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Abstract

All living organisms exhibit autonomous daily physiological and behavioural rhythms to help them synchronize with the
environment. Entrainment of circadian rhythm is achieved via activation of cyclic AMP (cAMP) and mitogen-activated
protein kinase signaling pathways. NonO (p54nrb) is a multifunctional protein involved in transcriptional activation of the
cAMP pathway and is involved in circadian rhythm control. Rasd1 is a monomeric G protein implicated to play a pivotal role
in potentiating both photic and nonphotic responses of the circadian rhythm. In this study, we have identified and validated
NonO as an interacting partner of Rasd1 via affinity pulldown, co-immunoprecipitation and indirect immunofluorescence
studies. The GTP-hydrolysis activity of Rasd1 is required for the functional interaction. Functional interaction of Rasd1-NonO
in the cAMP pathway was investigated via reporter gene assays, chromatin immunoprecipitation and gene knockdown. We
showed that Rasd1 and NonO interact at the CRE-site of specific target genes. These findings reveal a novel mechanism by
which the coregulator activity of NonO can be modulated.
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Introduction

The cAMP-dependent pathway is known to respond to

information obtained from numerous extracellular stimuli to

regulate processes including synaptic plasticity, neuronal differen-

tiation, circadian rhythm, memory, and glucose homeostasis

[1,2,3,4,5,6]. Despite the involvement of unique neurotransmitters,

hormones or other signals, and different intracellular signaling

systems, these pathways all converge at the nucleus. Hence,

specificity of the signal and the pathway induced is crucial to

ensure that specific proteins are transcribed to perform precise

functions in a tissue- and/or temporal-specific manner. This

specificity is achieved by the type of signals, how the signals are

detected and relayed to specific signaling proteins responding to the

stimuli, and the subsequent interactions with other proteins, and is

dependent on cell type and contexts. Regulation of the pathway can

occur at any step of the signal transduction process but one of

the more prominent regulations is at the transcriptional level.

Regulation of the pathway at the transcriptional level is achieved by

various mechanisms including inhibition of core transcription factor

activity, sequestration, and competition for limiting factor [7,8,9].

NonO is predominantly localized in the paraspeckles [10], a

sub-compartment of the nucleus, and is a member of the family of

RNA-Recognition Motif (RRM) containing proteins [11]. NonO

is a co-activator of CREB and has been known to serve in both

transcriptional activation and repression [12,13,14,15]. In our

current study, NonO is identified as a binding partner of Rasd1, a

monomeric G protein belonging to the RAS family [16,17].

Traditionally, RAS proteins function as cytoplasmic signal transducers

of diverse intracellular signaling pathways including the cAMP-

dependent pathway [16]. Similar to its other family members,

Rasd1 harbours a CAAX motif at its C-terminal and displays a high

degree of conservation in its G boxes, which are responsible for the

guanine nucleotide binding and hydrolysis activities of RAS

proteins. Mutations in the G boxes have been shown to disrupt

the functions of RAS proteins [16,18,19,20,21,22,23,24]. Rasd1 has

been shown in various studies to be involved as signal transducers of

multiple signaling pathways, including iron homeostasis, growth

hormone secretion and circadian rhythm [20,25,26,27,28,29].

Recently, Rasd1 has also been observed to reside in the nucleus,

serving as a transcriptional repressor of glycogen synthase kinase 3b
[19] as well as an inhibitor of the cAMP-dependent pathway

[20,28,29].

In this study, we identify NonO as a novel binding partner of

Rasd1. This is the first study that shows the novel interaction

of a RRM-possessing protein with a monomeric G protein. In the

nucleus, Rasd1 binds to NonO and regulates the cAMP-dependent

pathway at the transcriptional level. GTP-hydrolysis activity of

Rasd1 is required for repressing CREB activity. We propose a

new mechanism of regulating the cAMP-dependent pathway at the

transcriptional level via modulation of the co-activator’s function.

Binding of Rasd1 to NonO modulates NonO’s functions by

changing NonO from a co-activator to a co-repressor of the cAMP-

dependent pathway. Rasd1 and NonO cooperate to suppress the

transcription of a subset of CRE-containing genes, NR4A 1 & 2.

This finding adds weight to how specificity of signaling pathways is

achieved via the usage of different interacting partners to modulate

the function of a multi-tasking co-regulator [30].
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Results

NonO was identified as a novel interacting partner of
Rasd1 via affinity pull-down assay followed by mass
spectrometry analysis

To facilitate our understanding of Rasd1’s physiological

functions, an in vitro affinity assay was performed to identify novel

interacting partners of Rasd1. COS-7 cells were used to over-

express His-Rasd1 for subsequent interaction studies. The His-

tagged proteins were then purified by Ni-NTA magnetic beads.

This was followed by incubation with cell lysate extracted from

PC-12 cells, which are known to express endogenous Rasd1 [26].

The complexes bound to Rasd1 were eluted and fractionated by

SDS-PAGE. Three distinct bands were observed on the elute lane

of beads bound with His-Rasd1 but not in the elute lane of

negative control (compare Figure 1A, Lanes 1 with 5). These

bands were excised, and mass spectrometry was conducted to

determine the identity of the proteins. The band that was approx-

imately 30 kDa on the gel (Figure 1A, Lane 5) was identified to be

Rasd1. It was logical that the band was present in the elute lane for

cells transfected with pHis-Rasd1 but not in the negative control.

The next two bands at approximately 50 kDa and 55 kDa on

Lane 5 were analysed with mass spectrometry as well. The bands

were identified as Tubb5 and NonO, respectively (Figure 1A,

Lane 5). In the present study, we focused exclusively on

investigating the interaction between NonO and Rasd1.

In vivo interaction study confirms NonO as a novel
binding partner of Rasd1

To validate the interaction between Rasd1 and NonO, an in vivo

interaction study was conducted by co-transfecting COS-7 cells

with plasmids expressing either HA-Rasd1 and GST-NonO or

HA-Rasd1 and GST. GST and GST-tagged proteins were

purified with MagneGSTTM particles. Bound complexes were

eluted and then fractionated on SDS-PAGE, followed by western

blot. GST-NonO was observed to co-precipitate HA-Rasd1

specifically (Figure 1B, Lane 2). A similar observation was

observed when cells were co-transfected with pGST-Rasd1 and

pNonO-V5. In this case, GST-Rasd1 was purified using GSH-

linked beads, and NonO-V5 was co-precipitated along with GST-

Rasd1 (Figure 1C, Lane 2). Previous studies have shown that

Rasd1 and NonO are expressed in HEK293T cells [13,26]; hence

co-IP was carried out using HEK293T cell lysates. An antibody

against NONO was used to precipitate endogenous NONO,

and RASD1 was observed to be co-precipitated with NONO

(Figure 1D, Lane 2). In addition, co-IP using mouse brain lysate

was also performed. Rasd1 was purified by anti-Rasd1 and NonO

was observed to co-purify specifically with Rasd1 (Figure 1E, Lane

2). The results obtained from co-precipitation and co-IP assays

show that interaction of Rasd1 and NonO is specific and

conserved across species (mouse and human).

Rasd1 interacts with NonO to suppress CREB-mediated
transcription

Rasd1 protein has been shown to play multiple roles in the

regulation of the cAMP pathway, including heterologous sensitisa-

tion of adenylyl cyclase 1 via Gbc, attenuation of cAMP-stimulated

hGH secretion, and inhibition of adenylyl cyclase through Gia in the

HEK293T cell line [20,28,29]. Similar involvement was shown for

NonO in the cAMP pathway. NonO interacts with TORC2

(transducer of regulated CREB-binding proteins 2) and functions as

a co-activator to upregulate transcription of NR4A2 and FOS upon

activation of the cAMP-dependent pathway; it has also been shown

to be involved in regulation of CYP179s transcription via this

pathway [13,14]. In this paper, we employed the PathDetect CREB

trans-Reporting System to investigate the effects of Rasd1 and

NonO on CREB-mediated gene transcription in HEK293T cells.

Cells were transfected with pHis-Rasd1 along with luciferase

reporter gene driven by CREB-responsive promoter and CREB-

expressing vector. Prior to harvest, cells were induced with forskolin

for 4 hours to study the effect of Rasd1 on the cAMP pathway. We

observed that Rasd1 repressed the CREB-mediated transcription in

a dose-dependent manner (compare Figure 2A, bars I with II–IV),

supporting the findings reported in the previous study [19]. We

transfected plasmid-expressing NonO in HEK293T cells to observe

the effect of NonO on CREB’s activity via reporter gene assay.

Transfection of NonO in the cells only led to a mild activation of the

CREB-luciferase reported activity (compare Figure 2B, bars I

with V).

When plasmids expressing NonO and Rasd1 were co-

transfected in HEK293T cells to study the effect of these proteins

on the pathway, the CREB-luciferase reporter activity was

reduced by 80% (compare Figure 2B, bars I and VIII). The up-

regulation effect of NonO on the pathway was also abolished in

the presence of Rasd1 (compare Figure 2B, bars V with VIII). In

addition, the repressive effect of Rasd1 on the pathway was

enhanced in the presence of NonO (compare Figure 2A, bar IV

with Figure 2B, bar VIII). These results suggest that Rasd1 acts as

a regulator of NonO to modulate its function in transcription.

Rasd1 and NonO co-localise in the nucleus
Co-localisation studies were performed by co-transfection of

Rasd1- and NonO- expressing plasmids to study if Rasd1 and

NonO influence each other’s sub-cellular localisation. Consistent

with previous reports, we observed that in cells transfected with

pNonO-V5, NonO mainly resides in the nucleus (Figure 3, A2)

[12,13,14,15,31,32,33]. In addition, the localization of NonO was

not affected by the presence of Rasd1 (Figures 3, A2 & A9). On the

other hand, Rasd1 was distributed throughout the cells transfected

with pHis-Rasd1 (Figure 3, A5), which is consistent with previous

reports [19,34]. In the event of co-transfection of pGST-NonO

and pHis-Rasd1, a substantial increase in the nuclear localisation

of Rasd1 was observed when compared with transfection with

Rasd1 expression vector alone (compare Figures 3, A5 and A8).

The finding suggests that nuclear presence of Rasd1 is enhanced

by NonO.

GTP hydrolysis activity of Rasd1 is required for repression
of CREB-mediated transcription

As a member of the monomeric G protein family, Rasd1

possesses GTP binding and hydrolysis activity. RAS proteins are

activated when GTP-bound and inactivated when GDP-bound. In

order to obtain a better understanding of the mechanism by which

the cooperation of Rasd1 with NonO mediates a suppressive

effect, three Rasd1 mutants with point mutations of the conserved

residues at the G boxes of RAS proteins were constructed.

The mutants consist of two constitutively active mutants of Rasd1

– A178V and G81A – and an inactive mutant, T38N. Simi-

lar Rasd1 mutants have been constructed, including H-Ras

(H-Ras[A146V] and H-Ras[G60A]), and Rab11 (Rab11[S25N]

and Rab11[Q70L]) [21,22,34,35]. The A178V mutation is

expected to interrupt the guanyl nucleotide-binding pocket,

resulting in an enhanced exchange rate of guanine nucleotides

[20,35]. Since, guanyl nucleotide exchange is the rate limiting step

in the activation of G proteins, and the intracellular levels of GTP

is higher than GDP, an increase in the nucleotide exchange rate is

supposed to lead to an increased occupancy in the active
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GTP-bound state. Hence, the mutants bind a higher proportion of

GTP to GDP in vivo and behave functionally as constitutively

active signal transducers [20,35]. However, the mutant has an

overall lower activity than the wild type. G81A, another con-

stitutively active mutant of Rasd1, carries a point mutation in the

G3 box guanine residue. This mutation in H-Ras has been shown

to interfere with its interaction with GTPase-activating proteins

(GAPs), thus leading to a protein that is consistently bound to GTP

[21]. In the T38N mutant, the key residue in the G2 box is

switched from threonine to asparagine. This mutation is known to

severely reduce the binding affinity of Rab11 to GTP, leaving the

GDP-binding properties unchanged [22]. Therefore, the mutation

results in an inactive Rasd1 that is constantly bound to GDP. In a

previous study [19], it was suggested that a putative nuclear

translocation signal (NLS) on the C-terminal of Rasd1 permitted

its nuclear translocation. Hence, we constructed a Rasd1 mutant,

Del-NLS, in which the putative nuclear localisation signal was

deleted, to further understand how increased nuclear presence of

Rasd1 occurs in the company of NonO.

We observed from our immunofluorescence study that,

although all mutants (Figure 3A, 12, 19, 26 and 33) displayed

similar sub-cellular distribution as wild-type Rasd1 (Figure 3A, 5),

none of them displayed an increase in nuclear distribution upon

co-transfection with pGST-NonO (Figures 3A: 15, 22, 29, and 36).

Interestingly, NonO was observed in the cytoplasm upon co-

transfection with T38N (Figure 3A, 30), unlike all other co-

transfections where the sub-cellular location of NonO was

observed primarily in the nucleus (Figures 3A, 9, 16, 23, and 37).

Next, we compared the ability of wild-type and mutant Rasd1

to suppress CREB-mediated transcriptional activity in HEK293T

cells overexpressing NonO. We observed that none of the Rasd1

mutants were able to effectively suppress CREB-mediated tran-

scriptional activity when compared to the wild-type Rasd1

(compare Figure 3B, bars III with IV–VII). Interaction studies

were subsequently performed, and the results show that mutants

G81A and Del-NLS were unable to interact with NonO (Figure 3C,

lanes 4 and 6); however, A178V and T38N were still able to interact

with NonO (Figure 3C, lanes 3 and 5), and a substantial amount of

NonO was present in the cytoplasm (Figure 3C, 38) in the presence

of T38N. Taken together our findings suggest that interaction

between NonO and wild-type Rasd1 is required for the suppression

of CREB-mediated transcription.

Rasd1 cooperates with full-length NonO to repress CREB
activity

To map the interaction domain between Rasd1 and NonO, a

series of truncated NonO were constructed to determine the site at

which Rasd1 binds (Figure 4A). HEK293T cells were co-

transfected with pGST-Rasd1 and various plasmids containing

truncated NonO. GST-pulldown was performed using cell lysate

prepared from HEK293T cells transfected with the respective

plasmids. All truncated constructs except NonOD2 were able to

interact with Rasd1 (Figure 4B). Unlike other constructs which

possessed at least one RRM domain, there was no RRM domain

present in NonOD2. The results suggest that one RRM domain is

sufficient for interaction with Rasd1. Next, pGST-Rasd1 was co-

transfected with either NonOD1- or NonOD2-expressing plas-

mids to determine if the RRM domains (NonOD1) are adequate

for cooperation with Rasd1 to repress CREB’s activity. We

observed that, unlike wild-type NonO, neither truncated clones

were able to repress CREB’s activity in the presence of Rasd1

(compare Figure 4C, bars II with III and IV). This implies that

both the RRMs and the DNA-binding region of NonO were

required for functional interaction between Rasd1 and NonO.

Next, we investigated if the RRM domains of NonO are

responsible for the increased nuclear distribution of Rasd1 in the

presence of NonO via immunofluorescence studies. The NonOD1

construct lacking the nuclear localisation motif was unable to

translocate into the nucleus (Figure 4D2). In the event of co-

transfection of NonOD1 with Rasd1, Rasd1 was present only in

the cytoplasm, which is different in comparison to co-transfection

of NonO with Rasd1 (compare Figure 3C2 with Figure 4D5). The

results suggest that NonO may play a role in retaining Rasd1 in

the nucleus and that the nuclear presence of both NonO and

Rasd1 is required for down-regulating CREB-mediated transcrip-

tional activity (Figure 4C, bar III).

NR4A1 and NR4A2 are target genes regulated by both
Rasd1 and NonO in the cAMP pathway

Expression of both Rasd1 and NonO leads to the repression of

CREB-mediated transcriptional activity (Figure 2B, bar VIII). To

identify endogenous genes regulated by the combined actions of

both Rasd1 and NonO, plasmids expressing Rasd1 and NonO

were co-transfected into HEK293T cells. This was followed by

quantitative Real time PCR to study the transcriptional activity of

endogenous genes regulated by the cAMP pathway.

Several endogenous genes known to have a functional CRE site

were studied. This includes PER1 (Period1), CYP17, NR4A1,

NR4A2, NR4A3, FOS, and Prolyl-4-hydroxylase a 1 (Prolyl a).

However, out of all the genes studied in HEK293 cells, only the

transcript levels of NR4A1, NR4A2 and FOS were consistently

induced by forskolin (Figure S1). It has previously been shown that

not all genes that contain CRE elements (such as PEPCK, BDNF,

and insulin) are regulated by CREB in PC-12 cells [36]. Hence, our

Figure 1. NonO is identified as a novel interacting partner of Rasd1 via affinity pull-down assay. (A) Coomassie blue stained SDS-PAGE
gel of affinity pulldown assay. Ni-NTA magnetic beads were incubated either with lysate from pHis-Rasd1 transfected COS-7 cells or with lysate of
empty vector transfected cells. Next, washes were conducted to remove non-specific binding proteins. His-Rasd1 bound to the magnetic beads was
then incubated with PC-12 lysate. The beads were boiled to separate the protein complexes for fractionation on SDS-PAGE (12%). The 55 kDa, 50 kDa
and 30 kDa bands were observed in the elute lane of His-Rasd1 (Lane 5) but not in the elute lane of the negative control (Lane 1). Protein bands were
excised for further analysis using mass spectrometry. The proteins identified were NonO, Tubulin beta 5 and Rasd1, respectively. E, elute; W, wash;
and I, input. (B) Co-precipitation assay was performed to study in vivo interaction between Rasd1 and NonO. COS-7 cells were co-transfected with
plasmids expressing HA-Rasd1 and either GST-NonO or GST. The lysates were then incubated with GSH-linked magnetic beads to precipitate GST-
tagged proteins. HA-Rasd1 was observed to co-precipitate specifically with GST-NonO but not GST (compare Lanes 1 with 2). (C) A similar interaction
assay was performed for NonO-V5 and GST-Rasd1 proteins. In this experiment, COS-7 cells were co-transfected with pNonO-V5 and either pGST-
Rasd1 or pXJGST. GSH-linked magnetic beads were added to the cell lysates to pull-down GST-tagged proteins. NonO-V5 was observed to be co-
precipitated with GST-Rasd1 but not with GST (compare Lanes 1 with 2). (D) To study the in vivo interaction of endogenous Rasd1 and NonO, co-IP
was performed on HEK293T cell lysates incubated with either rabbit anti-NonO or rabbit control IgG. Detection of the blot with anti-Rasd1 showed
that RASD1 was co-IP specifically by NONO (Lane 2). (E) A similar Co-IP was conducted using mouse brain lysate incubated with either anti-Rasd1 or
goat control IgG. NonO was only co-precipitated by lysate incubated with anti-Rasd1 (Lane 2). NonO-V5 is detected with anti-V5 (Invitrogen, USA, CA);
GST-tagged proteins are detected with anti-GST (Santa Cruz, USA, CA); HA-Rasd1 is detected with anti-Xpress (Invitrogen, USA, CA); endogenous
NonO is detected with goat anti-NONO; and endogenous Rasd1 is detected with goat anti-Rasd1.
doi:10.1371/journal.pone.0024401.g001
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results support the finding that CREB regulates only a certain

cohort of CRE-containing promoters in different cell lines,

perhaps due to a difference in the expression of co-regulators.

Therefore, in subsequent studies conducted with HEK293T cells,

we focus on the effect of NonO and Rasd1 on the transcription of

the endogenous NR4A1, NR4A2 and FOS.

We observed that induction of NR4A1 and NR4A2 gene

expression by forskolin was abolished upon co-transfection of

pNonO-V5 and pGST-Rasd1 (compare Figure 5A, bars II and

IV, for the respective genes). However, the induction of FOS gene

expression by forskolin was not affected by the presence of NonO

and Rasd1 (compare Figure 5A, bars IV of FOS, NR4A1 and

NR4A2). These results suggest that Rasd1 and NonO regulate a

subset of the CREB target genes in HEK293T cells. The

expression of negative control YWHAH was not affected by Rasd1

and NonO and/or forskolin (Figure 5A, bars I–IV).

To determine if Rasd1 is able to regulate transcription of CREB

target genes on its own, we performed experiments to knockdown

endogenous NONO in HEK293T cells. NONO-knockdown was able

to reduce the transcriptional activity of CREB target genes to levels

comparable to that observed in uninduced HEK293 cells (compare

Figure 5B, bars I with III of each gene). Transcription levels of these

genes were restored to levels similar to that in cells induced with

forskolin alone when NONO-knockdown cells were transfected with

NonO-expressing plasmid (compare Figure 5B, bars III with IV of

each gene), suggesting that NonO has a direct effect on the

regulation of genes containing the CRE-responsive element. pGST-

Rasd1 was transfected in NONO-knockdown HEK293T cells, and

the presence of Rasd1 had no effect on the transcript levels of the

CREB target genes (compare Figure 5B, bars III with V). These

results suggest that Rasd1 requires NonO to regulate the

transcription of CREB target genes. Next, we investigated the

influence of over-expression of Rasd1 and NonO on the

transcriptional regulation of NR4A1, FOS and NR4A2 in NONO-

knockdown cells. A similar trend to the results in Figure 5A, bar IV,

was observed upon co-transfection of Rasd1- and NonO-expressing

plasmids in NONO-knockdown cells (Figure 5B, bar VI of NR4A1

and NR4A2). Expression levels of FOS remained unaffected by the

presence of Rasd1 (compare Figure 5B, bars VI of FOS with NR4A1

and NR4A2). Hence, Rasd1 and NonO cooperate to regulate a

subset of CREB target genes including NR4A1 and NR4A2.

Physical presence of Rasd1 and NonO at the CRE-site of
NR4A2 promoter is required for repression of NR4A2
transcription

ChIP was carried out using forskolin-induced HEK293T lysates

transfected with pGST-Rasd1. Anti-NONO was incubated with

the lysates, and PCR was performed on the chromatin co-

immunoprecipitated along with NONO. Compared to cells

transfected with pGST (negative control), there was an increase

in the amount of NONO bound to the CRE-site of the NR4A2

promoter only in cell lysates transfected with pGST-Rasd1

(compare Figure 5C, Lanes 2 and 3). A similar experiment was

conducted on HEK293T cells transfected with either pHis-Rasd1

or pHis-Del-NLS (mutant that does not interact with NonO to

serve as negative control) to determine if increased binding of

NONO to the NR4A2 promoter could be due to the presence of

Rasd1 at the target promoter. Neither Rasd1 nor the mutant, Del-

NLS, was observed to be at the CRE-site of the FOS promoter

(Figure 5D, Lanes 5 and 6). This seemed reasonable, as Rasd1 was

unable to work with NonO to suppress the transcription of FOS. In

the case of the NR4A2 promoter, only Rasd1 was able to co-

immunoprecipitate the NR4A2 promoter (Figure 5D, Lane 2). The

results suggest that binding of Rasd1and NonO to the CRE-site

of the NR4A2 promoter is required for the repression of its

transcription.

Discussion

In this study, we have identified NonO as a novel binding

partner of Rasd1 via in vitro affinity-based assay, and this

interaction is validated using pulldown and co-immunoprecipita-

tion assays. We then studied the roles of Rasd1 and NonO in the

cAMP pathway. Our findings show that co-localisation of Rasd1

and NonO in the nucleus is associated with the repression of a

subset of CREB target genes. This process involves the GTP

hydrolysis activity of Rasd1 and requires interaction of Rasd1 with

full-length NonO at the CRE-site of the target promoter. We

propose that Rasd1 modulates the function of NonO to down-

regulate CREB target genes, NR4A1 and NR4A2.

Our results show that deletion of the putative bipartite nuclear

localisation sequence located at the C-terminal portion of Rasd1

does not deter Rasd1 from entering the nucleus, implying that

Rasd1 enters the nucleus by other means. Small molecular weight

proteins of less than 60 kDa or 9 nm in diameter are able to enter

the nucleus via the nuclear pore complex by passive diffusion [37],

which is one possible mechanism employed by Rasd1, whose

molecular weight is 32 kDa, to enter the nucleus. NonO contains a

bipartite nuclear localisation signal, and Rasd1 may bind to NonO

to facilitate its entry into the nucleus. Our results indicated that the

lack of NonO’s NLS prevented accumulation of Rasd1 in the

nucleus, which suggests that NonO may play a role in retaining

Rasd1 in the nucleus. In addition, studies using Rasd1 mutants

show that GDP-bound Rasd1 resulted in cytoplasmic localisation

of NonO. This implies that nuclear retention of Rasd1 by NonO is

Figure 2. Effects of Rasd1 and NonO in the cAMP-signaling pathway in HEK293T cells were studied using reporter gene assay. (A)
NonO- (2 mg) and Rasd1- (or Rasd1 mutants) (2 mg) expressing plasmids were co-transfected in HEK293T cells. Immunofluorescence was performed 2
days after transfection. Cells were transfected with different amounts of His-Rasd1-expressing vector (0, 0.5, 1 and 2 mg) along with reporter vector
and CREB-expression vector. Two days later, cells were induced with forskolin (20 mM) for 4 hours before harvest. Luciferase assays were
subsequently performed on the cell lysates. The results show that luciferase expression was reduced by 40% upon transfection of pHis-Rasd1
(compare bars I and IV). The suppression of luciferase expression by Rasd1 is dosage-dependent, as increasing amounts of pHis-Rasd1 resulted in
further down-regulation of luciferase expression (compare bars II and III; and bars III and IV). (B) Parallel experiments were conducted by transfecting
different amounts of pNonO-V5 (0, 0.1, 0.2, 1 and 2 mg) into HEK293T cells. The presence of NonO in HEK293T cells results in a slight up-regulation of
luciferase expression of up to 130% (compare bars I and V), and this up-regulation is dosage-dependent (Compare bars II and IV; bars II and V). Next,
pNonO-V5 and pHis-Rasd1 were co-transfected in HEK293T cells to determine if the proteins cooperate to influence CREB’s transactivation functions.
Different amounts of pHis-Rasd1 (0, 0.5, 1 and 2 mg) were co-transfected with pNonO-V5 (2 mg), and cells were treated with forskolin before harvest.
We observed that luciferase expression was reduced by 80% in the presence of both NonO and Rasd1 (compare bars I and VIII). The activation effect
observed when NonO was transfected alone was abolished upon co-transfection of NonO with Rasd1 in the cells (compare bars V with VIII). The
suppressive effect on luciferase expression was further enhanced in the presence of NonO and Rasd1 as compared to that of transfection of Rasd1
alone (compare (A) bar IV and (B) bar VIII). Representative Western blots were included to show the protein expressions of Rasd1 and NonO. Actin was
included as a loading control. Rasd1 is detected with anti-Xpress; NonO is detected with anti-V5; and actin is detected with anti-actin.
doi:10.1371/journal.pone.0024401.g002
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Figure 3. GTP hydrolysis activity of Rasd1 is required to cooperate with NonO to suppress CREB’s activity. (A) NonO localises primarily
in the nucleus of HEK293T cells transiently transfected with pNonO-V5 (2 mg) (Figure A2). Rasd1 is distributed throughout the cell in the event of
individual transfection of pHis-Rasd1 (2 mg) (Figure A5). A considerable increase in the amount of Rasd1 was observed to be present in the nucleus
upon the event of co-transfection with pGST-NonO (compare Figures A5 with A8). The sub-cellular location of NonO was unaffected in cells co-
transfected with pHis-Rasd1 (compare Figures A2 with A9). Rasd1 mutants, A178V, G81A, T38N and Del-NLS, display similar cellular distribution to
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energy dependent and requires GTP-bound Rasd1. Further

studies will be required to decipher the exact mechanism

employed by NonO to enable the enhanced nuclear presence of

Rasd1. Recently, Chuderland et al. identified a novel nuclear

localisation sequence termed the NTS (nuclear translocation

sequence), composed of phosphorylated S/T-P-S/T, that enables

nuclear translocation of the protein via binding to importin 7

[38,39]. This mode of nuclear translocation is used by proteins of

different signaling pathways, including the ERK (extracellular

signal-regulated kinase) pathway, and was initially discovered on

ERK-2 [38,39]. This mode of nuclear entry enables rapid

response to signaling and also adequately explains the increase

in the amount of Rasd1 found in the nucleus in the presence of

NonO. Interestingly, a ‘TPT’ amino acid sequence is found in

Rasd1; this sequence is evolutionarily conserved, and is also

present in Rasd2, a paralog of Rasd1. Further studies are required

to determine if nuclear translocation of Rasd1 requires its ‘TPT’

sequence.

In our study, we observed that NonO only upregulates CREB-

GAL4DBD fusion protein activity slightly via reporter gene assay.

This observation contradicts a previous study, which suggests that

NonO works as a strong co-activator of the cAMP-dependent

pathway via interaction with TORC2, tranducers of the regulated

CREB [13]. In our reporter gene system, the CREB-GAL4DBD

fusion construct used in the assay lacks the bZIP domain. It has

been shown that TORC2 interacts with CREB via the bZIP

domain [40]. Hence, deletion of the bZIP domain in the CREB-

GAL4DBD construct prevents interaction between CREB and

TORC2 [8]. This may serve to explain the minor induction of the

luciferase activity upon transfection of NonO in HEK293T cells.

Many transcription factors, RNA-binding proteins and tran-

scriptional co-regulators are known to be bi- or multi-functional

proteins. Some bi-functional proteins, including CoAA, PGC-1,

CAPERa and CAPERb, and steroid receptors, are shown to be

involved in transcription co-activation and alternative splicing

[15,41,42,43]. Multi-functional proteins like NONO and PSF

(polypyrimidine tract-binding protein-associated splicing factor)

perform RNA processing functions, transcriptional activation and

repression, and RNA transport [12,13,14,15,31,32,33,44,45]. In

addition, NONO is also involved in circadian rhythm as an

antagonist of Per1 [46]. Multiple lines of evidence indicate that

NonO is a multi-tasking protein with bimodal function in

transcription [12,13,14,15,31,32,33,46]. NonO is known to serve

as a co-activator by interacting with TORC2 to up-regulate target

genes of the cAMP-dependent pathway [13]. However, NonO is

also known to repress transcription by recruiting histone

deacetylase (HDAC) to the target promoter by itself or via

interaction with PSF [12,15]. In addition, NonO is known to

interact directly with histone to suppress transcription of prolyl-4-

hydroxylase a1 upon induction of cells with TNFa [15].

Moreover, NonO has been shown to serve as both co-activator

and repressor of androgen receptor-regulated gene transcription

depending on the other proteins associated with the transcriptional

initiation complex [44,45]. Interestingly, another interacting

partner of NonO, DJ-1, has been shown to switch NonO from a

co-repressor to a co-activator for neuroprotection functions [47].

In this study, we show that binding of Rasd1 to NonO signals

NonO to switch from a co-activator to co-repressor mode to

suppress transcription of a subset of the CREB target genes. Our

case is similar to NonO’s regulation of the androgen receptor

where NonO can either activate or repress transcription of the

androgen receptor depending on the proteins associated with it

[44,45]. Since Rasd1 is known to serve as a transcriptional co-

repressor of FE-65 [19], and as an antagonist to the function of

transcription factor, Ear-2, in the repression of Renin’s transcrip-

tion [34]; it is conceivable that Rasd1 might enable NonO to serve

as a transcriptional co-repressor of the CREB signaling pathway.

We observed that co-transfection of pNonO-V5 and pGST-Rasd1

resulted in a substantial increase in the nuclear localisation of

Rasd1. This finding resembles that of Lau et al [19], where co-

transfection of Rasd1 and FE-65 results in an increased nuclear

distribution of Rasd1, and suggests that nuclear translocation of

Rasd1 is required for suppression of target-gene transcription. In

addition, we observed that Rasd1 and NonO co-suppress the

transcription of a subset of CREB target genes. It is intriguing that,

unlike NR4A1 and NR4A2 transcripts, FOS transcription was

unaffected by Rasd1 and NonO. The discrepancy observed might

be attributed to the differences in the mechanisms involved in the

transcriptional regulation of NR4A and FOS. Transcriptional

regulation of FOS takes place at both transcriptional initiation and

elongation processes, which allows an additional level of control of

the FOS gene [48,49,50]. Currently, NR4A proteins are only

known to be regulated by transcription factors at the transcription

initiation stage [13,51,52]. Our study also suggests that Rasd1 and

NonO bind the CRE-site of the NR4A2 promoter to repress its

transcription and that the mechanism employed by Rasd1 and

NonO in the repression of transcription of NR4A genes involves

the regulation of proteins required for the transcription initiation

step. Further studies will need to be performed to explore the

mechanism involved.

Many signal transduction pathways converge in the nucleus

through modulating CREB, whose phosphorylation pattern

influences binding of its co-activators, including CBP/p300 in

the presence or absence of TORC2 [7,8]. Phosphorylation of

CREB by PKA and other kinases of the cAMP signaling pathway

activates CREB to recruit co-activators, other transcription

factors, and general transcription factors to the target promoter,

resulting in the transactivation of target genes [13]. It remains

unclear how CREB is able to converge diverse signals and elicit

differential effects on target gene expression. In the case of the

cAMP-dependent pathway, the co-regulators that interact with

CREB may play an important role for the cell to have a specific

response in different contexts [30]. There are a plethora of CREB

co-regulators, and their activities are known to be regulated by

Rasd1 in the event of single transfection (Figures A 5, 12, 19, 26, and 33). However, co-transfection of plasmids expressing Rasd1 mutants and NonO
did not affect the mutants’ sub-cellular distribution, unlike that of wild-type Rasd1 (compare Figures A5 with A 15, 22, 29, and 36). Likewise, the sub-
cellular distribution of NonO was also unaffected by the presence of Rasd1 mutants, A178V, G81A and Del-NLS (compare Figures A2 with A 16, 23,
and 37). Interestingly, NonO was translocated to the cytoplasm in the presence of T38N (compare Figures A2 with A30). (B) Effects of Rasd1 mutants
on the CREB pathway in the presence of NonO were studied in HEK293T cells. Cells were co-transfected with pNonO-V5 and either Rasd1 or Rasd1
mutants, and luciferase assays were performed after lysis of cells. Cells were induced with forskolin for 4 hours prior to harvesting. The CREB-
mediated transcription was repressed in cells co-transfected with pNonO-V5 (2 mg) and pHis-Rasd1 (2 mg) (Compare Bars II with III). However, the
repressive effect on CREB is abolished in cells transfected with Rasd1 mutants expressing plasmids compared with cells transfected with pHis-Rasd1
(Compare Bars III with IV–VII). ‘*’ – p,0.05; ‘**’ – p,0.01; ‘***’ – p,0.001. (C) Interaction studies of NonO and Rasd1 mutants were studied via co-
transfection of pNonO-V5 and pGST-Rasd1 mutant clones in COS-7 cells. GST-pulldown was subsequently performed and similar to wild-type, only
constructs T38N and A178V were able to interact with NonO (Lanes 2, 3 and 5).
doi:10.1371/journal.pone.0024401.g003
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different mechanisms. These include sequestration of the co-

activator, TORC, that is normally anchored in the cytoplasm by

14-3-3 proteins in the absence of stimulation of the pathway [7,8];

and competition for limiting factor such as CBP, which is a co-

activator required for multiple signaling pathways [9]. In this

study, our findings lend credence to a new mode of regulation of

co-activators of the cAMP pathway – modulation of co-activator

function. We define modulation in the context whereby the

identity of an interacting partner of the co-activator determines the

role of the co-activator in regulation of the target gene upon

induction of the cAMP pathway.

NR4A1 and NR4A2 are clock-controlled genes oscillating in

multiple tissues [53,54] and are CREB-target genes whose

expressions are up-regulated upon activation of the cAMP

pathway [13]. The nuclear orphan receptors 4A (NR4A) subgroup

belongs to the nuclear hormone receptor family and consists of

transcription factors capable of recognising the NGFI-B response

element (NBRE) [55,56,57,58]. NR4A proteins can bind to DNA

as monomers, homodimers and heterodimers [59,60]. Transcrip-

tion factor NR4A2 is an immediate early gene induced by many

external stimuli, including retinoic acid, forskolin, prostaglandin

E2, and dexamethasone [51,56,61,62]. NR4A proteins play

important roles in metabolism and in the pathogenesis of various

diseases including colorectal cancer, Alzheimer’s disease, familial

Parkinson’s disease, schizophrenia, inflammatory arthritis, and

manic depression [51,56,61,63,64,65,66]. In addition, NR4A

proteins also play a crucial part in CREB-dependent neuro-

protection, cell survival and cell transformation of HeLa cells

[52,63,67,68]. Expression of NR4A proteins is up-regulated by the

cAMP pathway for initiation of the survival of HeLa cancer cells

[68]. NR4A proteins are activated via the cAMP pathway through

PGE2 in human colorectal cancer cells [51]. HeLa cells with

reduced levels of NR4A proteins displayed a higher tendency for

cell death through anoikis [68].

Circadian rhythm is an endogenous 24-hour cycle consisting of

an input pathway, master clock, and an output pathway; the

underlying mechanism of rhythmistic control is conserved across

species [69]. The clock regulates biological processes in a temporal

manner by synchronising peripheral oscillators possibly through

glucocorticoids, enabling the adaptation and synchronisation of

hormones, sleep-wake cycles, and daily activities with changing

environmental cues [69,70,71]. Recent findings have linked nutrient

and energy metabolism to circadian rhythm [54,72]. Genes

involved in metabolism such as NR4A family are known to oscillate

in liver and muscle [54]. The circadian rhythm can be modulated

by external signals (light, food, temperature), and these signals are

conveyed through the MAPK and cAMP-signaling pathways

[70,73]. Interestingly, central and peripheral oscillators are sensitive

to entrainment by light (photic) and food (non-photic), respectively

[73,74,75]. The phase-resetting signals provided through food on

peripheral clocks are inhibited by glucocorticoids [76].

Interestingly, expression of NR4A2 and Rasd1 are known to be

repressed and upregulated by glucocorticoids, respectively [17,61].

Evidence provided by Rasd1 knockout mice show that Rasd1 may

be involved in the input pathway of the circadian rhythm by

enhancing photic response and reducing the stimulus provided

from non-photic inputs [77]. This suggests that Rasd1 might

function as the bridging molecule for glucocorticoids to inhibit the

phase-resetting pulses by food on peripheral clocks. Rasd1 may

then work with NonO to repress genes involved in metabolism

activated via the cAMP pathway, which results in selective

repression of a subset of target genes. Hence, modulation of

NR4A1 and NR4A2 expression by Rasd1 and NonO could have a

major impact on the circadian control, and disruption of this

process can give rise to metabolic diseases and cancer development

[78,79,80,81].

Materials and Methods

Plasmid constructs
For information on all primer sequences used for cloning, please

refer to Table S1. Coding sequence of mouse Rasd1 (843 bp) was

amplified from mouse brain cDNA library PACT2 and cloned in

frame via restriction sites KpnI and XhoI into expression vectors –

pcDNA4/HisMax�B (V864-20, Invitrogen, USA, CA), and

pXJGST vector modified from parent plasmid pXJ FLAG [82]

by replacing the FLAG coding sequence with the GST coding

sequence – and designated as pHis-Rasd1 and pGST-Rasd1,

respectively. pHA-Rasd1 was constructed by insertion of a HA-tag

at the 39 end of the coding sequence of Rasd1and cloned into

pcDNA4/HisMax�B via KpnI and XhoI. Mouse clone of NonO (1.4

kb) and its truncated constructs were amplified from MGC-6432

(ATCC, USA, VA), and cloned in frame via restriction sites KpnI

and XhoI into pcDNA3.1/V5-His B (V810-20, Invitrogen, USA,

CA) and pXJGST vectors. PCR-based, site-directed mutagenesis

was used to construct all other mutants of NonO and Rasd1,

which were cloned into pcDNA3.1/V5-His B, pXJGST and

pcDNA4/HisMax�B vectors. For NONO knockdown studies,

NONO-shRNA was constructed by cloning of the oligonucleotide

that targets mRNA of NONO into pSUPER.puro (VEC-PBS-

0007/0008, OligoEngine, USA, WA) vector. The negative

control, Neg-shRNA, was constructed by jumbling up the

sequence of the oligonucleotide that was used for cloning of

NONO-shRNA. Annealed oligonucleotides were cloned in pSU-

PER.puro via BglII and HindIII sites. BLAST was performed to

ensure specificity of NONO-shRNA, and that Neg-shRNA did not

target any non-specific sequences. The annealing process was

performed in the annealing buffer (100mM NaCl and 50mM

Hepes, pH 7.4) in BioRad PCR machine: 90uC for 4min, 70uC for

10min, and ramped to 37uC over a period of 45min, kept constant

at 37uC for 15min, and ramped to 10uC over a period of 45min.

Cell culture and transient transfection
HEK293T (ATCC CRL-11268), PC-12 (ATCC CRL-1721),

and COS-7 (ATCC CRL-1651) cells were cultured as previously

described [26,83]. All transfections were performed the next day

Figure 4. Rasd1 requires full-length NonO to suppress the cAMP pathway in HEK293T cells. (A) Schematic drawing of the locations of
specific domains of NonO protein and its truncated constructs. Q, glutamine-rich region; RRM, RNA-recognition motif; HTH, helix-turn-helix and
highly-charged region; P, proline-rich region. Bipartite NLS is located within HTH. (B) HEK293T cells were transfected with pGST-Rasd1 along with
various constructs of NonO-V5. Lysates were then incubated with MagneGSTTM particles, which enable binding of GST-Rasd1. Only NonOD2-V5 did
not interact with GST-Rasd1 (Lane 4). Anti-V5 and Anti-Xpress were used for detection of LacZ and all truncated clones of NonO; anti-GST was used
for detection of GST-Rasd1. (C) Rasd1 (2 mg) was co-transfected with either NonO or NonO mutants (2 mg) and luciferase assay was performed
subsequently. Neither mutant was able to repress CREB’s activity in the presence of Rasd1 unlike that of wild-type NonO (compare Histograms II with
III and IV). (D) Immunofluorescence studies of NonOD1 and Rasd1 in HEK293T cells. GST-NonOD1 is primarily localised in the cytoplasm (Figure D2). In
the event of co-transfection with GST-NonOD1, His-Rasd1 is localised in the cytoplasm, whereas the sub-cellular distribution of His-Rasd1 was
concentrated in the nucleus in the presence of NonO (compare Figure 3 A8 with Figure 4 D5).
doi:10.1371/journal.pone.0024401.g004
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Figure 5. Rasd1 and NonO interact at the CRE-site of the target promoter to repress the transcription of endogenous cAMP target
genes, NR4A1 and NR4A2, but not FOS. (A) Quantitative real-time study was performed to study the effect of over-expression of Rasd1 and NonO
on endogenous CREB-target genes in HEK293T cells. Induction of the cAMP pathway with forskolin (20 mM for 45 minutes) leads to the up-regulation
of cAMP target genes – NR4A1, NR4A2 and FOS (compare the respective Bars I and II of each gene). Co-transfection of plasmids expressing Rasd1 and
NonO in forskolin-induced HEK293T cells leads to the down-regulation of NR4A1 and NR4A2 transcripts (compare the respective Bars II and IV of each
gene). The expression of FOS transcript was not affected by the presence of Rasd1 (compare Bars II and IV of FOS). Expression of YWHAH transcript
was not affected either by treatment of cells with forskolin or in the presence of Rasd1 and NonO, and was shown as a negative control (Bars I–IV of
YWHAH). b-actin was used as an internal control for normalization. On the right are representative western blots showing expression of transfected
NonO and Rasd1 in HEK293T cells. Actin serves as a loading control. NonO is detected by mouse anti-V5; Rasd1 is detected with mouse anti-GST; and
actin is detected with anti-actin. (B) Quantitative real-time study of the effect of Rasd1 and NonO on endogenous genes of NONO-knockdown
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after seeding of 36105 cells into each well of a 6-well plate unless

stated otherwise. COS-7 cells were transfected using Lipofectami-

neTM 2000 (Invitrogen, USA, CA) according to manufacturer’s

instructions. Calcium phosphate method was employed for

transfection of plasmids into HEK293T cells.

In vitro pulldown assay and mass spectrometry
In vitro affinity pulldown assay using mammalian cell lysates was

conducted to identify novel interacting partners of Rasd1. COS-7

cells seeded on 10cm plates were transfected the next day with His-

Rasd1 (24 mg) or pcDNA4/HisMax�B (24 mg) (negative control)

at 90% confluence. Cells were harvested as previously stated [84].

20 ml of Ni-NTA magnetic agarose beads (Qiagen, USA, CA)

were added to purify His-Rasd1 for 1 hour at 4uC. Beads were

washed according to manufacturer’s instructions. This was fol-

lowed by incubation of His-Rasd1-bound beads with PC-12 lysates

overnight (O/N) at 4uC. After incubation, beads were washed and

bound-proteins were eluted by heating in Laemmli buffer at 95uC
for 10 minutes. Samples were fractionated on 12% SDS-PAGE

acrylamide gel and subsequently stained with Coomassie blue.

Bands of interest were excised by scalpels and cut into 1mm3

cubes. The cubes were then destained with 50% methanol at room

temperature before digestion was carried out with 10 ng/ml

Trypsin (Promega, USA, WI) O/N at 37uC. Subsequently, 50%

ACN/5% Trifluoroacetic acid was used to extract peptides. The

peptides were then dried under vacuum and cleaned with ZipTipH
C18 (Merck Millipore, USA, MA) according to manufacturer’s

instruction. MALDI-TOF/MS was used to elucidate the identity

of the unknown bands. SwissProt database was used for the

analysis of the peptide spectra obtained. The MALDI/TOF-MS

score obtained for NonO was 199.

GST pulldown in vivo interaction studies
COS-7 cells were co-transfected with plasmids expressing

NonO (2 mg) and Rasd1 (2 mg). Cells were harvested as previously

stated [84]. Interaction studies were performed using Mag-

neGSTTM particles (Promega, USA, WI) according to manufac-

turer’s instructions. Bound proteins were eluted by heating in

Laemmli buffer followed by SDS-PAGE and Western blotting.

Co-immunoprecipitation (co-IP) assay
Co-IP of endogenous proteins was performed by scraping one

10 cm plate of HEK293T cells in 1.5 ml of PBS, followed by

centrifugation at 13,000 rpm for 1 minute. The cells were lysed

with NP40 lysis buffer (1% NP40, 150 mM NaCl, 50 mM Tris-Cl,

pH 8.0, 1% deoxycholic acid, 0.1% SDS, protease inhibitor

(Roche, Switzerland, Basel)) and incubated at 4uC for 20 minutes.

The crude lysate was cleared by centrifugation at 13,000 rpm for

20 minutes at 4uC. Experiment was performed with rProtG

agarose beads (Invitrogen, USA, CA) as previously described [84].

The pre-cleared lysates were incubated with rabbit polyclonal anti-

NMT55/p54NRB IgG (Abcam, UK, Cambridge) or rabbit

control IgG (Abcam, UK, Cambridge; negative control). Co-IP

using mouse brain lysates was performed using goat polyclonal

anti-Rasd1 (Abcam, UK, Cambridge) as described elsewhere [84].

NonO was detected using goat anti-NONO (Abcam, UK,

Cambridge) or rabbit anti-NONO (Santa Cruz, USA, CA).

Reporter gene assay
Effects of Rasd1 and NonO in the CREB signaling pathway

were investigated using PathDetect CREB trans-Reporting System

(Stratagene, USA, CA). PathDetect CREB trans-Reporting System

is a GAL4-dependent reporter gene assay. Factors influencing the

phosphorylation of CREB protein (fused to GAL4-DNA-binding

domain) will be monitored effectively by similar changes in the

luciferase activity. HEK293T cells were transfected with pSV-b-Gal

(b-Galactosidase; internal reporter), pFR-Luc (reporter plasmid

with 5xGAL4 binding site and TATA box as minimal promoter),

and pFA2-CREB (CREB (1–280) fused to GAL4-DNA binding

domain (dbd) trans-activator plasmid) plus different combinations of

pHis-Rasd1, and pNonO-V5 as indicated in Figure 2. pcDNA3.1/

V5-His B and pcDNA4/HisMax�B served as negative controls for

pNonO-V5 and pHis-Rasd1, respectively. Cells were induced with

20 mM forskolin (Sigma-Aldrich, USA, MO) for 4 hours before

harvesting. Luciferase assay was performed using Luciferase Assay

System (Promega, USA, WI) according to manufacturer’s protocol.

20/20n Luminometer (Promega, USA, WI) was used to measure

luciferase levels. b-gal levels were measured using b-Gal Enzyme

Assay System (Promega, USA, WI) according to manufacturer’s

protocol. Normalisation of data was performed using luciferase

values of wells transfected with pFC2-dbd (negative control)

construct containing only GAL4-dbd and with no trans-activator

function. All values of empty vectors were set as 1. Statistical

analyses were performed using two-tailed unpaired student’s t-test.

Indirect immunofluorescence
HEK293T and COS-7 cells were transfected as indicated in

Figures 3 and 4, respectively. Experiment was performed as

described previously [19]. Primary antibody incubation was

HEK293T cells. Similar to (A), induction of cells with forskolin leads to the up-regulation of cAMP target genes – NR4A1, NR4A2 and FOS (compare Bars
I with II of each gene). Next, rescue of NONO was performed by transfection of plasmid expressing NonO in NONO-knockdown cells. The transcripts of
NR4A1, NR4A2 and FOS were up-regulated, confirming the involvement of NonO in the regulation of their transcription (compare Bars III with IV of
each gene). In NONO-knockdown cells with over-expression of Rasd1, the transcripts levels of NR4A1, NR4A2 and FOS were comparable to NONO-
knockdown cells (compare bars III and V of each gene). This suggests that Rasd1 requires NONO to repress the transcription of the CREB-target genes.
Repression of target genes, NR4A1 and NR4A2, was observed in NONO-knockdown cells that were co-transfected with Rasd1 and NonO (compare Bars
IV with VI of each gene). The expression of FOS transcript remained unaffected by the presence of Rasd1 (compare Bars IV with VI of FOS), similar to
that in Bar IV of (A). b-actin was used as an internal control for normalization. On the right are representative western blots showing expression of
NonO and Rasd1in HEK293T cells. Actin serves as a loading control. NonO and endogenous NONO are detected by anti-NONO; Rasd1 is detected with
anti-GST; and actin is detected with anti-actin. (C) ChIP was performed using forskolin-treated (20 mM for 15 minutes) HEK293T cell lysates transfected
with either pGST-Rasd1 or pGST (negative control) and incubated with either no antibody control (No AB) or anti-NONO (NONO). Primers targeting
the CRE-site of FOS and NR4A2 promoters were used for subsequent PCR study. The results indicated that in the presence of Rasd1, more NONO was
bound to the NR4A2 promoter (compare Lanes 2 and 3). The amount of NONO bound to the FOS promoter displayed no significant difference with or
without transfection of pGST-Rasd1 (Lanes 5 and 6). I, input; and E, elute. (D) Next ChIP was performed similar to (C) using forskolin-treated HEK293T
cells transfected with His-Rasd1 (Rasd1), empty vector (Vec), or His-Del-NLS (Del-NLS; mutant Rasd1 that does not interact with NonO). The sonicated
lysates were subsequently incubated with Anti-Xpress, and primers targeting the CRE-sites on the FOS and NR4A2 promoters were used for PCR
study. Results indicate that neither Rasd1 nor mutant Rasd1 binds to the FOS promoter (Lanes 5 and 6). On the other hand, Rasd1 but not its mutant,
Del-NLS, specifically binds to the CRE-site of the NR4A2 promoter, suggesting that interaction of Rasd1 and NonO is required to suppress the
transcription of NR4A2 (compare Lanes 2 and 3). I, input; and E, elute.
doi:10.1371/journal.pone.0024401.g005
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performed with mouse anti-V5 or anti-Xpress (1:250; Invitrogen,

USA, CA) and GST-Alexa Fluor 488nm (1:100; Santa Cruz,

USA, CA). After that, samples were incubated with secondary

antibody, goat anti-mouse-Alexa Fluor 568nm (1:200; Sigma-

Aldrich, USA, MO). Cells were subjected to Zeiss LSM510

META confocal microscopy studies.

Reverse transcription and Real time PCR
iScriptTM cDNA synthesis kit (Bio-Rad, USA, CA) was

performed according to manufacturer’s instructions. Quantitative

Real time PCR was carried out using iTaqTM SYBRH Green

Supermix with ROX (Bio-Rad, USA, CA) according to manu-

facturer’s instructions. Primer sequences used for Real time PCR

were listed in Table S2.

Chromatin immunoprecipitation (ChIP)
Confluent HEK293T cells cultured in 10 cm plates were cross-

linked with Formaldehyde (37% stock) for 15min at 37uC. The

reaction was quenched with 1M glycine for 5min at RT. ChIP was

performed using Protein A agarose/Salmon sperm DNA beads

according to manufacturer’s instructions (Merck Millipore, USA,

MA). Appropriate antibody (2 mg) was added to the pre-cleared

lysates and incubated O/N at 4uC on a rotating platform. This

was followed by phenol-chloroform extraction, and subsequent

PCR was conducted using the relevant primers to study target of

interests (refer to Table S2 and Figure 5, C and D).

Supporting Information

Figure S1 Study of gene expression induced by forskolin in

HEK293T cells. Real time PCR was performed as stated in

Figure 5. Only NR4A1, NRR4A2 and FOS transcripts are

upregulated upon treatment with forskolin (Bars VIII, X and

XIV). b-actin was used as an internal control for normalization.

(TIF)

Table S1 Primer sequences used for construction of vectors for

protein expression and knockdown studies.

(TIF)

Table S2 Primer sequences used for Real time PCR and ChIP

experiments.

(TIF)
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hormones inhibit food-induced phase-shifting of peripheral circadian oscillators.
The EMBO Journal 20: 7128–7136.

77. Cheng H-YM, Obrietan K, Cain SW, Lee BY, Agostino PV, et al. (2004)

Dexras1 Potentiates Photic and Suppresses Nonphotic Responses of the
Circadian Clock. Neuron 43: 715–728.

78. Boethel CD (2002) Sleep and the endocrine system: new associations to old
diseases. Current Opinion in Pulmonary Medicine 8: 502.

79. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, et al. (2005) Obesity and

metabolic syndrome in circadian Clock mutant mice. Science 308: 1043.
80. Hansen J (2001) Light at night, shiftwork, and breast cancer risk. Journal of the

National Cancer Institute 93: 1513–1515.
81. Blask DE (2009) Melatonin, sleep disturbance and cancer risk. Sleep Medicine

Reviews 13: 257–264.
82. Xiao JH, Davidson I, Matthes H, Garnier JM, Chambon P (1991) Cloning,

expression, and transcriptional properties of the human enhancer factor TEF-1.

Cell 65: 551–568.
83. Cismowski MJ, Ma C, Ribas C, Xie X, Spruyt M, et al. (2000) Activation of

Heterotrimeric G-protein Signaling by a Ras-related Protein IMPLICATIONS
FOR SIGNAL INTEGRATION. Journal of Biological Chemistry 275:

23421–23424.

84. Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, et al. (2000) Dexras1 AG Protein
Specifically Coupled to Neuronal Nitric Oxide Synthase via CAPON. Neuron

28: 183–193.

Rasd1 Modulates the Coactivator Function of NonO

PLoS ONE | www.plosone.org 14 September 2011 | Volume 6 | Issue 9 | e24401


