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The plant hormone auxin regulates diverse aspects of plant growth and development. We report that in
Arabidopsis, auxin response is dependent on a ubiquitin-ligase (E3) complex called SCFTIR1. The complex
consists of proteins related to yeast Skp1p and Cdc53p called ASK and AtCUL1, respectively, as well as the
F-box protein TIR1. Mutations in either ASK1 or TIR1 result in decreased auxin response. Further,
overexpression of TIR1 promotes auxin response suggesting that SCFTIR1 is limiting for the response. These
results provide new support for a model in which auxin action depends on the regulated proteolysis of
repressor proteins.
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The plant hormone indole-3-acetic acid (IAA or auxin)
has a crucial role in diverse aspects of plant growth and
development (Davies 1995). At the cellular level, auxin
affects cell division (John et al. 1993), cell expansion
(Gray et al. 1998), and cell differentiation (Fukada 1996).
Despite the importance of auxin in regulating these fun-
damental processes, little is known about the mecha-
nisms involved in auxin signaling and response.

The isolation of mutations that confer resistance to
applied hormone has been a powerful tool for identifying
the factors involved in hormone perception and signaling
(Hartwell 1980; Rabindran et al. 1987; Li and Chory
1997). In Arabidopsis thaliana, this approach has led to
the identification of several genes required for auxin re-
sponse (Hobbie and Estelle 1994; del Pozo and Estelle
1999). Recessive mutations in the AXR1, AXR4, and
TIR1 genes confer diminished auxin response and a va-
riety of corresponding auxin-related growth defects. Ge-
netic evidence suggests that these factors act in the
same, or overlapping pathways (Hobbie and Estelle 1995;
Ruegger et al. 1998; W.M. Gray and M. Estelle, unpubl.).
In addition, mutations in the SAR1 gene were isolated as
suppressors of axr1 suggesting that the SAR1 gene prod-
uct acts in this pathway (Cernac et al. 1997).

Molecular analysis of the TIR1 and AXR1 genes has
implicated the ubiquitin pathway in auxin action. Ubiq-
uitin-mediated proteolysis regulates a number of cellular
events including cell cycle transitions, metabolic regu-
lation, stress responses, and differentiation. The first
step in the ubiquitin conjugation pathway is the forma-
tion of a thiolester linkage between an internal cysteine
residue of the ubiquitin-activating enzyme (E1) and the
carboxyl terminus of ubiquitin. The ubiquitin moiety is
then transesterified to a ubiquitin-conjugating enzyme
(E2), and with the assistance of a ubiquitin-ligase en-
zyme (E3), covalently attached to a target protein by an
isopeptide linkage between a lysine residue and the ubiq-
uitin carboxyl terminus. Both the E1 and E2 enzymes are
encoded by families of related genes. In contrast, E3 en-
zymes are quite diverse. The precise definition of E3 en-
zymes is rather ambiguous, but minimally, the E3 facili-
tates transfer of ubiquitin from the ubiquitin-conjugat-
ing enzyme to the substrate protein. In some cases, the
E3 enzyme forms a catalytic intermediate with ubiquitin
(Scheffner et al. 1995), whereas in others the function of
the E3 may simply be to bring the E2 enzyme and the
target protein into close proximity.

The TIR1 gene encodes an F-box protein containing 16
degenerate leucine-rich repeats (LRRs) (Ruegger et al.
1998). Work in yeast and mammalian systems indicates
that F-box proteins interact with the Skp1 and Cdc53
(cullin) proteins to form ubiquitin ligase complexes
called SCFs. (for recent reviews, see Krek 1998; Patton et
al. 1998). The F box is a 40-residue domain implicated in
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binding to Skp1 (Bai et al. 1996). Since several distinct
F-box proteins can form SCF complexes with identical
Skp1 and cullin subunits, the F-box component has been
proposed to provide substrate specificity to the E3 com-
plex (Patton et al. 1998). The sequence of the TIR1 pro-
tein and the phenotype of the tir1 mutants suggest that
TIR1 may be a component of an SCF complex involved
in auxin signaling.

AXR1 encodes a protein related to the amino-terminal
half of E1 (Leyser et al. 1993). Recent work has demon-
strated that AXR1 interacts with a second protein called
ECR1, to activate the ubiquitin-related protein RUB for
conjugation (del Pozo et al. 1998). RUB is a member of a
conserved family of ubiquitin-related proteins present
in fungi, plants, and mammals (NEDD-8) (Kumar et al.
1993; Rao-Naik et al. 1998). Like ubiquitin, RUB is
conjugated to target proteins. The Cdc53/Cullin compo-
nent of SCF complexes is the only known target for
RUB/NEDD8 modification in yeast and mammals (Lam-
mer et al. 1998; Osaka et al. 1998). Although the func-
tional significance of this modification is unclear, ge-
netic studies in yeast suggest that RUB modification
regulates some aspect of SCFCdc4 function (Lammer et al.
1998). An Arabidopsis Cdc53-related protein called At-
CUL1 has been identified, and this protein is also a sub-
strate for RUB conjugation (J.C. del Pozo and M. Estelle,
unpubl.). These results suggest a model in which the
AXR1–ECR1 E1-like dimer activates RUB for conjuga-
tion to AtCUL1. This modification may alter the assem-
bly or function of an SCF complex containing the TIR1
protein.

In this paper, we demonstrate that TIR1 physically
interacts with the Arabidopsis Skp1-like proteins ASK1
and ASK2 and the cullin, AtCUL1 to form a complex
called SCFTIR1. Plants containing a mutation in the
ASK1 gene exhibit reduced auxin response demonstrat-
ing the requirement for additional components of the
SCF in the auxin response pathway. We also show that
overexpression of TIR1 in transgenic plants results in
enhanced auxin response including an increase in auxin-
dependent gene expression and diverse morphological
changes. These findings indicate that the SCF paradigm
can be extended to higher plants, and that auxin signal-
ing is mediated by SCFTIR1.

Results

Expression of the TIR1 gene

The AXR1 auxin response gene is expressed primarily in
actively dividing and elongating cells (del Pozo et al.
1998; J.C. del Pozo and M. Estelle unpubl.). Because ge-
netic evidence suggests that TIR1 and AXR1 act in the
same pathway, we hypothesized that TIR1 would also be
expressed in dividing and elongating cells. Northern hy-
bridization analysis detects a single TIR1 transcript in all
tissues examined including roots, rosette leaves, stems,
and flowers (Fig. 1A). To more precisely determine the
pattern of TIR1 expression, we constructed a reporter
gene consisting of 4 kb of TIR1 58- sequence fused to the

bacterial b-glucuronidase gene (gus). Several indepen-
dent transgenic lines were generated and analyzed by
histochemical staining for b-glucuronidase activity.
Strong TIR1–gus expression was detected in the root api-
cal meristem and the expanding cotyledons and hypoco-
tyls of young seedlings (Fig. 1B). Expression in the coty-
ledons and developing leaves is reduced in older seed-
lings, with TIR1–gus expression in the shoot being
strongest in the stipules with some expression also seen
in the shoot apical meristem (Fig. 1D). TIR1–gus expres-
sion remains strong in the root apical meristem (Fig. 1C),
and strong expression is also detected in developing lat-
eral root primordia and mature lateral root meristems
(Fig. 1E–G). Staining was also evident in vascular ele-
ments. In adult plant organs, the TIR1–gus reporter was
strongly expressed in the floral stigma, anther filaments,
and abscission zones, with some expression also ob-
served throughout the vasculature (Fig. 1H). In situ RNA
hybridization experiments verified and extended the re-
sults obtained with the TIR1–gus reporter. TIR1 RNA
was most abundant in meristematic zones (Figure
1I,K,L,M). Additionally, the in situ hybridization analy-
sis detected abundant expression in developing embryos
(Fig. 1O). The sense strand control hybridizations are
shown in Figure 1J,N,P.

TIR1 functions early in lateral root formation

Lateral root meristems develop from G2-arrested cells in
the pericycle layer of Arabidopsis roots (Blakely and
Evans 1979). Previous genetic analysis has determined
that lateral root development is a process involving at
least two steps: (1) the initiation of pericycle cell division
resulting in lateral meristem formation, and (2) contin-
ued cell division leading to lateral root growth (Celenza
et al. 1995). Both of these steps appear to require auxin.
Consistent with a role in auxin response, tir1 mutants
have a reduced number of lateral roots (Ruegger et al.
1998), and expression analysis revealed that TIR1 is ex-
pressed early in lateral root development (Fig. 1E–G).

To determine whether TIR1 functions early in me-
ristem formation, cyc1At expression was examined in
tir1-1 mutant plants carrying a cyc1At–gus reporter. The
cyc1At gene encodes a mitotic cyclin that is expressed in
pericycle cells in the zone of lateral root initiation prior
to the occurrence of any morphological changes or cell
divisions (Hemerly et al. 1992; Ferreira et al. 1994). Simi-
larly, in a transgenic line carrying the cyc1At–gus re-
porter, GUS staining is observed before the earliest divi-
sion to form the lateral root primordium. If TIR1 is re-
quired after cyc1At is expressed in primordia, we
expected a similar number of b-glucuronidase staining
primordia in both wild-type and tir1-1 mutant roots. In
contrast, if TIR1 functions prior to cyc1At expression,
tir1-1 mutants should display a reduced number of pri-
mordia expressing the cyc1At–gus reporter. tir1-1 mu-
tant seedlings grown on unsupplemented nutrient me-
dium displayed a reduction in cyc1At–gus expression
compared to wild-type that corresponded to the reduc-
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tion in the number of lateral roots formed in tir1-1 seed-
lings (Fig. 2A). When seedlings were grown on medium
containing auxin to promote lateral root formation,
cyc1At–gus expression was restricted to the few lateral
roots that develop in tir1-1 seedlings (Fig. 2A). In wild-
type roots, GUS staining of single cells was observed 4 hr
after auxin treament, whereas in tir1-1 far fewer cells
were stained (Fig. 2B). These results indicate that TIR1 is
required prior to the expression of cyc1At in lateral root
development, and suggest that TIR1 is necessary for peri-
cycle cells to overcome G2 arrest.

Identification of TIR1-interacting proteins

The presence of the F-box motif in the TIR1 protein sug-
gested that TIR1 may function as a component of an SCF
ubiquitin–ligase complex. Therefore, TIR1 may interact
with other SCF components as well as the SCF substrate.
To identify TIR1 interacting proteins, we constructed a
Gal4 DNA-binding domain–TIR1 fusion protein (DBD–
TIR1) to use as bait in a yeast two-hybrid screen. This
construct was introduced into the yeast strain YPB2 and
used to screen an expression library in which the Gal4
activation domain (AD) was fused to cDNAs prepared
from A. thaliana plants at various stages of develop-
ment. Approximately 7.5 × 106 library transformants
were screened for enhanced growth on medium lacking
histidine and supplemented with 15 mM 3AT. Sixty-
one candidates were identified, and 33 of these were
found to also activate the GAL43 × 17-mer–lacZ reporter
gene. DpnII restriction analysis of the PCR-amplified
cDNA inserts from these clones revealed two distinct
classes of clones, with one class represented by 26 clones
and the other by 7 clones.

Sequence analysis of representative members of the
two classes of DBD–TIR1 interacting clones revealed
that the first is identical to the ATskp1 gene (Porat et al.
1998), whereas the second is a highly related gene that
we have designated ASK2 (Arabidopsis SKP1-like) (Fig.
3A). ATskp1 was initially identified by its sequence
similarity to Skp1 (Porat et al. 1998). ATskp1 and ASK2
are members of a multigenic family of Arabidopsis
SKP1-related genes. At least eight additional members of
this family have been identified as Arabidopsis ESTs or
isolated in separate two-hybrid-screens (E. Risseeuw and
W.L. Crosby unpubl.). Because Arabidopsis contains a
multigenic family of SKP1-like genes, we have renamed
ATskp1 as ASK1 and designated the remaining family
members ASK3 through ASK10. The predicted proteins
encoded by these genes are all very highly related to one
another, with pairwise comparisons between any two
members displaying 31% to 77% amino acid identity.
ASK1 and ASK2 are slightly more similar to each other
than either is to the other members of this family (data
not shown).

To demonstrate that the F-box domain (amino acids
9–48) of TIR1 mediates interaction with ASK1 and

Figure 1. Analysis of TIR1 expression. (A) Northern blot analy-
sis of TIR1 with total RNA isolated from various tissues. TIR1–
gus expression in 3-day-old seedling with staining apparent in
the root tip, hypocotyl, and cotelydons (B); root tip of 10-day-old
seedling (C); shoot of 10-day-old seedling with staining visible
in stipules (arrowheads) and the apical meristem (D); an early
lateral root primoridium (between arrowheads) (E). Vascular tis-
sues are also stained; (F) an emerging lateral root; (G) emerged
lateral root; (H) unfertilized flower. In situ RNA hybridization
with TIR1 of 3-day-old seedling (I); 3-day-old seedling (J); root tip
of 5-day-old seedling (K); shoot of 5-day-old seedling (L); longi-
tudinal sections (10 µm) through shoot apical meristem (M,N);
and heart-stage embryo (O,P). Sense strand control hybridiza-
tions are shown in J, N, and P. Size bars, 0.5 mm in B, D, H, I,
and J, and 0.1 mm in all other panels.
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ASK2, the highly conserved proline at amino acid 10 was
changed to an alanine residue. This mutation (TIR1P10A)
completely abolished the ability of TIR1 to interact with
the Skp1-related proteins in a two-hybrid assay (Fig. 3B).
Furthermore, the TIR1P10A derivative does not comple-
ment the auxin resistance phenotype of tir1-1 mutants,
indicating that the F-box domain is essential for TIR1
function in planta (data not shown). The TIR1 F-box do-
main alone [DBD–TIR1(1–105)] also interacts with ASK1
and ASK2, albeit at a much reduced level compared with

DBD–TIR1, demonstrating that the F-box domain is both
necessary and sufficient to mediate interactions with
ASK1 and ASK2 in the yeast two-hybrid system (Fig. 3B).

TIR1 forms SCF-like complexes in planta

The ASK1 and ASK2 proteins were expressed in Esche-
richia coli, purified as 6xHis-fusion proteins, and used to
raise polyclonal antibodies. Western blot analysis of Ara-
bidopsis extracts with the a-ASK1 antisera detected one
predominant band at ∼25 kD (Fig. 3C, lanes 1–4). This
band corresponds to the ASK1 protein because it is not
recognized by the preimmune sera and is absent from
extracts prepared from ask1-1 mutant seedlings. The
ask1-1 mutation consists of a Ds transposon insertion
within the ASK1 gene (M. Yang and H. Ma, unpubl.). The
a-ASK2 antisera also detected the ASK1 protein as well
as a protein that migrated slightly slower than ASK1 (Fig.
3C, lanes 5–8). This larger band is presumably the ASK2
protein. However, we cannot definitively rule out the
possibility that it corresponds to one of the other Skp1-
like proteins found in Arabidopsis.

The TIR1–ASK1 and TIR1–ASK2 interactions were ex-
amined in planta by co-immunoprecipitation. Crude ex-
tracts were prepared from 7-day-old seedlings expressing
a c-myc epitope-tagged version of TIR1 and from control
seedlings that did not express TIR1–myc. The TIR1–myc
protein was immunoprecipitated with monoclonal
c-myc antibody, and the resulting precipitates were im-
munoblotted and probed with the a-ASK1 or a-ASK2 an-
tisera. The ASK1 protein and the distinct protein recog-
nized by the a-ASK2 antisera were both present in the
a-myc immunoprecipitates of extracts that contained
the TIR1–myc fusion protein but were absent from im-
munoprecipitates of control extracts lacking TIR1–myc
(Fig. 3D).

In yeast and mammals, F-box proteins and Skp1p in-
teract with a member of the Cdc53p/cullin family of
proteins to form SCF complexes (Patton et al. 1998). We
identified an Arabidopsis ORF in the GenBank database
(locus 2281115 on AC002330) encoding a cullin-like pro-

Figure 2. TIR1 functions prior to the expression of cyc1At in
lateral root development. (A) Number of emerged lateral roots
(LR, solid bars) and the number of cyc1At–gus foci (CGF, open
bars) in wild-type and tir1-1 seedlings in the presence and ab-
sence of exogenous auxin. For this study CGF are defined as the
number of foci of cyc1At–gus staining observed along the root
excluding the primary root meristem. This ranges from single
cells expressing the cyc1At–gus reporter to mature lateral root
meristems. Presumably these foci are all lateral root meristems
at various stages of development. (B) cyc1At–gus expression in
the roots of 10 day-old wild-type and tir1-1 seedlings. Nine-day-
old seedlings were treated with 0.25 µM 2,4-D for various times
and stained for gus activity. Root segments shown are located
∼5 mm from the root tip. At this location in wild-type roots,
auxin treatment induces a high percentage of pericycle cells to
differentiate into lateral root primordia. (Inset) High magnifica-
tion of a single pericycle cell expressing the cyc1At–gus reporter
prior to the first cell division of lateral root development.
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tein that we have designated AtCUL1. This protein has
25% and 38% amino acid identity to the Saccharomyces
cerevisiae Cdc53 and human Cul-4A proteins, respec-
tively (Fig. 4A). Antiserum raised against AtCUL1 de-
tected two predominant bands on immunoblots of Ara-
bidopsis seedling extracts (Fig. 4B, lanes 1–4). These pro-
teins migrated at ∼84 kD, near the predicted molecular
mass of AtCUL1 (86 kD), and were not recognized by the
preimmune serum. The presence of two immunoreac-
tive bands suggests that AtCUL1 may be present in mul-
tiple isoforms in seedlings. Alternatively, the a-AtCUL1
antisera may cross-react with a protein related to At-
CUL1. Multigenic families of cullins are found in many
organisms, and highly related sequences are found in the
Arabidopsis EST database.

To determine whether AtCUL1 associates with TIR1
in planta, a-myc immunoprecipitates from TIR1–myc
seedlings were immunoblotted and probed with the af-
finity purified a-AtCUL1 antiserum. Both of the a-At-

CUL1 reactive bands observed in crude extracts were
also coimmunoprecipitated with the TIR1–myc protein
(Fig. 4B, lanes 5–6). The interaction between TIR1 and
AtCUL1 appeared to be dependent on the TIR1 F-box as
AtCUL1 was absent from immunoprecipitates from
seedlings expressing the myc-tagged TIR1P10A protein.
Surprisingly, the ASK1 and ASK2 proteins still coimmu-
noprecipitated with the TIR1P10A protein even though
the F-box mutation prevented these interactions in the
yeast two-hybrid system (Fig. 4B, lane 7).

ASK1 is required for normal auxin response

A mutant allele of ASK1 has been isolated recently by
Ma and colleagues (M. Yang and H. Ma, unpubl.). This
mutant, designated ask1-1, exhibits male sterility as a
result of chromosome nondisjunction during meiosis I of
microsporogenesis. The ask1-1 mutant also displays a
reduction in organ size suggesting that cell division and/

Figure 3. TIR1 interacts with the Skp1-like proteins ASK1 and ASK2. (A) Sequence alignment of the A. thaliana ASK1 and ASK2
(GenBank accession no. AF059295) proteins as well as human and S. cerevisiae Skp1p with PileUp (Genetics Computer Group, Inc.,
Madison, WI). Identical amino acids are boxed in black. Similar amino acids are boxed in gray. (B) Serial dilutions of yeast strain YPB2
carrying the indicated two-hybrid plasmids. Cells were plated onto 3-AT selection medium (left) or control (right) medium and
incubated at room temperature. The 3-AT plate was photographed after 10 days and the control plate after 3 days. (C) Western blot
analysis of seedling extracts with polyclonal antisera raised against ASK1 (lanes 2–4) or ASK2 (lanes 6–8). (D) Western blot analysis of
crude seedling extracts (lanes 1,2,5,6) or a-myc immunoprecipitates (lanes 3,4,7,8). (Bottom lanes 1–4) was probed with a-ASK1
antisera. (Bottom, lanes 5–8) Probed with a-ASK2 antisera.
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or cell expansion might be affected by the ask1-1 muta-
tion. Because we found that the TIR1 protein can inter-
act with ASK1 in planta, we investigated whether or not

ASK1 functions in auxin response. Four-day-old seed-
lings obtained from an ASK1/ask1-1 heterozygote were
transferred to medium containing the synthetic auxin
2,4-D. Exogenous auxin in the growth medium inhibits
root elongation of wild-type seedlings, but this inhibi-
tion is reduced in mutants with impaired auxin re-
sponse. Thirty-three of the 191 ASK1/ask1-1 progeny
tested exhibited resistance to the root growth inhibition
of exogenous auxin (Fig. 5A). All resistant seedlings also
exhibited male sterility (31/31) indicating that the two
phenotypes cosegregate. Also consistent with a reduced
auxin response, ask1-1/ask1-1 seedlings develop fewer
lateral roots than wild-type seedlings (Fig. 5B). A fraction
of the ask1-1 mutants did not display auxin resistance,
suggesting that this aspect of the phenotype is not com-
pletely penetrant. Incomplete penetrance is also seen for
the reduced organ size phenotype of the ask1-1 mutant
(D. Zhao, M. Yang, and H. Ma, unpubl.).

The auxin resistance phenotype of the ask1-1 mutant
is consistent with the hypothesis that the ASK1 gene
product acts with TIR1 in the auxin response pathway.
The resistant ask1-1 seedlings display a slightly more
severe auxin resistance phenotype than tir1 mutants.
Analysis of tir1-1 ask1-1 plants revealed that double-mu-
tant seedlings exhibited a more severe auxin response
defect than either of the single mutants (Fig. 5C).

TIR1 overexpression promotes auxin response

The effect of TIR1 overexpression on plant growth and
development was examined by generating transgenic
plants containing a glucocorticoid-inducible TIR1 ex-
pression construct. Transgenic lines expressing the
TIR1P10A derivative containing the F-box mutation were
also obtained. Northern analysis revealed that treatment
with the synthetic glucocorticoid dexamethazone re-
sulted in a large increase in TIR1 expression (Fig. 6A).
When TIR1 expression was induced in light-grown seed-
lings, growth of the primary root was inhibited, root tips
became agravitropic, and lateral root development was
promoted (Fig. 6B). Closer examination of these seed-
lings revealed increased proliferation of root hairs at the
primary root tip. In contrast, dexamethazone treatment
had no obvious effects on untransformed control seed-
lings. Overexpression of the TIR1P10A mutant derivative
also did not confer the phenotypes seen in the TIR1-
overexpressing plants. Examination of several additional
transgenic lines for both overexpression constructs
yielded similar results. TIR1 overexpression in dark-
grown seedlings severely inhibited hypocotyl elongation
and promoted deetiolation (Fig. 6C). The hypocotyls of
TIR1-overexpressing seedlings were also moderately
agravitropic (data not shown). As observed with light-
grown seedlings, overexpression of the TIR1P10A mutant
protein had little if any effect on skotomorphogenesis.

The effects of TIR1 overexpression are very similar to
the effects of exogenous auxin on wild-type seedlings. In
the light, auxin treatment inhibits primary root elonga-
tion and promotes lateral root development, whereas in
the dark, exogenous auxin inhibits hypocotyl elongation

Figure 4. The A. thaliana cullin, AtCUL1, interacts with TIR1
in planta. (A) Sequence alignment of AtCUL1 with the human
and S. cerevisiae cullins, Cul4A and Cdc53p, with PileUp (Ge-
netics Computer Group, Inc., Madison,WI). Identical amino ac-
ids are boxed in black. Similar amino acids are boxed in gray. (B)
Western blot analysis of crude seedling extracts (lanes 1–4) or
a-myc immunoprecipitates (lanes 6–7).
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and promotes deetiolation (Fig. 6D). To more directly
examine whether TIR1 overexpression promotes auxin
signaling, expression of the auxin-inducible pIAA4–gus
and SAUR–AC1–gus reporters were examined in lines
overexpressing TIR1. A considerable increase in pIAA4–
gus expression was observed after a 48-hr induction of
TIR1 expression (Fig. 6E). TIR1 overexpression also pro-
moted some ectopic pIAA4–gus expression (Fig. 6E; cf.
middle and bottom panels). Similar results were ob-
tained with the SAUR–AC1–gus reporter (data not
shown). In contrast, no change in pIAA4–gus staining
was observed when control seedlings were treated with
dexamethazone (data not shown). This result indicates
that the physiological effects of TIR1 overexpression are
due to an increase in auxin signaling.

Discussion

Previous studies have suggested that the ubiquitin pro-
tein conjugation pathway may regulate auxin response.
Ruegger et al. (1998) identified the F-box protein TIR1 as
a factor required for normal auxin response in Arabidop-
sis. These authors suggested that TIR1 may be a compo-
nent of an SCF ubiquitin–ligase complex that targets one
or more regulators of auxin signaling for ubiquitination.
In this study, we identify Arabidopsis Skp1p- and
Cdc53p-related proteins that interact with TIR1 to form
an SCF complex called SCFTIR1. The phenotype of plants
deficient in one of the Skp1-related proteins, called
ASK1, as well as the effects of overexpression of TIR1 in
transgenic plants, confirm that SCFTIR1 function is cen-
tral to auxin response.

Identification of SCFTIR1

The ASK1 and ASK2 genes were isolated in an extensive
two-hybrid screen with TIR1 and encode two highly re-
lated Skp1-like proteins. Both of these genes have also
been identified in two-hybrid screens with the Arabidop-
sis UFO and COI1 F-box proteins as bait (W.L. Crosby,
unpubl., J. Turner pers. comm.). The in planta signifi-
cance of the TIR1–ASK1 and TIR1–ASK2 two-hybrid in-
teractions was established by demonstrating that the
ASK1 and ASK2 proteins coimmunoprecipitate with epi-
tope-tagged TIR1. At present, 10 ASK genes have been
identified in the Arabidopsis genome, suggesting some
specificity may exist in the interactions between F-box
and ASK proteins. Consistent with this idea, we have
found that TIR1 does not interact with ASK3 in a yeast
two-hybrid assay (data not shown). In addition, the LRF2
protein, which exhibits 60% identity with TIR1 (Rueg-
ger et al. 1998), does not interact with ASK1 or ASK2 in
a two-hybrid test, whereas another family member,
LRF1, interacts very weakly with ASK1 and ASK2 (W.M.
Gray and M. Estelle, unpubl.). The possibility that LRF1
and LRF2 interact with other members of the ASK fam-
ily to form SCF complexes that function in auxin signal-
ing is being investigated. The presence of a family of
related SCF complexes exhibiting functional redundancy
could explain why mutations in TIR1 and ASK1 lead to
relatively mild defects in auxin response when compared
with mutations in AXR1.

Members of the cullin family of proteins comprise the
third subunit of an SCF complex. We identified an Ara-
bidopsis cullin member, designated AtCUL1, that coim-
munoprecipitates from plant extracts along with TIR1.
AtCUL1 is most closely related to several partial ESTs in

Figure 5. The ASK1 gene is required for normal auxin response. (A) ask1-1 and wild-type Ler seedling were grown on nutrient medium
for 4 days and then transferred to medium supplemented with 0.085 µM 2,4-D and grown an additional 5 days. (Asterisk) Position of
the root tips at the time of transfer. Size bars, 5 mm. (B) Mean number of lateral roots formed by wild-type and ask1-1 seedlings grown
on unsupplemented medium for 11 days. (Open bar) ASKI; (hatched bar) ask1. Bars, standard error. (C) Dose response curve for
wild-type, tir1-1, ask1-1, and tir1-1 ask1-1 mutants. Inhibition of root growth is expressed relative to growth on unsupplemented
medium. Because of the incomplete penetrance of the ask1-1 mutation, only auxin resistant seedlings are included in this data set.
Each value represents the mean of 10 seedlings. (h) Ler; (l) tir1-1; (s) ask1-1; (m) tir1-1, ask-1. For each data point, S.E#10%.
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the Arabidopsis database and the human cullins, Cul-4A
and Cul-4B. Like the yeast Cdc53p and human Cul-4A
cullins, AtCUL1 is probably a substrate for modification
by RUB. AtCUL1 can be modified by RUB in vitro, and
preliminary results suggest that it is also modified in
vivo (J.C. del Pozo and M. Estelle, unpubl.). Although the
function of this modification is unclear, it would seem to
play an important role in auxin signaling because muta-
tions in the RUB-activating enzyme AXR1 dramatically
impair the auxin response pathway. Hochstrasser (1998)
suggested that Rub1 modification of the yeast Cdc53p
protein may regulate the partitioning of Cdc53p among
different SCF complexes or affect the activity or sub-
strate specificity of an SCF. An alternative possibility is
that RUB modification controls the subcellular localiza-
tion of an SCF complex in a manner similar to the regu-

lation of protein localization by the SUMO family of
ubiquitin-related proteins (Johnson and Hochstrasser
1997). However, neither of the two predominant bands
detected by the a-AtCUL1 antisera that coimmunopre-
cipitate with TIR1 appear to contain the RUB modifica-
tion as both are present in axr1-12 extracts (data not
shown). This result suggests that RUB modification of
AtCUL1 is not a prerequisite for SCFTIR1 formation.

The F-box domain is essential for TIR1 function in
auxin response. The TIR1P10A derivative, which con-
tains a mutation in the F-box, failed to interact with
ASK1 and ASK2 in a yeast two-hybrid assay, suggesting
that TIR1P10A may not function in planta due to its in-
ability to bind to ASK1 and ASK2. The F-box two-hybrid
construct (DBD–TIR11–105) interacts weakly with the
ASK proteins, suggesting that TIR1 sequences outside

Figure 6. TIR1 overexpression analysis. (A) Northern analysis of T2 seedlings transformed with the glucocorticoid inducible TIR1 or
TIR1P10A expression constructs. TIR1 expression was induced by treating with dexamethazone for 24 hr. (B) TIR1 expression was
induced in 7-day-old transgenic PGVG–TIR1 and PGVG–TIR1P10A seedlings by transferring seedlings to nutrient medium supplemented
with dexamethazone and grown an additional 2 days. Untransformed Columbia seedlings are shown as a control. (Asterisk) Position
of the root tips at the time of transfer. Root tips shown in insets are not from the same seedling pictured. Size bars, 10 mm. (C)
Transgenic and control seedlings were germinated and grown for 4 days in the dark on nutrient medium containing dexamethazone.
Size bars, 1 mm. (D) Wild-type seedlings grown as described in B and C with auxin in the growth medium instead of dexamethazone.
The light-grown seedling (top) was transferred to medium containing 1 µM IAA. Size bar, 10 mm. The dark-grown seedling (bottom)
was grown on medium supplemented with 1 µM 2,4-D. Size bar, 1 mm. (E) pIAA4–gus expression in PGVG–TIR1 transgenic seedlings
in the absence (top) and presence (center) of dexamethazone. Wild-type pIAA4–gus seedlings treated with 0.2 µM 2,4-D are shown at
bottom. Seedlings were stained for b-glucuronidase activity 48 hr after induction with dexamethazone or 2,4-D.
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the F-box are also important for ASK binding. Studies
with other F box proteins have also demonstrated that
sequences outside of the F box are important for associa-
tion with Skp1 (Li and Johnston 1997). Surprisingly,
when expressed in plants, the TIR1P10A mutant protein
still coimmunoprecipitated with the ASK proteins. This
may be because the TIR1–ASK interaction is more stable
in plants, perhaps because of the interaction with addi-
tional plant proteins. Alternatively, TIR1 may function
as a dimer in the SCF complex. Kominami et al. (1998)
recently demonstrated that the Schizosaccharomyces
pombe F-box proteins Pop1 and Pop2 form homo- and
heterodimers. If TIR1P10A dimerizes with a second F-box
protein or with the endogenous tir1-1 mutant protein
(the tir1-1 mutation is in the LRR domain), the ASK
proteins may be present in TIR1P10A–myc immunopre-
cipitates via their association with the dimer partner.
Our observation that the TIR1P10A mutation prevents
association with AtCUL1 in planta suggests that either
F-box sequences are directly involved in mediating this
interaction, or that the TIR1P10A mutation sufficiently
alters the stability or conformation of the TIR1–ASK
complex such that AtCUL1 can no longer bind effi-
ciently.

This study shows that the SCF ubiquitin ligase model
can be extended to higher plant systems. The presence of
a large family of Skp1-like proteins and multiple cullins
in the Arabidopsis EST database suggests that SCFs are
widely used by plants. Several uncharacterized F-box
proteins have been isolated in two-hybrid screens with
members of the ASK protein family (E. Risseeuw and
W.L. Crosby, unpubl.). Xie et al. (1998) recently reported
that the COI1 gene encodes an F-box protein with leu-
cine-rich repeats that functions in jasmonic acid re-
sponse. This result suggests that jasmonic acid also con-
trols plant growth via SCF-mediated ubiquitination.

SCFTIR1 is required for auxin response

Like mutations in TIR1, the ask1-1 mutation confers an
auxin-resistance phenotype. This finding validates the
physiological significance of the interaction between
TIR1 and ASK1 by demonstrating that SCF components
in addition to TIR1 function in auxin response. tir1-1
ask1-1 double-mutant plants display a more severe auxin
resistance phenotype than either tir1-1 or ask1-1 plants.
This may be the result of some degree of functional re-
dundancy for TIR1 and ASK1 function in the auxin re-
sponse pathway. We have shown that TIR1 can interact
with the ASK2 protein, suggesting ASK1 and ASK2 dis-
play some functional redundancy. Similarly, perhaps
ASK1 forms an SCF complex with a protein(s) that ex-
hibits some functional redundancy with TIR1. The leu-
cine-rich repeat f-box proteins LRF1 and LRF2 are highly
related to TIR1 (Ruegger et al. 1998), and a weak two-
hybrid interaction between LRF1 and ASK1 has been ob-
served supporting this possibility (data not shown).

The TIR1 gene is strongly expressed in regions actively
undergoing cell division and elongation. This expression

pattern is consistent with TIR1 functioning in the auxin
response pathway. Furthermore, this pattern is very
similar to that of AXR1 (del Pozo et al. 1998; J.C. del
Pozo and M. Estelle, unpubl.) and ASK1 (Porat et al.
1998; E. Risseeuw and W.L. Crosby, unpubl.), consistent
with the suggestion that these genes act together in the
same pathway.

Overexpression of TIR1 promotes auxin response.
Seedlings that overexpress TIR1 have a striking resem-
blance to auxin-treated plants, and display an increase in
auxin-inducible gene expression. Similar effects were ob-
served in plants at later stages in development (W.M.
Gray and M. Estelle, unpubl.). These results suggest that
TIR1 is a limiting factor in auxin signaling, a conclusion
that is supported by genetic studies of the tir1 mutants.
Ruegger et al. (1998) showed that heterozygous tir1
plants have an auxin-response defect, indicating re-
sponse is sensitive to TIR1 levels. Thus, it is possible
that auxin response is regulated in part by altering TIR1
levels. In addition to providing a useful tool for studying
TIR1 function, the ability to manipulate auxin signaling
by regulating TIR1 expression may have important bio-
technological applications. Applied auxin is widely used
in the agricultural and horticultural fields to control
plant growth processes such as root development and
fruit ripening. The use of developmental or organ-spe-
cific promoters to modulate auxin signaling by increas-
ing TIR1 expression may be a simpler and more precise
means of targeting auxin response to specific tissues.

What is the SCFTIR1 substrate?

The putative target protein(s) for SCFTIR1-mediated ubiq-
uitination are unknown. According to the SCF ubiqui-
tin-ligase model (Patton et al. 1998), substrate proteins
are recruited to the SCF complex by the F-box protein. In
yeast, the stability of several key regulators of the cell
division cycle is regulated by SCF-mediated degradation
(Patton et al. 1998). Mutations that prevent removal of
these regulators result in cell cycle arrest. Auxin is re-
quired for plant cell division, and tir1 mutants display
defects in some cell division processes. In this study we
show that TIR1 is required in root pericycle cells prior to
the occurrence of the first cell division during lateral
root primordium formation. Thus it is possible that
auxin-promoted cell division in the pericycle is achieved
by SCFTIR1-facilitated degradation of one or more regu-
lators of the plant cell cycle. However, it is important to
note that the tir1 mutants are also defective in cell elon-
gation (Ruegger et al. 1998). Perhaps SCFTIR1 has mul-
tiple substrates, some of which integrate auxin signaling
with the cell cycle, and others which control distinct
auxin responses.

The AUX/IAA genes were identified because their
transcription is rapidly induced by auxin (Abel et al.
1995). These genes encode nuclear proteins that have
been proposed to function as transcription factors that
mediate downstream auxin responses. The expression of
the AUX/IAA genes can also be induced by inhibiting
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protein synthesis with cycloheximide, suggesting that at
least this aspect of auxin response is regulated by one or
more short-lived repressor proteins (Ballas et al. 1995;
Abel and Theologis 1996). Auxin may relieve this repres-
sion by promoting the ubiquitin-mediated degradation of
these factors via SCFTIR1. Alternatively, certain mem-
bers of the AUX/IAA protein family themselves may be
the targets of SCFTIR1. The available evidence suggests
that the AUX/IAA proteins function as both activators
and repressors of auxin-regulated genes. At least some
AUX/IAA proteins have very short half-lives and have
been shown to repress the transcription of certain auxin-
inducible genes (Ulmasov et al. 1997). In contrast, gain-
of-function mutations in the IAA17/AXR3 and IAA3/
SHY2 genes confer a constitutive auxin-response pheno-
type (Rouse et al. 1998, Tian and Reed 1999). This
phenotype could be explained if IAA17/AXR3 and
IAA3/SHY2 encode activators of auxin response, and the
mutations confer an increased stability on the mutant
proteins. Measurement of IAA protein stability in axr1
and tir1 mutant backgrounds is in progress.

A model for auxin response

A model for SCFTIR1 function in auxin action is outlined
in Figure 7. In response to hormone, SCFTIR1 ubiquiti-
nates one or more repressors of the auxin response path-
way. This ubiquitination requires the AXR1–ECR1-me-

diated RUB modification of the AtCUL1 protein. The
subsequent ubiquitin-mediated degradation of the
SCFTIR1 substrate(s) derepresses the auxin response path-
way, including expression of auxin-regulated genes, re-
sulting in changes in plant growth and development. In
some respects, this model is similar to the activation of
the NF-kB transcription factor in mammalian cells. Cy-
tokine stimulation promotes the ubiquitin-mediated
degradation of the NF-kB repressor IkB. This occurs
through the activation of the IkB kinase (IKK), which
phosphorylates IkB and targets it to an SCF complex con-
taining the b-TrCP/hE3RSIkB F-box protein (Ghosh et al.
1998; Yaron et al. 1998). In the absence of IkB, NF-kB
can activate the expression of downstream target genes
involved in immune response and other cellular pro-
cesses.

A major question yet to be addressed is how auxin
regulates the AXR1–SCFTIR1 pathway. Although several
proteins capable of binding auxin have been isolated, no
convincing candidate auxin receptor has been identified.
Equally unclear are the nature and mechanisms involved
in signal transmission. MAP kinase cascades, G proteins,
phosphatidylinositol, and calcium-based signaling path-
ways all have been proposed to be involved in auxin sig-
nal transduction, however, the question has yet to be
resolved. Although the details of auxin perception and
signal transmission are unclear, genetic and molecular
studies have clearly demonstrated the importance of
AXR1 and SCFTIR1 in auxin response. It is possible that
the auxin signaling pathway regulates the assembly, lo-
calization, or activity of SCFTIR1. The observation that
TIR1 is limiting for auxin response is consistent with
this model. Effects on SCFTIR1 may occur by regulated
RUB modification of AtCUL1 or by an as yet undeter-
mined mechanism (Fig. 7). Alternatively, the regulatory
input may be through the substrate protein (Skowyra et
al. 1997; Winston et al. 1999). According to the SCF para-
digm from yeast and mammalian systems, activation of
a protein kinase results in phosphorylation of the SCF
substrate protein. The SCF then binds the phosphory-
lated protein and facilitates ubiquitination and degrada-
tion. Thus far, genetic screens for mutants exhibiting
reduced auxin response have not uncovered any compo-
nents of a kinase cascade. Kinases have been identified
that are rapidly activated by auxin treatment (Mizoguchi
et al. 1994). However, it is unclear whether activation is
a direct consequence of auxin treatment or a secondary
effect of auxin-mediated growth. Recently, the tobacco
MAP kinase kinase kinase (MAPKKK) NPK1 was shown
to repress auxin-mediated gene expression when trans-
fected into maize mesophyl protoplasts (Kovtun et al.
1998). This result suggests that NPK1 negatively regu-
lates auxin signaling. Thus, NPK1 or some other factor
in the NPK1 pathway could be a potential substrate for
SCFTIR1. The cloning and analysis of additional auxin
response genes, such as AXR4, and modifiers of AXR1
and TIR1, such as SAR1, should answer many of these
questions and further elucidate the long-standing prob-
lem of how auxin controls plant growth and develop-
ment.

Figure 7. Model for auxin response. In this model, TIR1 func-
tions in an SCF ubiquitin ligase that targets one or more nega-
tive regulators of the auxin response pathway for ubiquitination
and degradation. SCFTIR1 activity requires the RUB modifica-
tion of AtCUL1 via the AXR1–ECR1 pathway. The ubiquitin–
mediated degradation of the repressor(s) derepresses the re-
sponse pathway resulting in the activation of the early auxin
response genes (AUX/IAA genes) that may control downstream
events resulting in auxin-regulated growth and development.
E1, ubiquitin-activating enzyme; E2, ubiquitin-conjugating en-
zyme; E2R, RUB-conjugating enzyme.

SCFTIR1 is required for auxin response

GENES & DEVELOPMENT 1687



Materials and methods

Plant material and growth conditions

A. thaliana plants were grown as described by Lincoln et al.
(1990). The mutant lines used in this study have been described
previously (Ruegger et al. 1998). The FA4 transgenic line con-
taining a translational fusion of the Cyc1At cyclin to b-gluc-
uronidase was generously provided by Drs. A. Colon and P.
Doerner (Salk Institute, La Jolla, CA). The BA3 transgenic line
containing auxin-responsive promoter elements from the pea
IAA4 gene fused to b-glucuronidase has been described previ-
ously (Oono et al. 1998). The construction of the TIR1–gus,
TIR1–myc, TIR1P10A, and TIR1P10A–myc transgenic lines is de-
scribed below. All lines used in this study were of the Columbia
ecotype with the exception of the ask1-1 mutant which is de-
rived from Landsberg erecta. To construct the tir1-1 ask1-1
double mutant, the tir1-1 mutation was first introduced into the
Landsberg erecta background by five successive backcrosses.
Pollen from tir1-1 segregants were then used to pollinate emas-
culated ask1-1 flowers.

In experiments on sterile medium, seeds were sterilized and
grown as described by Ruegger et al. (1998). The synthetic auxin
2,4-D and 30 µM dexamethazone were added to autoclaved me-
dium when indicated. To examine sensitivity to auxin, seed-
lings were germinated and grown for 4 days on nutrient me-
dium. Seedlings were then transferred to 2,4-D supplemented
medium, grown an additional 5 days, and root elongation was
measured.

Lateral root studies

The cyc1At–gus reporter in wild-type line FA4 was crossed with
tir1-1 plants, and F2 seedlings homozygous for both the trans-
gene and tir1-1 mutation identified. tir1-1[cyc1At–gus] and FA4
control seeds were germinated on nutrient medium plates and
grown for 9 days at 23°C with a 16 hr light cycle and a light
intensity of 45–60 µE/m2/s. Nine-day-old seedlings were trans-
ferred to nutrient plates containing 0.25 µM 2,4-D or unsupple-
mented plates and grown an additional 24 hr. cyc1At–gus ex-
pression in lateral roots and developing lateral root primordia
was detected by incubating seedlings in an X-Gluc solution for
8 hr at 37°C and destaining with 70% ethanol as described pre-
viously (Stomp 1991).

ASK1/ask1-1 progeny seeds were sterilized and plated on nu-
trient medium. Plates were incubated vertically in a 23°C in-
cubator with a 16 hr light cycle and a light intensity of 45–60
µE/m2/s. After 11 days growth, lateral roots and lateral root
primordia were recorded, and the seedlings potted. The ASK1
phenotype was scored when the plants flowered.

Yeast two-hybrid screen

A 2.0-kb SmaI–PvuII fragment containing the TIR1 coding se-
quence from plasmid pGB14 was cloned into the SmaI site of
pBI880 (Kohalmi et al. 1998) to generate the GAL41–147-TIR1
bait plasmid pGB16. This construct was introduced into the
yeast strain YPB2 [MATa ura3-52 his3-200 ade2-101 lys2-801
trp1-901 leu2-3,112 canR gal4–542 gal80–538 LYS2::GAL1UAS –
LEU2TATA–HIS3 URA3::(GAL43 × 17mer)-CYC1TATA–lacZ] and
used to screen an Arabidopsis cDNA two-hybrid library. The
library was made from poly(A)+ RNA isolated from tissues
taken from plants at four different stages of development, rang-
ing from 2-week-old seedlings through plants showing early
signs of senescence. The library was directionally cloned as
SalI–NotI fragments with the BRL Superscript system and

cloned into pBI771 (Kohalmi et al. 1998). The library contained
∼2 × 107 independent clones. The library was transformed into
YPB2 by standard methods (Gietz and Schiestl 1995) and trans-
formants plated directly onto synthetic complete nutrient me-
dium lacking leucine and tryptophan (Sherman et al. 1978) and
supplemented with 15 mM 3-amino-18, 28, 48 triazole (3-AT).
Plates were incubated at room temperature for 7–10 days and
3-AT-resistant transformants were assayed for b-galactosidase
activity as described previously (Chevray and Nathans 1992).

DNA was isolated from library transformants that were both
3-AT resistant and expressed the lacZ reporter. Library cDNA
inserts were amplified with PCR primers complementary to
flanking GAL4 activation domain and ADH1 transcription ter-
mination sequences. Amplified inserts were analyzed by DpnII
restriction analysis to identify related clones, and representative
members were sequenced using the automated Thermo Se-
quenase Dye Terminator Cycle Sequencing kit (Amersham).

The TIR1P10A two-hybrid plasmid, pGB21, was constructed
by introducing a single amino acid change (proline to alanine) in
the F-box domain in plasmid pGB16 with the Quickchange site-
directed mutagenesis kit (Stratagene) and complementary
oligonucleoties with the sequence 5-GCCTTGTCGTTTGC-
AGAAGAGGTACTAGAGC-38. The TIR1 ORF of pGB21 was
sequenced to confirm that no additional changes occurred dur-
ing the site-directed mutagenesis procedure.

The TIR1-F-box two-hybrid construct, pGB17, was con-
structed by cloning a SmaI–PmlI fragment encoding amino ac-
ids 1–105 of TIR1 into the SmaI site of pBI880. Junctions were
sequenced to confirm the reading frame.

Transgenic lines

The TIR1–gus reporter plasmid, pGB10, was constructed by
cloning a 4-kb XhoI fragment containing TIR1 58 sequences
(∼−4000 to −6) from the TIR1 genomic clone, D109ES, into the
SalI site of pBI101.2 (Clontech). pGB10 was introduced into
Agrobacterium strain GV3101 that was used to inoculate wild-
type (Col) plants by vacuum infiltration as described previously
(Bechtold et al. 1993). TIR1–gus expression was examined by
incubating seedlings/organs in an X-Gluc solution for 2–12 hr at
37°C and destaining with 70% ethanol as described previously
(Stomp 1991).

The TIR1 overexpression construct, pGB19, was constructed
by cloning the TIR1 cDNA into the XhoI site downstream of the
GAL4-binding sites of the plant transformation vector
pTA7002. This vector also expresses the glucocorticoid-induc-
ible Gal4–VP16-glucocorticoid receptor (GVG) transgene to
drive TIR1 expression (Aoyama and Chua 1997). The PGVG–
TIR1P10A expression vector, pGB22, was constructed by muta-
genizing the TIR1 F-box as described above and cloning the
cDNA into the XhoI–SpeI sites of pTA7002.

TIR1 was epitope tagged by introducing a SmaI restriction
site after amino acid 586 of the TIR1 coding sequence in plas-
mid pGB33 with the Quickchange site-directed mutagenesis kit
(Stratagene) and complementary oligonucleotides with the se-
quence 58-GACTCAACAATGAGGTTTCCCGGGCAAATCA-
TTACTACTAACG-38. A DraI–SmaI cassette encoding six cop-
ies of the c-myc 9E10 epitope was cloned into this SmaI site.
The 58 TIR1-c-myc epitope junction is in-frame; however, the 38

junction causes a frameshift that changes the extreme carboxyl
terminus of the TIR1 protein (RQIITTNGL* to RANHYY*). A
SalI fragment containing the TIR1–myc fusion was cloned into
the XhoI site of the glucocorticoid-inducible expression vector
pTA7002 (Aoyama and Chua 1997) to form plasmid pGB28. To
construct the c-myc tagged TIR1P10A transgene, the c-myc-
tagged derivative of plasmid pGB33 described above was muta-
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genized with the Quickchange site-directed mutagenesis kit
(Stratagene) and complementary oligonucleotides with the se-
quence 5-8GCCTTGTCGTTTGCAGAAGAGGTACTAGAGC
-38. The TIR1P10A mutation was confirmed by sequencing and a
SalI–SpeI fragment encompassing the coding region was cloned
into the XhoI–SpeI sites of the pTA7002 expression vector.
These plasmids were used to transform Columbia and tir1-1
plants as described above.

TIR1 overexpression analysis

The glucocorticoid-inducible TIR1 expression constructs
pGB19 and pGB22 were introduced into Columbia and tir1-1
backgrounds by Agrobacterium-mediated transformation as de-
scribed above. Transgenic seedlings were identified on nutrient
medium containing 50 µg/ml hygromycin. Lines that overex-
pressed TIR1 were identified by Northern blot analysis of T2
seedlings that had been induced with 0.03 mM dexamethazone
for 24 hr. Physiological studies were done with T3 seedlings
homozygous for the transgenes.

Antibodies

The ASK1 and ASK2 coding sequences were cloned into pBI784
and pBI786 (Kohalmi et al. 1998) and expressed as 6xHis fusion
proteins in E. coli strain BL(21) pLysS. The recombinant pro-
teins were purified by standard IMAC chromatography over Ni+

affinity resin (Quagen). New Zealand white rabbits were immu-
nized by subcutaneous injection of ∼200 µg of recombinant pro-
tein suspended in complete Freund’s adjuvent, followed by
three additional injections at 2-week intervals with protein sus-
pended in incomplete Freund’s adjuvant. Titers were assessed at
6 and 8 weeks, and immune serum recovered from animals
exhibiting an appropriate titer (detecting 1 ng of antigen on a dot
blot using a 1:10,000 dilution of whole serum). Crude a-ASK1
and a-ASK2 antisera were used at 1:5000 dilutions for Western
blot analysis of plant extracts and immunoprecipitates.

A full-length predicted ORF for AtCUL1 was PCR amplified
from an Arabidopsis two-hybrid library (Kohalmi et al. 1998)
and genomic BAC clone (Accession no. AC002330) with Pfu
DNA polymerase (Stratagene) by the vendor’s recommended
conditions. Amplicons were cloned into pSL1180 (Pharmacia
Biotech) and sequenced.

The AtCUL1 cDNA was cloned in-frame into the 6×His-
tagged expression vector pQE31 (Qiagen). 200 ml of XL1-blue
cells, carrying the pQE–AtCUL1 plasmid, were grown at 30°C
to an OD of ∼1.2 and then were induced with 1.5 mM IPTG for
4 hr. The cells were spun down and resuspended in 10 ml of
buffer A (6 M Urea, 100 mM NaPO4, 0.1% Tween 20, adjusted at
pH8) and sonicated at 4°C. The lysate was cleared by centrifu-
gation at 10,000 rpm for 20 min at 4°C. The supernatant was
incubated with Ni–NTA agarose (Qiagen) for 1 hr at 4°C which
was then washed four times with buffer B (6 M urea, 100 mM

NaPO4, 0.1% Tween 20, adjusted at pH6). The AtCUL1 protein
was eluted from the beads with buffer B + 0.5 M imidazole and
checked for purity by SDS-PAGE. The purified protein was dia-
lyzed overnight against 15 liters of 0.5 M urea, 100 mM Tris-HCl
(pH7.5), 0.05% Tween 20. A sample of >90% purity was used for
serum production, by standard procedures (Cocalico Biologicals
Inc., Reamstown, PA). The antisera was immunoaffinity puri-
fied against bacterially expressed AtCUL1 bound to immobilon
membrane as described (Pringle et al. 1989). Affinity purified
a-AtCUL1 was diluted 1:1000 for Western blot analysis.

Monoclonal anti-c-myc 9E10 antibody was purchased from
BabCo and used as recommended.

Immunoprecipitations and Western blot analysis

Arabidopsis protein extracts were prepared from 5 to 7-day-old
seedlings that were grown under sterile conditions in liquid
nutrient medium. Dexamethazone was added 24 hr prior to har-
vest to induce TIR1–myc expression when indicated. Extracts
were prepared by homogenizing seedlings in ice cold buffer C
(50 mM Tris.Cl, 150 mM NaCl, 0.5% NP-40, 1 mM PMSF, 5
µg/ml leupeptin, 5 µg/ml pepstatin at pH 7.5). Extracts were
cleared by spinning for 15 min in a microcentrifuge.

For immunoprecipitations, 1–2 mg of extract was precleared
by incubating with 50 µl of protein A-agarose (Boehringer Man-
nheim) for 3 hr at 4°C with gentle mixing. A total of 5 µl of
anti-c-myc 9E10 antibody was added to the precleared extract
and incubated for 1–2 hr at 4°C. Immune complexes were col-
lected by adding 50 µl of protein A-agarose and mixing gently at
4°C for 3 hr followed by brief (∼5 sec) centrifugation. Immune
complexes were washed three times for 20 min in 1 ml of Buffer
C and resuspended in 50 µl of 2× SDS-PAGE sample buffer.
Proteins were resolved on SDS gels containing 10% acrylamide
and transferred to nitrocellulose membranes. Proteins were de-
tected by Western analysis with enhanced chemiluminescence
as described by the manufacturer (Amersham).

In situ hybridization

Digoxigenin-labeled TIR1 sense and antisense probes (Boe-
hringer Mannheim Corp.) for in situ hybridization were pro-
duced from the full-length TIR1 cDNA sequence. Limited alka-
line hydrolysis of the probes to 150 bp was performed according
to Cox et al. (1984). Whole mount in situ hybridization of 3 to
7-day-old seedlings was performed as described by Ludevid et al.
(1992). Inflorescences and siliques were fixed in 4% paraformal-
dahyde, embedded in paraffin wax, and 10-µm sections were
prepared for in situ hybridization according to Jackson (1991).
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Ludevid,D., H. Höfte, E. Himelblau, and M.J. Chrispeels. 1992.
The expression pattern of the tonoplast intrinsic protein
g-TIP in Arabidopsis thaliana is correlated with cell enlarge-
ment. Plant Physiol. 100: 1633–1639.

Mizoguchi, T., Y. Gotoh, N. Eisuke, K. Yamaguchi-Shinozaki,
N. Hayashida, T. Iwasaki, H. Kamada, and K. Shinozaki.
1994. Characterization of two cDNAs that encode MAP ki-
nase homologues in Arabidopsis thaliana and analysis of the
possible role of auxin in activating such kinase activities in
cultured cells. Plant J. 5: 111–122.

Oono, Y., Q.G. Chen, P.J. Overvoorde, C. Kohler, and A. The-
ologis. 1998. Age mutants of Arabidopsis exhibit altered
auxin-regulated gene expression. Plant Cell 10: 1649–1662.

Osaka, F., H. Kawasaki, N. Aido, M. Saeki, T. Chiba, S. Ka-
washima, K. Tanaka, and S. Kato. 1998. The new NEDD8-
ligating system for cullin-A. Genes & Dev. 12: 2263–2268.

Patton, E.E., A.R. Willems, and M. Tyers. 1998. Combinatorial
control in ubiquitin-dependent proteolysis: Don’t Skp the
F-box hypothesis. Trends Genet. 14: 236–243.

Porat R., P. Lu, and S.D. O’Neill. 1998. Arabidopsis SKP1, a
homologue of a cell cycle regulator gene, is predominantly
expressed in meristematic cells. Planta 204: 345–351.

Pringle, J.R., R.A. Preston, A.E. Adams, T. Stearns, D.G. Drubin,
B.K. Haarer, and E.W. Jones. 1989. Fluorescence microscopy

Gray et al.

1690 GENES & DEVELOPMENT



methods for yeast. Methods Cell Biol. 31: 357–435.
Rabindran, S.K., M. Danielsen, and M.R. Stallcup. 1987. Gluco-

corticoid-resistant lymphoma cell variants that contain
functional glucocorticoid receptors. Mol. Cell. Biol. 7: 4211–
4217.

Rao-Naik, C., W. delaCruz, J.M. Laplaza, S. Tan, J. Callis, and
A.J. Fisher. 1998. The Rub family of ubiquitin-like proteins.
J. Biol. Chem. 273: 34976–34982.

Rouse, D., P. Mackay, P. Stirnberg, M. Estelle, and H.M.O. Ley-
ser. 1998. Changes in auxin response from mutations in an
AUX/IAA gene. Science 279: 1371–1373.

Ruegger, M., E. Dewey, W.M. Gray, L. Hobbie, J. Turner, and M.
Estelle. 1998. The TIR1 protein of Arabidopsis functions in
auxin response and is related to human SKP2 and yeast
Grr1p. Genes & Dev. 12: 198–207.

Scheffner, M., U. Nuber, and J.M. Huibregtse. 1995. Protein
ubiquitination involving an E1-E2-E3 enzyme ubiquitin thi-
olester cascade. Nature 373: 81–83.

Sherman, F., G.R. Fink, and C.W. Lawrence. 1978. Methods in
yeast genetics. Cold Spring Harbor Laboratory, Cold Sping
Harbor, NY.

Skowyra, D., K.L. Craig, M. Tyers, S.J. Elledge, and J.W. Harper.
1997. F-box proteins are receptors that recruit phosphory-
lated substrates to the SCF ubiquitin-ligase complex. Cell
91: 209–219.

Stomp, A.-M. 1991. Histochemical localization of b-glucuroni-
dase In GUS protocols, (ed. S.R. Gallagher), pp. 103–113.
Academic Press, New York, NY.

Tian, Q. and J.W. Reed. 1999. Control of auxin-regulated root
development by the Arabidopsis thaliana SHY2/IAA3 gene.
Development 126: 711–721.

Ulmasov, T., J. Murfett, G. Hagen, and Guilfoyle, T.J. 1997.
Aux/IAA proteins repress expression of reporter genes con-
taining natural and highly active synthetic auxin response
elements. Plant Cell 9: 1963–1971.

Winston, J.T., P. Strack, P. Beer-Romero, C.Y. Chu, S.J. Elledge,
and J.W. Harper. 1999. The SCFb-TRCP-ubiquitin ligase
complex associates specifically with phosphorylated de-
struction motifs in IkBa and b-catenin and stimulates IkBa

ubiquitination in vitro. Genes & Dev. 13: 270–283.
Xie, D.X., B.F. Feys, S. James, M. Nieto-Rostro, and J.G.Turner.

1998. COI1: An Arabidopsis gene required for jasmonate-
regulated defense and fertility. Science 280: 1091–1094.

Yaron, A., A. Hatzubai, M. Davis, I. Lavon, S. Amit, A.M. Man-
ning, J.S. Andersen, M. Mann, F. Mercurio, and Y. Ben-Ne-
riah. 1998. Identification of the receptor component of the
IkappaBalpha- ubiquitin ligase. Nature 396: 590–594.

SCFTIR1 is required for auxin response

GENES & DEVELOPMENT 1691


