, and problemeproblem relations
respectively. The classification framework was maximum
entropy, as implemented in the OpenNLP maximum entropy
toolkit.16 Relations were classified independently; that is,
a decision made on one concept pair did not affect other
decisions.
Our baseline feature set was similar to that of Patrick and Li,17

which was further augmented with features derived directly
from the concept and assertion-tagged text, from the external
MetaMap and cTAKES taggers, and from the parser output, as
described above. Note that the specific feature sets, as optimized
during development, were not necessarily the same between the
three classifiers.
Additionally, we found benefit in balancing the category

distribution. In the training set, some of the relationship types
were observed much more often than othersdfor example, there
were about eight times more negative problemeproblem rela-
tions than positive ones. We addressed this issue by down-
sampling the training set to a positive/negative ratio between
1:2 and 1:4, as selected using a development set. This reduced
a classifier ’s bias towards the majority class.
The components outlined up to here, all contributed to the

System 3.1 submission. For System 3.2, we added semantic
information by using Medline as a semi-structured source of
knowledge. For approximating the relatedness of two concepts,
we calculated Pointwise Mutual Information between the
concepts as they were found in Medline abstracts.
For System 3.3, we added semi-supervised training by

applying bootstrapping on the supplied unlabeled data. For this,
our system for Task 1 was applied to the unlabeled documents to
provide concept span tags and labels. For this system, the
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inclusion of down sampling was especially important, since bias
is amplified when bootstrapping is deployed.

RESULTS AND DISCUSSION
Concepts task
System 1.1 gave an F-score on Exact evaluation of 0.8523, which
positioned it as the highest scoring system in the challenge,
differing significantly from the second-ranked system.1 The
results for System 1.1 versus System 1.2 (see table 1) demon-
strate that the external sources of semantic and syntactic
tagging (UMLS and cTAKES) are beneficial; together they
improve F-measure by 1.5 percentage points. Bootstrapping on
the unlabeled data (System 1.3) showed no improvement.
Inexact evaluation, where boundaries were allowed to be off,
gave 0.9167 recall, 0.9322 precision, and 0.9244 F-score
measurements for System-1.1.

The ablation experiment results (table 2) show that the
largest single contributor to the final score is begin/end anno-
tation. When one accounts for the fact that only end annotation
provides new information over BIO, the impact decreases. The
remaining components as a block are worth another half-point
of F-measure, although their impact as individual templates is
small. Also, note that the contribution of all four components
together is larger than the sum of their parts, indicating that the
various features compensate for one another when only one is
absent.

Assertions task
System 2.1 achieved an F-score of 0.9362 (table 1), which posi-
tioned it as the highest-scoring system in the challenge, while
the differences with the three next systems were not statisti-
cally significant.1 Table 3 shows the class-by-class confusion
matrix between prediction and truth. The matrix demonstrates
that despite efforts to balance type 1 and type 2 errors, the
classifier still tended to favor the majority class. Sifting out the
‘conditional’ cases proved troublesome, with recall only slightly
above 15%. The mislabeling of true ‘possible’ cases as ‘present’
accounted for 33% of our system’s mistakes.

System 2.2, while being much simpler in design, gave by and
large comparable results: an accuracy of 0.9347 and a similar
contingency table (not shown). Most additional errors were
caused by an even stronger preference to label cases as ‘present,’
the majority class. The higher System 2.1 score indicates that
there is still some independency between its stage 1 classifiers.

System 2.3 performed as expected: it increased recall (reflected
by higher numbers on the diagonal of table 3) for all five minority

classes, even as precision dropped enough to lower micro-averaged
accuracy to 0.9271. The average F-score, when calculated per class
and then macro-averaged, was 0.774 for System 3, up from 0.753
for System 2.1 and 0.740 for System 2.2.
The post-hoc evaluation of feature group contributions

revealed that any one group of features could be removed with
only a fairly modest drop in performance; the two strongest
contributors were NegEx/ConText and character-n-grams
(removal reduced performance with 0.66% point and 0.47%
point respectively). Adding token and concept mapping features
from the context proved to be of key importance: removal
of such context features would reduce the performance to an
F-score of 0.9073.
The high scores on this task for all teams in the challenge does

not equate to it ‘having been solved.’ The reason for the high
scores can be traced back to class imbalances combined with
good performance on the two majority classes. Performance on
the classes ‘conditional’ and ‘possible’ was far from perfect. It
should be noted that optimizing systems on the primary metric
(micro-averaged F-score) may cause them to perform subopti-
mally on minority classes.
During post-challenge analyses, we noticed that one obvious

feature, which had been discarded early in the design process,
should have been a clear candidate for reintroduction into the
feature set but was overlooked. That feature was the ground-
truth annotation for test, treatment, and problem concepts from
Task 1. By the nature of the task, every token or concept to be
classified was a problem concept, which by itself would make the
feature non-informative. But via the introduction of context
features, these labels on neighboring terms would contribute
information. With that feature group added, system 2.1 was
rerun with the system kept exactly as it was in all other
respects. This yielded a micro-averaged F-score of 0.9383, or
0.216 percentage-point above the highest reported score.

Table 1 Test set performance for the three tasks

True positive False negative False positive Recall Precision F-score

Task 1: Concepts Task

System 1.1 37 646 7363 5683 0.8364 0.8688 0.8523

System 1.2 36 776 8233 6125 0.8170 0.8572 0.8366

System 1.3 37 663 7346 5787 0.8367 0.8668 0.8515

Task 2: Assertions Task

System 2.1 17 366 1184 1184 0.9362 0.9362 0.9362

System 2.2 17 338 1212 1212 0.9347 0.9347 0.9347

System 2.3 17 197 1353 1353 0.9271 0.9271 0.9271

Task 3: Relations Task

System 3.1 6296 2809 1965 0.6902 0.7611 0.7239

System 3.2 6269 2801 1896 0.6911 0.7677 0.7274

System 3.3 6288 2782 1838 0.6932 0.7738 0.7313

Table 2 Concepts Task feature contributions

Feature set Recall Precision F DF

All feature sets included 0.8364 0.8688 0.8523 NA

w/o Begin/End, Outside Clusters,
Semi-Markov

0.8094 0.8369 0.8229 �0.0294

w/o Begin/End 0.8214 0.8571 0.8389 �0.0134

w/o Outside Annotation 0.8338 0.8660 0.8496 �0.0027

w/o Clusters 0.8348 0.8677 0.8509 �0.0014

w/o Semi-Markov 0.8360 0.8684 0.8519 �0.0004
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Relations task
System 3.3 achieved an F-score of 0.7313 (table 1) and ranked as
the second-highest scoring system in the challenge, although the
difference was not statistically significant with the first ranked
system.1 The system improved its exact F-score with each
version, with Medline Pointwise Mutual Information providing
a 0.3-point gain, and self-training providing an additional
0.4-point gain.

Details about the usefulness of features are shown in table 4.
The baseline set of features (a) spans the minimal features
among several interpretations of the features used in Patrick and
Li.17 These were enhanced by making the features order- or
concept-type sensitive, which identifies, for example, whether
a problem appears before a treatment or otherwise (row b). Row
(c) shows a further performance improvement when rich text-
based features were added. These include sentence-level features
such as ‘number of concepts in the sentence,’ punctuation-
related features, word n-grams, the Brown cluster features, and
several ‘super-features’ whose presence nullify all other features.
Next, the feature set was augmented with explicit domain
knowledge derived from UMLS and MEDLINE (d). Syntactic
and dependency parsing further improved the results (e), as did
the bootstrapping on the unlabeled data (f).

For all three tasks, this year ’s i2b2 challenge was found to
suit machine learning methods well. The task definitions
allowed such methods to be applied in a straightforward
uncompromised way. The training data collection was large
enough to create stable systems, and the test data collection
was adequate to provide reliable performance evaluation. In
most cases, the number of classes per decision was small, and
the number of examples per class was large enough for training
and testing. Finally, imbalances between classes had the
potential to have a negative impact on performance. Mostly,
the built-in correction mechanisms in the learning algorithms
sufficiently dealt with class imbalances; only task 3 required
more explicit correction (ie, training data downsampling).
As we attempted self-training for all three tasks in the chal-
lenge, it is interesting to note that it was successful only for the
Relations Task 3. We suspect that this may be because this task
had the smallest amount of training data. Ablation tests

showed that for all three tasks, the systems could be greatly
simplified with only minor and possibly insignificant sacrifices
to accuracy.

CONCLUSIONS
This paper addressed three key steps in clinical information
extraction: (1) extraction of medical problems, tests, and
treatments, from discharge summaries and progress notes; (2)
classification of assertions made on medical problems; and (3)
classification of relations between medical concepts. For each
task, a (semi-)supervised machine learning approach was taken,
so that we could leverage a rigorous feature engineering effort.
These systems produced a state-of-the-art performance as eval-
uated in the 2010 i2b2 NLP challenge. Our best-scoring systems
ranked highly among the i2b2 participants, with F-scores of
0.8523 on the Concepts Task (ranked first), 0.9362 on the
Assertions Task (ranked first), and 0.7313 on the Relations Task
(ranked second).
We identified various critical components to which we attri-

bute this strong performance. For medical concept recognition
(task 1), we selected a model that enables intraconcept features
that cannot be easily formulated in a BIO tagging scheme. The
fast and scalable parameter learning that such a model requires
was provided here by PA updates. For the concept assertion
detection (task 2), an ensemble classifier configuration was still
successful in reducing errors, even as performance converged as
the feature representation became more sophisticated. In
medical-relation detection (task 3), the use of unlabeled data and

Table 3 System 2.1 and 2.3 (top/bottom row for each cell) prediction confusion matrix for the
Assertions Task, as counts for predictions (rows) and truths (columns)

Prediction Truth Absent
Associated with
someone else Conditional Hypothetical Possible Present

Absent 3370 20 6 13 14 121

3409 9 5 12 21 273

Associated with
someone else

3 105 1 1

4 124 1 2

Conditional 0 26 0 1

1 44 2 30

Hypothetical 4 617 10 48

4 621 11 53

Possible 14 1 15 468 74

20 0 12 491 159

Present 218 20 138 71 391 12 780

171 12 122 69 360 12 508

Correct predictions are in bold.

Table 4 Performance for feature accumulations in the Relations Task

Feature set Recall Precision F-score

(a) Baseline 0.646 0.718 0.680

(b) +order/type-sensitive 0.672 0.731 0.700

(c) +rich word features 0.681 0.753 0.715

(d) +domain knowledge 0.694 0.750 0.721

(e) +syntax 0.694 0.763 0.727

(f) +unannotated data 0.693 0.773 0.731
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syntactic dependency structures was important for improving
performance.

There were several common factors between all our systems
that are notable. We aimed at broadly expanding the feature
representation of the text without applying feature reduction
techniques. Rule-based components were used to generate
additional features as a preprocess, rather than for post-
processing the output of the machine learning system. This
architecture allowed the learning systems to self-optimize better.
The large feature space dimensionality led us to select machine
learning algorithms that scaled up sufficiently and that were not
susceptible to overfitting. The strong performance of these
learning systems at i2b2 suggests that one should consider these
same principles when facing similar tasks on similar datasets.
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