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ABSTRACT
Objective This paper describes natural-language-
processing techniques for two tasks: identification
of medical concepts in clinical text, and classification of
assertions, which indicate the existence, absence,
or uncertainty of a medical problem. Because so many
resources are available for processing clinical texts, there
is interest in developing a framework in which features
derived from these resources can be optimally selected
for the two tasks of interest.
Materials and methods The authors used two
machine-learning (ML) classifiers: support vector
machines (SVMs) and conditional random fields (CRFs).
Because SVMs and CRFs can operate on a large set of
features extracted from both clinical texts and external
resources, the authors address the following research
question: Which features need to be selected for
obtaining optimal results? To this end, the authors devise
feature-selection techniques which greatly reduce the
amount of manual experimentation and improve
performance.
Results The authors evaluated their approaches on the
2010 i2b2/VA challenge data. Concept extraction
achieves 79.59 micro F-measure. Assertion classification
achieves 93.94 micro F-measure.
Discussion Approaching medical concept extraction
and assertion classification through ML-based
techniques has the advantage of easily adapting to new
data sets and new medical informatics tasks. However,
ML-based techniques perform best when optimal
features are selected. By devising promising feature-
selection techniques, the authors obtain results that
outperform the current state of the art.
Conclusion This paper presents two ML-based
approaches for processing language in the clinical texts
evaluated in the 2010 i2b2/VA challenge. By using novel
feature-selection methods, the techniques presented in
this paper are unique among the i2b2 participants.

INTRODUCTION
Electronic medical records (EMR), such as hospital
discharge summaries, contain a wealth of infor-
mation only expressed in natural language.
Automated methods for extracting information
from these records must be able to recognize
medical concepts in text, addressing lexical,
syntactic, and semantic ambiguity. Furthermore, to
perform any automated reasoning on this infor-
mation, the context of these concepts must be
understood. We address a contextual property crit-
ical to reasoning: the doctor ’s belief status (or
assertion) of the patient’s medical problem. In the
2010 i2b2/VA challenge1 data, a doctor could
qualify a particular problem as being present,
absent, possible, hypothetical, conditional on

another factor, or associated with a someone else.
This information must be obtained from the
textual context and is difficult for simple rule-based
approaches to extract. Alternatively, this informa-
tion is obtained by a supervised machine-learning
approach that uses several natural-language-
processing (NLP) components which are both
domain-independent and tailored to medical infor-
mation extraction. These components are
combined in an automated feature selection
framework to extract medical concepts and classify
the assertion for each medical problem.

BACKGROUND AND SIGNIFICANCE
Research in medical text mining can generally be
segmented into two domains: biomedical literature
(primarily medical journals and other scholarly
research) and clinical notes (hospital discharge
summaries, progress reports, or other notes written
by doctors).2 Biomedical NLP tends to focus on
extracting proteins, genes, pathways, and other
biomedical relations.3e9 In clinical NLP, the focus is
on building profiles of individual patients10 11 by
extracting a broad class of medical conditions (eg,
diseases, injuries, and medical symptoms) and
responses (eg, diagnoses, procedures, and
drugs),1 12e14 with the goal of developing applica-
tions that improve patient care.15e18

Despite their differences, biomedical NLP and
clinical NLP take advantage of similar resources
and text-processing techniques. These resources
include medical knowledge sources, such as the
unified medical language system (UMLS) Meta-
thesaurus,19 20 as well as numerous medical
ontologies.21e23 An important text-processing tool
for both biomedical NLP and clinical NLP is
MetaMap,24 which links textual references to
medical concepts of any semantic type into the
UMLS Metathesaurus. MedLEE12e14 is a system
that extracts medical information from clinical text,
such as a patient’s medical problems and their
corresponding certainty level and past history.
MedLEE was adapted to biomedical literature in
the BioMedLEE system4 5 for extracting biomedical
entities and relations. Furthermore, techniques for
open-domain text processing have been adapted to
the medical domain. For instance, the GENIA
tagger25 performs part-of-speech tagging, lemmati-
zation, phrase chunking, and entity recognition.
Although GENIA was trained on biomedical litera-
ture, it is more suitable for clinical text than other
NLP tools, which are commonly trained on news-
wire. While this paper focuses on two tasks from
clinical NLP, we make use of several resources
intended for biomedical NLP. Additionally, our work
provides an automatic method for determining
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which of these resources are valuable for a given data setdfor
example, the data provided by the 2010 i2b2/VA challenge.

In the 2010 i2b2/VA challenge paradigm, extraction of medical
concepts involves finding textual expressions of three semantic
types: medical problems, tests, and treatments. This is most
closely related to the NLP task of named entity recognition
(NER). NER systems identify spans of text that belong to
a semantic class, such as person, location, or disease. In medical
text, this has been applied to tasks such as recognizing diseases,
drugs, and proteins, as discussed above. Similar to advances in
open-domain NER, early approaches to entity recognition in
medical texts were primarily rule-based,3 relying on finely tuned
heuristics and lexicons, whereas recent approaches focus on
supervised machine-learning models,26 27 which use statistical
techniques to handle many types of (often noisy) information.
Machine-learning methods have the additional benefit of not
needing domain experts to craft rules. For these reasons, we
perform concept extraction using two machine-learned classi-
fiers: conditional random fields28 (CRF) for boundary detection
and support vector machines29 (SVM) for three-way classifica-
tion of the concept’s type.

The assertion of a medical problem is a classification of the
existence, absence, or uncertainty of a problem. A statement
such as ‘[his dyspnea] resolved’ implies the problem is absent,
while the statement ‘Doctors suspect [an infection of the lungs]’
suggests the problem is possible. This is closely related to the
NLP tasks of negation detection and hedge detection because it
includes the detection of both negated and uncertain medical
problems. The most widely used medical negation detection
system is NegEx,30 though more exist.31 NegEx uses a rule-based
algorithm that combines negation lexicons with regular
expressions matched against the context of terms from UMLS.
NegEx is capable of annotating three types of negation status:
negated, possible, and actual. In contrast, hedge-detection
systems identify instances of uncertainty in natural language.
Often this is done at the sentence level,32 but other systems
exist that ‘scope’ the uncertainty to a span within a sentence.33

Most recent approaches to hedge detection are supervised.34 We
perform a six-way classification of belief status at the concept
level (specifically for medical problems), which effectively
encompasses all of negation detection and borrows from hedge
detection by indicating uncertain medical problems or those that
may develop. We incorporate several linguistic features,
including NegEx, into a supervised SVM model.

Other submissions to the 2010 i2b2/VA challenge used a range
of approaches, including rule-based methods and a variety of
ML-based classifiers. However, almost all the top submissions
relied on similar ML methods. Seven of the top 10 submissions
to the concept task used CRF classifiers or a similar sequence
classifier, including our own (the remaining three submissions
did not report their methods). Eight of the top 10 submissions to
the assertion task used SVM classifiers, including our own (only
one did not, while the remaining submission did not report their
methods). Many submissions used additional classifiers and
strategies for combining the results of multiple classifiers, but it
is not clear whether these methods would provide substantial
gains for other submissions. As a result of these findings, the
focus of our postsubmission research has been the selection of
resources and features that maximize a classifier ’s performance.

MATERIALS AND METHODS
Task description
The 2010 i2b2 challenge1 data consist of 826 discharge
summaries and progress notes, split into 349 train and 477 test

documents. The documents are annotated by medical
professionals familiar with their use. The data contain 72 846
medical concepts (27k train, 45k test). Each concept is classified
as a problem (eg, disease, injury), test (eg, diagnostic procedure,
lab test), or treatment (eg, drug, preventive procedure, medical
device). Medical problems are assigned an assertion type (belief
status) among: present, absent, possible, hypothetical, condi-
tional, or associated with someone else. The distribution of
assertion types is far from uniform: 69% of all problems are
considered present, 20% absent, <5% for possible and hypo-
thetical, and <1% for conditional and associated with someone
else. Additionally, the data contain a third set of annotations,
relations between concepts, not described in this paper. The data
have already been sentence-segmented and tokenized. Auto-
mated methods are then required to identify concept start and
end tokens, classify the concept’s type, and then classify the
assertion type for problems. In the official submission, assertion
classification was performed only on manually annotated
concepts.

Feature selection
Instead of using every possible feature for our classifier, or
manually selecting our set of features through trial and error, we
use an automated feature selection approach to finding the best
set of features. Because our feature set is chosen automatically,
we refer to our approach as having a flexible architecture. Given
a new task, or simply new data, we can automatically determine
a new set of features so long as the new task operates on the
same type of input. For example, classifying a concept’s type
(problem, test, treatment) and a concept’s assertion type
(present, absent, etc) both operate on the concept level. In both
of these tasks, we made largely the same set of features available
to the feature selector.
We now describe the three types of feature selection we

perform. In each case, the feature sets are scored using cross-
validation on the 2010 i2b2/VA training data. Additionally, for
features that take parameters, we allow the feature selector to
choose among a set of reasonable values. For simplicity, we refer
to parameterized features below simply as features.

Greedy forward
Also known as additive feature selection, this method takes
a ‘greedy ’ approach by always selecting the best feature to add
to the feature set. At each iteration, each unused feature is tested
in combination with the current selected feature set. The feature
corresponding to the highest scoring set is then added to the
selected feature set. The algorithm terminates when no new
features improve the score.

Greedy forward/backward
Also known as floating forward feature selection,35 this is an
extension of greedy forward selection that greedily attempts to
remove features from the current feature set after a new feature
is added. Intuitively, over time, some features may become
redundant or even harmful after new features are added.

Genetic algorithm
Based on biological natural selection, this non-greedy heuristic
feature selection technique can overcome local maxima over
many generations of genetic crossover and mutation. In this
setting, features are analogous to genes, feature sets are analo-
gous to genomes, and the classifier ’s score using a given feature
set is referred to as the feature set’s ‘fitness.’ We keep a beam (or
‘population’) of the 500 fittest feature sets found so far. In the
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crossover step, two feature sets are chosen proportional to their
fitness rank and form an ‘offspring.’ Any feature both parents
have in common is automatically included in the child feature
set. Features in only one parent have a 50% chance of being in
the child. The mutation step can then add or remove features
from the child. There is a 0.5n+1 chance of having n mutations.
For each mutation, a feature is chosen at random from all
parameterized features. If that feature is in the child, it is
removed, otherwise it is added. The child is then scored and
added to the beam if fit. Many termination conditions are
possible, but we allow the algorithm to run for several days and
take the highest-performing feature set.

External resources
We use numerous external resources to derive features. These
resources include UMLS,19 MetaMap,24 NegEx,30 GENIA,25

WordNet,36 PropBank,37 the General Inquirer,38 and Wikipedia.
We provide a detailed description of each of these resources in
the online supplement.

Concept extraction
The overall architecture of our concept extraction approach is
shown in figure 1. Each discharge summary in the dataset is
provided with tokenization and sentence boundaries. We use
regular expressions to recognize nine entity types that support
concept extraction: names, ages, dates, times, IDC-9 identifiers,
percents, measurements, dosages, and list elements. Each
sentence is then categorized as being prose or non-prose using
a simple heuristic. Sentences that end with a colon are assumed
to be section headers and are not considered prose. A sentence is
considered prose if it ends with a period or question mark, or if it
consists of at least five tokens, less than half of which may be
punctuation. Otherwise, it is considered non-prose.

We then detect concept boundaries (start and end tokens)
using two CRF classifiers39: one CRF for prose sentences; the
other CRF for non-prose sentences. This allows us to use
separate features for each classifier; each set of features reflects

the different problems faced when extracting concepts in prose
and non-prose text.
For concept extraction, we used only greedy forward feature

selection. The feature selector primarily chose lexical and
pattern-entity features for non-prose concepts, along with
MetaMap features. For prose concepts, a wide variety of features
commonly used in NLP were chosen, including the four anno-
tations provided by GENIA. The lists of features chosen by the
feature selector for each CRF classifier is shown in box 1.
After detecting the concept boundaries, our approach classifies

each concept as a problem, treatment, or test. We use a single
SVM classifier40 for all concepts, prose and non-prose, and
employ the same greedy feature-selection technique. The
selected features are shown in box 1.
The feature selector for boundaries chose from a set of 125

features, choosing seven for non-prose concept boundaries and
15 for prose concept boundaries. For concept type, a total of 222
features were available to the feature selector (most of which
were developed for assertion classification), of which eight were
chosen. For features that can take non-numeric values (eg, NF1
can be any word, while TF1 can be many words for a given
concept), we expand these features into N binary features,
where N is the number of values seen for the feature in the
training data. This results in large, sparse feature vectors that
can be problematic for some machine-learning techniques, but
are easily handled by SVMs and CRFs.

Figure 1 Architecture of our concept-extraction approach.

Box 1 Features for concept extraction

< Non-prose boundary
– NF1. uncased word
– NF2. pattern-based entity
– NF3. uncased prev word
– NF4. prev word POS
– NF5. 3-token POS context
– NF6. MetaMap type
– NF7. MetaMap CUI

< Concept type
– TF1. uncased words
– TF2. 4-char prefix
– TF3. Prev lemma
– TF4. next lemma
– TF5. uncased prev bigram
– TF6. SRL pred.+arg type
– TF7. UMLS concept type
– TF8. Wiki. concept type

< Prose boundary
– PF1. Word lemma
– PF2. Prev word
– PF3. Uncased prev word
– PF4. 2-char suffix
– PF5. prev POS
– PF6. 1-token POS context
– PF7. UMLS concept parents
– PF8. MetaMap type
– PF9. GENIA lemma
– PF10. GENIA entity type
– PF11. GENIA phrase chunk
– PF12. Prev GENIA POS
– PF13. Prev GENIA lemma
– PF14. Prev GENIA phrase chunk
– PF15. Next GENIA lemma
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Assertion classification
The belief status (or assertion type) of a medical problem is
determined by a single SVM classifier.40 Problems are categorized
as present, absent, possible, hypothetical, conditional, or asso-
ciated with someone else. The overall architecture of our asser-
tion classification approach is shown in figure 2, and our features
are shown in box 2. We describe only the features chosen by the
feature selector. The feature selector chose an optimal set of 27
of the 396 available features (the same set available for concept
type plus eight features based on the output of the concept type
classifier and 166 features based on significant n-grams devel-
oped after the original submission and described below).

After we preprocess the discharge summaries as in concept
extraction, we partition the document into sections and asso-
ciate each section with its header. We assume that sentences
ending with a colon are section headers. The uncased section
name is then used as a feature (AF1) for all problems in that
section. Common section names that are useful in assertion
classification are ‘allergies,’ ‘family history,’ and ‘infectious
disease.’ Another feature derived from preprocessing uses the
pattern-based entities discussed in concept extraction. This
feature (AF2) indicates if one of these entities is in the current
sentence. This is a good indicator of medical problems which are
present, as the entities often refer to dosages given for the
treatment of some problem.

Five features (AF3e7) capture information about other
concepts in the context. AF3 simply returns the other concepts
in the sentence, while AF4e7 deal specifically with the assertion
type of previous concepts. Since assertions are classified based on
their order in the document, only the types of the previous
problems are available to the classifier.

We use a NegEx feature (AF8) to indicate the negation word
associated with the medical problem. Additional medical features
indicate if the problem was found in UMLS (AF9) or MetaMap
(AF10), as the distribution of assertion types for problems found
within these resources differs from that of the documents.

We use the General Inquirer ’s category information to better
understand the context of a medical problem. We only use the
‘If ’ category, which indicates uncertainty words such as ‘unex-
pected,’ ‘hesitant,’ or ‘suspicious.’ This feature (AF11) only looks
at the five previous tokens.

We use eight lexical features to capture the words both inside
and outside the concept. Features representative of the concept,
such as the words within the concept (AF13), are important

because different medical problems have different assertion type
distributions. Some concepts are by their very nature absent (eg,
‘afebrile’ means without fever, and all 213 mentions are marked
as absent). To gather lexical context, we use the word on either
side of the concept (AF14e19) as well as every word in the
sentence (AF20).
Since lexical features create a high-dimensionality problem for

the classifier, we developed a method to use only the most
significant words and phrases in a problem’s context. This is
sometimes referred to as statistical feature selection, and differs
from automated feature selection in that it filters features based
on their statistical significance instead of the final output of the
classifier on an evaluation set. We use two statistical measures:
pointwise mutual information (PMI) and Fisher exact test. Both
measures provide a scoring method for words and phrases based
on how often they co-occur with problems of a specific assertion
type in the training data. For instance, the phrase ‘family
history’ is strongly correlated with a problem associated with
someone else, ‘on exertion’ is highly correlated with a condi-
tional, and ‘no evidence of ’ is highly negatively correlated with
present. While these n-grams are captured in the lexical features
previously described, by removing statistically insignificant
n-grams the feature can be given a more appropriate weight.
This provides our approach with additional flexibility, as the
n-grams could be extracted directly from any training set.
We allow the feature selector to choose between various

parameters for our significant n-gram features: (1) the choice ofFigure 2 Architecture of our assertion-classification approach.

Box 2 Features for assertion classification

AF1. Section name
AF2. Sentence contains pattern-based entity
AF3. Other concepts in sentence
AF4. Previous assertion type in sentence
AF5. Previous assertion type within 5 tokens
AF6. Previous assertion type plus words between
AF7. Previous assertion in doc is hypothetical
AF8. NegEx modifier
AF9. Concept is in unified medical language system
AF10. Concept detected by MetaMap with score $800
AF11. Inquirer word with category ‘If’ before concept
AF12. Next word’s part-of-speech
AF13. Unigrams in concept
AF14. Next word
AF15. Previous word
AF16. Uncased next word
AF17. Uncased previous word
AF18. Uncased previous bigram
AF19. Uncased previous bigram if contains a stopword
AF20. Unigrams in sentence
AF21. ANG(P, sent, 10) most significant is absent
AF22. ANG(F, sent, 10) most significant is associated with
someone else
AF23. ANG(P, sent, 3) most significant is hypothetical
AF24. ANG(F, sent, 3) types with log value #�100
AF25. ANG(P, sent, 3) types with value #�1
AF26. ANG(F, 5 tokens, 3) types with log value #�2
AF27. ANG(F, 5 tokens, 3) n-grams with log value #�2

ANG (x, y, z) is an assertion n-gram feature, where x is the metric
(P for pointwise mutual information, F for Fisher), y the context,
and z the minimum count
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metric (PMI or Fisher), (2) context window size, (3) the
minimum count an n-gram must have in the training set to be
considered, and (4) various score thresholds. This provides
further motivation for automated feature selection: manually
evaluating well over a hundred parameterizations would prove
too costly. Automated feature selection learns the best parame-
terization relative to the other features being used by the
classifier. The feature selector chose several parameterized
features using both statistical measures, a range of windows
from the entire sentence to a five-word span around the concept,
minimum counts of three and 10, as well as scores that capture
both highly positively and negatively correlated n-grams. A total
of seven features (AF21e27) based on these n-gramswere chosen.

RESULTS
Table 1 shows the results of our concept extraction approach as
submitted to the 2010 i2b2/VA challenge, where we placed
ninth. The best, mean, and median results across all 22
submissions are shown as well. Additionally the table shows the
breakdown into boundary detection (with both prose and non-
prose) and type classification. The largest source of error was
boundaries. Most boundary errors were partial, involving missed
or incorrectly added words, especially at the beginning of the
concept where the i2b2 guidelines specified only certain types of
modifiers. The submission’s inexact score was 89.25, meaning
over half of all errors were still partial matches.

Table 2 shows the current status of our assertion classification
approach using different feature-selection methods, compared
against our original submission to the 2010 i2b2/VA challenge,
and the best, mean, and median results. There are two
differences between the approach described in this paper and
our submission. First, greedy forward (GF) feature selection was
used to choose features in the original submission. Second, the
n-gram correlation features were not used. We report the
improved scores using three feature-selection ‘pipelines’: greedy
forward/backward (GFB) alone, then the output of the GFB
selector being used as the seed set for a genetic algorithm (GA),
and finally adding another GFB on the GA’s output to remove
any spurious features and quickly find additional features that
improve results. Again, all features were chosen using cross-
validation on the training data, while the results shown in table
2 are evaluated on the test data (our cross-validation F-measure
was 95.3). As can be seen in the results, these additions are
significantly better than our original submission.

Table 2 also shows the results on a per-class basis. Generally
speaking, performance is relative to the number of examples in
the training data. The notable exception is the ‘associated with
someone else’ class, which had a specific feature (AF22) that was
targeted at this class. Similarly, the hypothetical class, which has

roughly the same number of manual annotations as the possible
class, performs better due to its targeting feature (AF23). Equiv-
alent features for conditional and possible were not as helpful,
suggesting there are fewer overt lexical cues for these classes.
For comparison, we also report results for using all features

(instead of the feature selector) as well as the results when using
automatically detected concepts. Clearly, using all 396 features
impairs the performance significantly. This stands to emphasize
that feature selection is an important process, as over 90% of the
features devised were either redundant with other features or
too noisy to improve held-out results. In regards to the experi-
ment using automatically generated concepts, we found that
assertion classification is relatively independent of concept
extraction (ie, the problems that were correctly extracted were
not necessarily the problems whose assertions were correctly
classified), as the result of 73.67 is very close to the 74.76
F-measure (79.59%393.94%) expected by independence.
However, the 73.67 result could be improved to (or exceed) 74.76
if the assertion classifier were trained on the automatic concepts
instead of the manually annotated concepts.

DISCUSSION
Automated feature selection permits the consideration of
a significant number of features, derived from a large set of
resources. The goal of feature selection is to find a near-optimal
subset of features for a given task. Here we consider three
separate contributions made by employing feature-selection
methods: (1) more advanced feature-selection algorithms
improve feature choice; (2) feature selection can choose the best
parameters for highly parameterized features; and (3) feature
selection allows for an empirical evaluation on the value of
individual resources.
Enhancements in our automated feature selection improved

assertion classification. While the genetic algorithm did not offer
a significant improvement (0.1%), it was able to find several
useful features. We feel that on more difficult tasks, this genetic
algorithm will prove more valuable. Given the diminishing
returns of adding new features and resources, it is unlikely that
adding more features and resources will significantly improve
assertion classification on this dataset. This also limits the
genetic algorithm’s effectiveness. The greedy forward/backward
algorithm did not improve the results using the original features,
but it was crucial when the statistically significant n-gram

Table 1 Results for concept extraction

System Score

Best i2b2 submission 85.23

Our i2b2 submission 79.59

Median i2b2 submission 77.78

Mean i2b2 submission 73.56

SubSystem Score

Boundary 83.17

(Prose) 83.45

(Non-prose) 81.79

Type 95.49

Total 79.59

Table 2 Results for assertion classification

System Score

GFB+GA+GFB 93.94

GFB+GA 93.93

GFB 93.84

Best i2b2 submission 93.62

Our i2b2 submission (GF) 92.75

Median i2b2 submission 91.96

All features 90.67

Mean i2b2 submission 86.18

Our best with automatic concepts 73.67

Class Precision Recall F1

Absent 95.93 93.41 94.65

Associated with someone else 91.47 81.38 86.13

Conditional 72.86 29.82 42.32

Hypothetical 92.17 87.03 89.53

Possible 81.63 58.89 68.42

Present 94.39 98.00 96.17

GA, genetic algorithm; GF, greedy forward; GFB, greedy forward/backward.
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features were used. With fewer features, more relaxed n-gram
features prove useful, but as other features are added, new
parameterizations prove more effective. Without GFB’s ability
to prune features, the n-gram features add only 0.4%, but using
GFB this increases to 1.1%. Thus, automated feature selection
and highly parameterized features are mutually beneficial.

Finally, we discuss the value of external resources as
determined by feature selection. For detailed tests of the
contribution of each feature, see the online supplement. Both
concept extraction and assertion classification benefit from
resources such as Wikipedia, GENIA, and MetaMap. The most
useful resource across both tasks is MetaMap, which is used by
both concept boundary detectors and the assertion classifier. The
most used resource in terms of number of features is GENIA, but
all seven features are used by the prose concept boundary
detector. The task least affected by external resources is the
assertion task (see the online-only feature test for more details).
The most relevant resource for assertion classification, NegEx, is
itself an automated NLP system. Most of the rules within NegEx
are redundant with information extracted directly from the
training data.

Owing to the large size of the training data, a basic approach
composed entirely of word, part-of-speech, and lemmatization
features could perform well. We experimented with just these
features and obtained a result of 76.61 on concept extraction and
91.50 on assertion classification, both near the median i2b2
submission. Crucially, however, the difference between an
average submission and a top performing submission is the
careful use of external resources and statistically derived
features. By using automated feature-selection techniques, we
were therefore able to experiment with a significantly larger
number of resources and features in order to maximize their
impact on the final results.

CONCLUSION
We have described automated approaches for extracting medical
concepts and classifying assertions of medical problems. In both
cases, supervised ML-based methods were used in combination
with feature-selection techniques. Both methods were in the top
10 results on the 2010 i2b2 challenge evaluation. Additionally,
we describe improvements made to assertion classification
which outperform the best submission to the challenge. These
improvements combine selecting the most statistically
significant words and phrases as well as enhancements to our
automated feature selection.
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