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ABSTRACT

Objectives To provide an overview and tutorial of natural
language processing (NLP) and modern NLP-system
design.

Target audience This tutorial targets the medical
informatics generalist who has limited acquaintance with
the principles behind NLP and/or limited knowledge of
the current state of the art.

Scope We describe the historical evolution of NLP, and
summarize common NLP sub-problems in this extensive
field. We then provide a synopsis of selected highlights
of medical NLP efforts. After providing a brief description
of common machine-learning approaches that are being
used for diverse NLP sub-problems, we discuss how
modern NLP architectures are designed, with @ summary
of the Apache Foundation’s Unstructured Information
Management Architecture. We finally consider possible
future directions for NLP, and reflect on the possible
impact of IBM Watson on the medical field.

INTRODUCTION

This tutorial provides an overview of natural
language processing (NLP) and lays a foundation
for the JAMIA reader to better appreciate the arti-
cles in this issue.

NLP began in the 1950s as the intersection of
artificial intelligence and linguistics. NLP was orig-
inally distinct from text information retrieval (IR),
which employs highly scalable statistics-based
techniques to index and search large volumes of
text efficiently: Manning et al' provide an excellent
introduction to IR. With time, however, NLP and
IR have converged somewhat. Currently, NLP
borrows from several, very diverse fields, requiring
today’s NLP researchers and developers to broaden
their mental knowledge-base significantly.

Early simplistic approaches, for example, word-
for-word Russian-to-English machine translation,?
were defeated by homographs—identically spelled
words with multiple meanings—and metaphor,
leading to the apocryphal story of the Biblical, ‘the
spirit is willing, but the flesh is weak’ being trans-
lated to ‘the vodka is agreeable, but the meat is
spoiled.’

Chomsky’s 1956 theoretical analysis of language
grammars® provided an estimate of the problem’s
difficulty, influencing the creation (1963) of Backus-
Naur Form (BNF) notation.* BNF is used to specify
a ‘context-free grammar’® (CFG), and is commonly
used to represent programming-language syntax. A
language’s BNF specification is a set of derivation
rules that collectively validate program code
syntactically. (‘Rules’ here are absolute constraints,
not expert systems heuristics.) Chomsky also
identified still more restrictive ‘regular’ grammars,
the basis of the regular expressions® used to specify
text-search patterns. Regular expression syntax,

defined by Kleene” (1956), was first supported by
Ken Thompson’s grep utility® on UNIX.

Subsequently (1970s), lexical-analyzer (lexer)
generators and parser generators such as the /lex/yacc
combination’ utilized grammars. A lexer transforms
text into tokens; a parser validates a token sequence.
Lexer/parser generators simplify programming-
language implementation greatly by taking regular-
expression and BNF specifications, respectively, as
input, and generating code and lookup tables that
determine lexing/parsing decisions.

While CFGs are theoretically inadequate for
natural language,'’ they are often employed for
NLP in practice. Programming languages are typi-
cally designed deliberately with a restrictive CFG
variant, an LALR(1) grammar (LALR, Look-Ahead
parser with Left-to-right processing and Rightmost
(bottom-up) derivation),* to simplify implementa-
tion. An LALR(1) parser scans text lefi-to-right,
operates bottom-up (i, it builds compound
constructs from simpler ones), and uses a look-ahead
of a single token to make parsing decisions.

The Prolog language!! was originally invented
(1970) for NLP applications. Its syntax is especially
suited for writing grammars, although, in the
easiest implementation mode (top-down parsing),
rules must be phrased differently (ie, right-recur-
sively'?) from those intended for a yacc-style parser.
Top-down parsers are easier to implement than
bottom-up parsers (they don’t need generators),
but are much slower.

The limitations of hand-written rules: the rise of

statistical NLP

Natural language’s vastly large size, unrestrictive

nature, and ambiguity led to two problems when

using standard parsing approaches that relied
purely on symbolic, hand-crafted rules:

» NLP must ultimately extract meaning (‘seman-
tics’) from text: formal grammars that specify
relationship between text units—parts of speech
such as nouns, verbs, and adjectives—address
syntax primarily. One can extend grammars to
address natural-language semantics by greatly
expanding sub-categorization, with additional
rules/constraints (eg, ‘eat” applies only to ingest-
ible-item nouns). Unfortunately, the rules may
now become unmanageably numerous, often
interacting unpredictably, with more frequent
ambiguous parses (multiple interpretations of
a word sequence are possible). (Puns—ambig-
uous parses used for humorous effect—antedate
NLP)

» Handwritten rules handle ‘ungrammatical’
spoken prose and (in medical contexts) the
highly telegraphic prose of in-hospital progress
notes very poorly, although such prose is
human-comprehensible.
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The 1980s resulted in a fundamental reorientation, summa-
rized by Klein'®:

» Simple, robust approximations replaced deep analysis.

» Evaluation became more rigorous.

> Machine-learning methods that used probabilities became
prominent. (Chomsky’s book, Synmtactic Structures™® (1959),
had been skeptical about the usefulness of probabilistic
language models).

» Large, annotated bodies of text (corpora) were employed to
train machine-learning algorithms—the annotation contains
the correct answers—and provided gold standards for
evaluation.

This reorientation resulted in the birth of statistical NLP. For
example, statistical parsing addresses parsing-rule proliferation
through probabilistic CEGs": individual rules have associated
probabilities, determined through machine-learning on anno-
tated corpora. Thus, fewer, broader rules replace numerous
detailed rules, with statistical-frequency information looked up
to disambiguate. Other approaches build probabilistic ‘rules’
from annotated data similar to machine-learning algorithms like
C4.5,'6 which build decision trees from feature-vector data. In
any case, a statistical parser determines the most likely parse of
a sentence/phrase. ‘Most likely’ is context-dependent: for
example, the Stanford Statistical Parser,'” trained with the Penn
TreeBank'®—annotated Wall Street Journal articles, plus tele-
phone-operator conversations—may be unreliable for clinical
text. Manning and Scheutze’s text provides an excellent intro-
duction to statistical NLP."

Statistical approaches give good results in practice simply
because, by learning with copious real data, they utilize the
most common cases: the more abundant and representative the
data, the better they get. They also degrade more gracefully with
unfamiliar/erroneous input. This issue’s articles make clear,
however, that handwritten-rule-based and statistical approaches
are complementary.

NLP SUB-PROBLEMS: APPLICATION TO CLINICAL TEXT

We enumerate common sub-problems in NLP: Jurafksy and

Martin’s text?® provides additional details. The solutions to

some sub-problems have become workable and affordable, if

imperfect—for example, speech synthesis (desktop operating
systems’ accessibility features) and connected-speech recognition

(several commercial systems). Others, such as guestion answering,

remain difficult.

In the account below, we mention clinical-context issues that
complicate certain sub-problems, citing recent biomedical NLP
work against each where appropriate. (We do not cover the
history of medical NLP, which has been applied rather than
basic/theoretical; Spyns®! reviews pre-1996 medical NLP efforts.)

Low-level NLP tasks include:

1. Sentence boundary detection: abbreviations and titles (‘m.g.,’
‘Dr.’) complicate this task, as do items in a list or templated
utterances (eg, ‘MI [x], SOB[]’).

2. Tokenization: identifying individual tokens (word, punctua-
tion) within a sentence. A lexer plays a core role for this task
and the previous one. In biomedical text, tokens often
contain characters typically used as token boundaries, for
example, hyphens, forward slashes (‘10 mg/day,” ‘N-acetyl-
cysteine’).

3. Part-of-speech assignment to individual words (‘POS tagging’): in
English, homographs (‘set’) and gerunds (verbs ending in ‘ing’
that are used as nouns) complicate this task.

4. Morphological ~ decomposition of compound words: many
medical terms, for example, ‘nasogastric,” need decomposition
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to comprehend them. A useful sub-task is lemmatiza-

tion—conversion of a word to a root by removing suffixes.

Non-English clinical NLP emphasizes decomposition; in

highly synthetic languages (eg, German, Hungarian), newly

coined compound words may replace entire phrases.?? Spell-
checking applications and preparation of text for indexing/
searching (in IR) also employ morphological analysis.

5. Shallow parsing (chunking): identifying phrases from constit-
uent part-of-speech tagged tokens. For example, a noun
phrase may comprise an adjective sequence followed by
a noun.

6. Problem-specific segmentation: segmenting text into meaningful
groups, such as sections, including Chief Complaint, Past
Medical History, HEENT, etc.?

Haas?* lists publicly available NLP modules for such tasks:
most modules, with the exception of ¢TAKES (clinical Text
Analysis and Knowledge Extraction System)” have been
developed for non-clinical text and often work less well for
clinical narrative.

Higher-level tasks build on low-level tasks and are usually

problem-specific. They include:
1. Spelling/grammatical error identification and recovery: this task is
mostly interactive because, as word-processing users know, it is
far from perfect. Highly synthetic phrases predispose to false
positives (correct words flagged as errors), and incorrectly used
homophones (identically sounding, differently spelled words, eg,
sole/soul, their/there) to false negatives.

2. Named entity recognition (NER)*® ?’: identifying specific words

or phrases (‘entities’) and categorizing them—for example, as

persons, locations, diseases, genes, or medication. An common

NER task is mapping named entities to concepts in a vocabulary. This

task often leverages shallow parsing for candidate entities (eg,

the noun phrase ‘chest tenderness’); however, sometimes the
concept is divided across multiple phrases (eg, ‘chest wall shows
slight tenderness on pressure ...").

The following issues make NER challenging:

» Word/phrase order variation: for example, perforated duodenal
ulcer versus duodenal ulcer, perforated.

» Derivation: for example, suffixes transform one part of speech
to another (eg, ‘mediastinum’ (noun) — ‘mediastinal’
(adjective)).

» Inflection: for example, changes in number (eg, ‘opacity/
opacities)’, tense (eg, ‘cough(ed)’), comparative/superlative
forms (eg, ‘bigger/biggest)’).

» Synonymy is abundant in biomedicine, for example, liver/
hepatic, Addison’s disease/adrenocortical insufficiency.

» Homographs: polysemy refers to homographs with related
meanings, for example, ‘direct bilirubin’ can refer to
a substance, laboratory procedure, or result. Homographic
abbreviations are increasingly numerous®: APC’ has 12
expansions, including ‘activated protein C" and ‘adenomatous
polyposis coli.’

3. Word sense disambiguation (WSD)?*~3!: determining a homo-

graph’s correct meaning.

4. Negation and uncertainty identification® 3% inferring whether

a named entity is present or absent, and quantifying that

inference’s uncertainty. Around half of all symptoms, diagnoses,

and findings in clinical reports are estimated to be negated.®

Negation can be explicit, for example, ‘Patient denies chest pain’

or implied—for example, ‘Lungs are clear upon auscultation’

implies absence of abnormal lung sounds. Negated/affirmed
concepts can be expressed with uncertainty (‘hedging’), as in

‘the ill-defined density suggests pneumonia.’” Uncertainty

that represents reasoning processes is hard to capture: ‘The
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patient probably has a left-sided cerebrovascular accident; post-

convulsive state is less likely’ Negation, uncertainty, and

affirmation form a continuum. Uncertainty detection was the
focus of a recent NLP competition.®

5. Relationship extraction: determining relationships between

entities or events, such as ‘treats,” ‘causes,’” and ‘occurs with.’

Lookup of problem-specific information—for example, thesauri,

databases—facilitates relationship extraction.

Anaphora reference resolution® is a sub-task that determines
relationships between ‘hierarchically related’ entities: such rela-
tionships include:

» Identity: one entity—for example, a pronoun like ‘s/he,” ‘hers/
his,” or an abbreviation—refers to a previously mentioned
named entity;

» Fart/whole: for example, city within state;

> Superset/subset: for example, antibiotic/penicillin.

6. Temporal inferences/relationship extraction® *: making infer-

ences from temporal expressions and temporal relations—for

example, inferring that something has occurred in the past or
may occur in the future, and ordering events within a narrative

(eg, medication X was prescribed after symptoms began).

7. Information extraction (IE): the identification of problem-

specific information and its transformation into (problem-

specific) structured form. Tasks 1—6 are often part of the
larger IE task. For example, extracting a patient’s current
diagnoses involves NER, WSD, negation detection, temporal
inference, and anaphoric resolution. Numerous modern clinical

IE systems exist,’*"** with some available as open-source.?® 4 4°

IE and relationship extraction have been themes of several i2b2/

VA NLP challenges.*~*’ Other problem areas include phenotype

characterization,”®™** biosurveillance,”® > and adverse-drug

reaction recognition.”

The National Library of Medicine (NLM) provides several
well-known ‘knowledge infrastructure’ resources that a6pp1y to
multiple NLP and IR tasks. The UMLS Metathesaurus,”® which
records synonyms and categories of biomedical concepts from
numerous biomedical terminologies, is useful in clinical NER.
The NLM'’s Specialist Lexicon” is a database of common English
and medical terms that includes part-of-speech and inflection
data; it is accompanied by a set of NLP tools.”® The NLM also
provides a test collection for word disambiguation.”

SOME DATA DRIVEN APPROACHES: AN OVERVIEW

Statistical and machine learning involve development (or use) of
algorithms that allow a program to infer patterns about example
(‘training’) data, that in turn allows it to ‘generalize’—make
predictions about new data. During the learning phase, numer-
ical parameters that characterize a given algorithm’s underlying
model are computed by optimizing a numerical measure,
typically through an iterative process.

In general, learning can be supervised—each item in the
training data is labeled with the correct answer—or unsupervised,
where it is not, and the learning process tries to recognize
patterns automatically (as in cluster and factor analysis). One
pitfall in any learning approach is the potential for over-fitting:
the model may fit the example data almost perfectly, but makes
poor predictions for new, previously unseen cases. This is
because it may learn the random noise in the training data rather
than only its essential, desired features. Over-fitting risk is
minimized by techniques such as cross-validation, which parti-
tion the example data randomly into training and test sets to
internally validate the model’s predictions. This process of data
partitioning, training, and validation is repeated over several
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rounds, and the validation results are then averaged across
rounds.

Machine-learning models can be broadly classified as either
generative or discriminative. Generative methods seek to create
rich models of probability distributions, and are so called
because, with such models, one can ‘generate’ synthetic data.
Discriminative methods are more utilitarian, directly estimating
posterior probabilities based on observations. Srihari®® explains
the difference with an analogy: to identify an unknown
speaker’s language, generative approaches would apply deep
knowledge of numerous languages to perform the match;
discriminative methods would rely on a less knowledge-inten-
sive approach of using differences between languages to find the
closest match. Compared to generative models, which can
become intractable when many features are used, discriminative
models typically allow use of more features.5" Logistic regression
and conditional random fields (CRFs) are examples of discrimi-
native methods, while Naive Bayes classifiers and hidden
Markov models (HMMs) are examples of generative methods.

Some common machine-learning methods used in NLP tasks,
and utilized by several articles in this issue, are summarized
below.

Support vector machines (SVMs)

SVMs, a discriminative learning approach, classify inputs (eg,
words) into categories (eg, parts of speech) based on a feature
set. The input may be transformed mathematically using
a ‘kernel function’ to allow linear separation of the data points
from different categories. That is, in the simplest two-feature
case, a straight line would separate them in an X—Y plot: in the
general N-feature case, the separator will be an (N—1) hyper-
plane. The commonest kernel function used is a Gaussian
(the basis of the ‘normal distribution’ in statistics). The sepa-
ration process selects a subset of the training data (the ‘support
vectors’—data points closest to the hyperplane) that best
differentiates the categories. The separating hyperplane maxi-
mizes the distance to support vectors from each category
(see figure 1).

® @ Y

Figure 1  Support vector machines: a simple 2-D case is illustrated.
The data points, shown as categories A (circles) and B (diamonds), can
be separated by a straight line X—Y. The algorithm that determines X—Y
identifies the data points (‘support vectors’) from each category that are
closest to the other category (a1, a2, a3 and b1, b2, b3) and computes
X=Y such that the margin that separates the categories on either side is
maximized. In the general N-dimensional case, the separator will be an
(N—1) hyperplane, and the raw data will sometimes need to be
mathematically transformed so that linear separation is achievable.

J Am Med Inform Assoc 2011;18:544—551. doi:10.1136/amiajnl-2011-000464



A tutorial by Hearst et a/® and the DTREG online docu-
mentation® provide approachable introductions to SVMs.
Fradkin and Muchnik® provide a more technical overview.

Hidden Markov models (HMMs)
An HMM is a system where a variable can switch (with varying
probabilities) between several states, generating one of several
possible output symbols with each switch (also with varying
probabilities). The sets of possible states and unique symbols
may be large, but finite and known (see figure 2). We can observe
the outputs, but the system’s internals (ie, state-switch proba-
bilities and output probabilities) are ‘hidden.” The problems to
be solved are:

A. Inference: given a particular sequence of output symbols,
compute the probabilities of one or more candidate state-
switch sequences.

B. Fattern matching: find the state-switch sequence most likely to
have generated a particular output-symbol sequence.

C. Training: given examples of output-symbol sequence
(training) data, compute the state-switch/output probabili-
ties (ie, system internals) that fit this data best.

B and C are actually Naive Bayesian reasoning extended to
sequences; therefore, HMMs use a generative model. To solve
these problems, an HMM uses two simplifying assumptions
(which are true of numerous real-life phenomena):

1. The probability of switching to a new state (or back to the
same state) depends on the previous N states. In the simplest
‘first-order’ case (N=1), this probability is determined by the

of 02|

Figure 2 Hidden Markov models. The small circles S1, S2 and S3
represent states. Boxes 01 and 02 represent output values. (In practical
cases, hundreds of states/output values may occur.) The solid lines/arcs
connecting states represent state switches; the arrow represents the
switch’s direction. (A state may switch back to itself.) Each line/arc label
(not shown) is the switch probability, a decimal number. A dashed line/
arc connecting a state to an output value indicates ‘output probability”:
the probability of that output value being generated from the particular
state. If a particular switch/output probability is zero, the line/arc is not
drawn. The sum of the switch probabilities leaving a given state (and the
similar sum of output probabilities) is equal to 1. The sequential or
temporal aspect of an HMM is shown in figure 3.
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current state alone. (First-order HMMs are thus useful to

model events whose likelihood depends on what happened

last.)
2. The probability of generating a particular output in

a particular state depends only on that state.

These assumptions allow the probability of a given state-
switch sequence (and a corresponding observed-output
sequence) to be computed by simple multiplication of the
individual probabilities. Several algorithms exist to solve these
problems.®® % The highly efficient Viterbi algorithm, which
addresses problem B, finds applications in signal processing, for
example, cell-phone technology.

Theoretically, HMMs could be extended to a multivariate
scenario,%” but the training problem can now become intrac-
table. In practice, multiple-variable applications of HMMs (eg,
NER®) use single, artificial variables that are uniquely deter-
mined composites of existing categorical variables: such
approaches require much more training data.

HMMs are widely used for speech recognition, where
a spoken word’s waveform (the output sequence) is matched to
the sequence of individual phonemes (the ‘states’) that most
likely produced it. (Frederick Jelinek, a statistical-NLP advocate
who pioneered HMMs at IBM’s Speech Recognition Group,
reportedly joked, ‘every time a linguist leaves my group, the
speech recognizer’s performance improves.?) HMMs also
address several bioinformatics problems, for example, multiple
sequence alignment® and gene prediction.”® Eddy”" provides
a lucid bioinformatics-oriented introduction to HMMs, while
Rabiner’? (speech recognition) provides a more detailed intro-
duction.

Commercial HMM-based speech-to-text is now robust
enough to have essentially killed off academic research efforts,
with dictation systems for specialized areas—eg, radiology and
pathology—providing structured data entry. Phrase recognition
is paradoxically more reliable for polysyllabic medical terms than
for ordinary English: few word sequences sound like ‘angina
pectoris,” while common English has numerous homophones
(eg, two/too/to).

Conditional random fields (CRFs)
CREFs are a family of discriminative models first proposed by
Lafferty et al.”® An accessible reference is Culotta et al’*; Sutton
and McCallum” is more mathematical. The commonest (linear-
chain) CRFs resemble HMM:s in that the next state depends on
the current state (hence the ‘linear chain’ of dependency).

CRFs generalize logistic regression to sequential data in the
same way that HMMs generalize Naive Bayes (see figure 3).
CREFs are used to predict the state variables (‘Ys’) based on the
observed variables (‘Xs’). For example, when applied to NER, the
state variables are the categories of the named entities: we want
to predict a sequence of named-entity categories within
a passage. The observed variables might be the word itself,
prefixes/suffixes, capitalization, embedded numbers, hyphen-
ation, and so on. The linear-chain paradigm fits NER well: for
example, if the previous entity is ‘Salutation’ (eg, ‘Mr/Ms’), the
succeeding entity must be a person.

CREFs are better suited to sequential multivariate data than
HMMs: the training problem, while requiring more example
data than a univariate HMM, is still tractable.

N-grams

An ‘N-gram’" is a sequence of N items—letters, words, or
phonemes. We know that certain item pairs (or triplets,
quadruplets, etc) are likely to occur much more frequently than
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Naive-Bayes HMM
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O OO0

Logistic regression Linear-¢hsin CRF

Figure 3 The relationship between Naive Bayes, logistic regression,
hidden Markov models (HMMs) and conditional random fields (CRFs).
Logistic regression is the discriminative-model counterpart of Naive
Bayes, which is a generative model. HMMs and CRFs extend Naive
Bayes and logistic regression, respectively, to sequential data (adapted
from Sutton and McCallum’®). In the generative models, the arrows
indicate the direction of dependency. Thus, for the HMM, the state Y2
depends on the previous state Y1, while the output X1 depends on Y1.

others. For example, in English words, U always follows Q, and

an initial T is never followed by K (though it may be in

Ukrainian). In Portuguese, a C is always followed by a vowel

(except E and I). Given sufficient data, we can compute

frequency-distribution data for all N-grams occurring in that

data. Because the permutations increase dramatically with

N—for example, English has 26 ™2 possible letter pairs, 263

triplets, and so on—N is restricted to a modest number. Google

has computed word N-gram data (N=5) from its web data and
from the Google Books project, and made it available freely.”®

N-grams are a kind of multi-order Markov model: the proba-
bility of a particular item at the Nth position depends on the
previous N—1 items, and can be computed from data. Once
computed, N-gram data can be used for several purposes:

» Suggested auto-completion of words and phrases to the user
during search, as seen in Google’s own interface.

» Spelling correction: a misspelled word in a phrase may be
flagged and a correct spelling suggested based on the correctly
spelled neighboring words, as Google does.

» Speech recognition: homophones (‘two’ vs ‘too’) can be
disambiguated probabilistically based on correctly recognized
neighboring words.

» Word disambiguation: if we build ‘word-meaning’ N-grams
from an annotated corpus where homographs are tagged with
their correct meanings, we can use the non-ambiguous
neighboring words to guess the correct meaning of a homo-
graph in a test document.

N-gram data are voluminous—Google’s N-gram database
requires 28 GB—but this has become less of an issue as storage
becomes cheap. Special data structures, called N-gram indexes,
speed up search of such data. N-gram-based classifiers leverage
raw training text without explicit linguistic/domain knowledge;
while yielding good performance, they leave room for
improvement, and are therefore complemented with other
approaches.
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CHAINING NLP ANALYTICAL TASKS: PIPELINES

Any practical NLP task must perform several sub-tasks. For
example, all of NLP sub-problems section's low-level tasks must
execute sequentially, before higher-level tasks can commence.
Since different algorithms may be used for a given task,
a modular, pipelined system design—the output of one analytical
module becomes the input to the next—allows ‘mixing-and-
matching.” Thus, a CRF-based POS tagger could be combined
with rule-based medical named-entity recognition. This design
improves system robustness: one could replace one module with
another (possibly superior) module, with minimal changes to
the rest of the system.

This is the intention behind pipelined NLP frameworks, such
as GATE”” and IBM (now Apache) Unstructured Information
Management Architecture (UIMA).”® UIMA’s scope goes beyond
NLP: one could integrate structured-format databases, images,
and multi-media, and any arbitrary technology. In UIMA, each
analytical task transforms (a copy of) its input by adding XML-
based markup and/or reading/writing external data. A task
operates on Common Analysis Structure (CAS), which contains
the data (possibly in multiple formats, eg, audio, HTML),
a schema describing the analysis structure (ie, the details of the
markup/external formats), the analysis results, and links
(indexes) to the portions of the source data that they refer to.
UIMA does not dictate the design of the analytical tasks
themselves: they interact with the UIMA pipeline only through
the CAS, and can be treated as black boxes: thus, different tasks
could be written in different programming languages.

The schema for a particular CAS is developer-defined because
it is usually problem-specific. (Currently, no standard schemas
exist for tasks such as POS tagging, although this may change.)
Definition is performed using XMI (XML Metadata Inter-
change), the XML-interchange equivalent of the Unified
Modeling Language (UML). XMI, however, is ‘programmer-
hostile’: it is easier to use a commercial UML tool to design
a UML model visually and then generate XMI from it.””

In practice, a pure pipeline design may not be optimal for all
solutions. In many cases, a higher-level process needs to provide
feedback to a lower-level process to improve the latter’s accu-
racy. (All supervised machine- learning algorithms, for example,
ultimately rely on feedback.) Implementing feedback across
analytical tasks is complicated: it involves modifying the code of
communicating tasks—one outputting data that constitutes the
feedback, the other checking for the existence of such data, and
accepting them if available (see figure 4). New approaches based
on active learning may help select cases for manual labeling for
construction of training sets.® !

Also, given that no NLP task achieves perfect accuracy, errors
in any one process in a pipeline will propagate to the next, and
so on, with accuracy degrading at each step. This problem,

v |
|~w-oua |—>| Task 1 |——| Task 2 }—>| Task 3 |—>| Task 4 |_>| ouput |
A A A r Y
)

| Comman Aralyss Structure |

Figure 4 A UIMA pipeline. An input task is sequentially put through

a series of tasks, with intermediate results at each step and final output at
the end. Generally, the output of a task is the input of its successor, but
exceptionally, a particular task may provide feedback to a previous one (as
in task 4 providing input to task 1). Intermediate results (eg, successive
transformations of the original bus) are read from/written to the CAS,

which contains metadata defining the formats of the data required at every
step, the intermediate results, and annotations that link to these results.
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however, applies to NLP in general: it would occur even if the
individual tasks were all combined into a single body of code.
One way to address it (adopted in some commercial systems) is
to use alternative algorithms (in multiple or branching pipelines)
and contrast the final results obtained. This allows tuning the
output to trade-offs (high precision versus high recall, etc).

A LOOK INTO THE FUTURE

Recent advances in artificial intelligence (eg, computer chess)
have shown that effective approaches utilize the strengths of
electronic circuitry—high speed and large memory/disk capacity;,
problem-specific data-compression techniques and evaluation
functions, highly efficient search—rather than trying to mimic
human neural function. Similarly, statistical-NLP methods
correspond minimally to human thought processes.

By comparison with IR, we now consider what it may take
for multi-purpose NLP technology to become mainstream.
While always important to library science, IR achieved major
prominence with the web, notably after Google’s scientific and
financial success: the limelight also caused a corresponding IR
research and toolset boom. The question is whether NLP has
a similar breakthrough application in the wings. One candidate
is IBM Watson, which attracted much attention within the
biomedical informatics community (eg, the ACMI Discussion
newsgroup and the AMIA NLP working group discussion list)
after its ‘Jeopardy’ performance. Watson appears to address the
admittedly hard problem of question-answering successfully.
Although the Watson effort is impressive in many ways, its
discernible limitations highlight ongoing NLP challenges.

IBM Watson: a wait-and-see viewpoint
Watson, which employs UIMA® is a system-engineering
triumph, using highly parallel hardware with 2880 CPUs+16 TB
RAM. All its lookup of reference content (encyclopedias, dictio-
naries, etc) and analytical operations use structures optimized for
in-memory manipulation. (By contrast, most pipelined NLP
architectures on ordinary hardware are disk-I/O-bound.) It inte-
grates several software technologies: IR, NLP, parallel database
search, ontologies, and knowledge representation.

A Prolog parser extracts key elements such as the relationships
between entities and task-specific answers. In a recent public
display, the task was to compete for the fastest correct answer in
a series of questions against two human contestants in the
popular US-based television show, ‘Jeopardy.” During training
with a Jeopardy question-databank, NLP is also used to pre-
process online reference text (eg, encyclopedia, dictionaries) into
a structure that provides evidence for candidate answers,
including whether the relationships between entities in the
question match those in the evidence.®® The search, and ranking
of candidate answers, use IR approaches.

A challenge in porting Watson’s technology to other domains,
such as medical question answering, will be the degree to which
Watson’s design is generalizable.

» Watson built its lead in the contest with straightforward
direct questions whose answers many of the audience (and
the skilled human contestants) clearly knew—and which
a non-expert human armed with Google may have been able
to retrieve using keywords alone (albeit slower). As pointed
out by Libresco™ and Jennings,” Watson was merely faster
with the buzzer—electronics beats human reaction time. For
non-game-playing, real-world question answering scenarios,
however, split-second reaction time may not constitute
a competitive advantage.
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» For harder questions, Watson’s limitations became clearer.
Computing the correct response to the question about which
US city (Chicago) has two airports, one named after a World
War II battle (Midway), the other after a World War II hero
(O’Hare), involves three set intersections (eg, the first
operation would cross names of airports in US cities against
a list of World War II battles). Watson lacked a higher-level
strategy to answer such complex questions.

> Watson’s Prolog parser and search, and especially the entire
reference content, were tuned/structured for playing Jeop-
ardy, in which the questions and answers are one sentence
long (and the answer is of the form ‘what/who is/are X?’).
Such an approach runs the risk of ‘over-fitting’ the system to
a particular problem, so that it may require significant effort
to modify it for even a slightly different problem.

IBM recently conducted a medical diagnosis demonstration of
Watson, which is reported in an Associated Press article.%®
Demonstrations eventually need to be followed by evaluations.
Earlier medical diagnosis advice software underwent evaluations
that were rigorous for their time, for example, Berner et a/®” and
Friedman ez a/,% and today’s evaluations would need to be even
more stringent. The articles from Miller and Masarie® and
Miller” are excellent starting points for learning about the
numerous pitfalls in the automated medical diagnosis domain,
and IBM may rediscover these:

» Medico-legal liability: ultimately the provider, not software, is
responsible for the patient.

> Reference-content reliability: determining the reliability of a given
unit of evidence is challenging. Even some recent recommen-
dations by ‘authorities’ have become tainted (eg, in psychiatry)
with subsequent revelations of undisclosed conflict of interest.

» The limited role of NLP and unstructured text in medical diagnosis:
it is unclear that accurate medical diagnosis/advice mandates
front-end NLP technology: structured data entry with
thesaurus/N-gram assisted pick-lists or word/phrase comple-
tion might suffice. Similarly, diagnostic systems have used
structured, curated information rather than unstructured
text for prioritizing diagnoses. Even this information requires
tailoring for local prevalence rates, and continual mainte-
nance. Unstructured text, in the form of citations, is used
mainly to support the structured information.

To be fair to IBM, NLP technology may conceivably augment
web crawler technologies that search for specific information
and alert curators about new information that may require them
to update their database. Electronic IE technologies might save
curation time, but given the medico-legal consequences, and the
lack of 100% accuracy, such information would need to be
verified by humans.

From an optimistic perspective, the Watson phenomenon may
have the beneficial side effect of focusing attention not only on
NLP, but also on the need to integrate it effectively with other
technologies.

Will NLP software become a commodity?

The post-Google interest in IR has led to IR commoditization:

a proliferation of IR tools and incorporation of IR technology

into relational database engines. Earlier, statistical packages and,

subsequently, data mining tools also became commoditized.

Commodity analytical software is characterized by:

> Availability of several tools within a package: the user can
often set up a pipeline without programming using a graph-
ical metaphor.

» High user friendliness and ease of learning: online documen-
tation/tutorials are highly approachable for the non-specialist,
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focusing on when and how to use a particular tool rather than

its underlying mathematical principles.

» High value in relation to price: some offerings may even be
freeware.

By contrast, NLP toolkits and UIMA are still oriented toward
the advanced programmer, and commercial offerings are expen-
sive. General purpose NLP is possibly overdue for commoditiza-
tion: if this happens, best-of-breed solutions are more likely to rise
to the top. Again, analytics vendors are likely to lead the way,
following the steps of biomedical informatics researchers to devise
innovative solutions to the challenge of processing complex
biomedical language in the diverse settings where it is employed.
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