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Abstract

Complex sequencing rules observed in birdsongs provide an opportunity to investigate the neural mechanism for
generating complex sequential behaviors. To relate the findings from studying birdsongs to other sequential behaviors such
as human speech and musical performance, it is crucial to characterize the statistical properties of the sequencing rules in
birdsongs. However, the properties of the sequencing rules in birdsongs have not yet been fully addressed. In this study, we
investigate the statistical properties of the complex birdsong of the Bengalese finch (Lonchura striata var. domestica). Based
on manual-annotated syllable labeles, we first show that there are significant higher-order context dependencies in
Bengalese finch songs, that is, which syllable appears next depends on more than one previous syllable. We then analyze
acoustic features of the song and show that higher-order context dependencies can be explained using first-order hidden
state transition dynamics with redundant hidden states. This model corresponds to hidden Markov models (HMMs), well
known statistical models with a large range of application for time series modeling. The song annotation with these models
with first-order hidden state dynamics agreed well with manual annotation, the score was comparable to that of a second-
order HMM, and surpassed the zeroth-order model (the Gaussian mixture model; GMM), which does not use context
information. Our results imply that the hierarchical representation with hidden state dynamics may underlie the neural
implementation for generating complex behavioral sequences with higher-order dependencies.
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Introduction

Humans can generate complex sequential behaviors such as

speech and musical performance. These sequences are typically

composed of sequences of actions with complex sequencing rules.

How our brain generates such complex sequences is difficult to

understand in a straightforward manner since underlying neural

circuits are complex and it is difficult to precisely explore neural

circuits in human or primate brains. A solution to this issue may be

given by studying songbirds [1]. In particular, Bengalese finches sing

with apparently more complex sequencing rules with branching

points [2,3,4], than does the zebra finch, whose songs are composed

of a stereotyped syllable sequence and extensively used for birdsong

studies. Bengalese finch songs have been receiving attention as a

model of variable sequential behavior, from neurophysiological

[5,6,7,8] and theoretical [9,10,11] view points.

To understand the mechanism for the variable sequences of the

Bengalese finch song, it is important to characterize the song

sequences from a statistical view point. However, the statistical

properties of the Bengalese finch song have not been extensively

studied. We first demonstrate that the Bengalese finch song has

higher-order context dependency: the emission probability for

each syllable depends on one or more than one recent syllable. For

example in Figure 1A, the emission probability of syllable ‘‘c’’ and

‘‘d’’ depends not only on the adjacent syllable ‘‘b’’ but also on the

preceding syllables ‘‘a’’ and ‘‘c’’. This property has been

mentioned in previous studies [3]. However, we demonstrated

its statistical significance for the first time.

We then investigated the statistical mechanism for explaining

higher-order dependencies observed in Bengalese finch songs. To

do this, we used the Bayesian inference method and a model

selection technique. We applied hidden Markov models (HMMs)

with various context dependencies to the acoustic features of a

Bengalese finch song and selected a suitable model based on the

Bayesian model comparison, its predictive performance, and the

degree of agreement with manual annotation. As a result, we

found that the first-order HMM, in which the current state

appears depending only on the last state, is sufficient and suitable

for describing the Bengalese finch song. Perhaps this is a

counterintuitive result since the song sequences have higher-order

dependency as we mentioned. This is due to a many-to-one state

mapping to syllables by which the first-order HMM can generate

apparently complex sequences, which we describe in this paper.

These results imply that the songbird brain has parsimonious

neural representation for generating apparently complex sequenc-

es. Also, these results support the branching-chain mechanism,

which has been proposed in theoretical studies [9,11], for

generating Bengalese finch song sequences.
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Results

We analyzed the songs of 16 normal adult male Bengalese

finches (See Methods for details.) An example of the sonogram

(sound spectrogram) of a Bengalese finch song is shown in

Figure 1A. The Bengalese finch song consists of acoustically

continuous segments, called ‘‘song elements’’ or ‘‘syllables’’ (in this

paper, we used the term ‘‘syllable’’) which are separated by silent

intervals. Bengalese finch songs are often analyzed by assigning a

label to acoustically similar syllables, usually based on visual

inspection on the sonogram. Following this approach, we first

analyzed the statistical properties of the syllable label strings. We

then directly analyzed the acoustic features using statistical models

and compared the results to those of an analysis on manual

annotated labels.

Higher-order context dependency in syllable sequences
of Bengalese finch song

We show that the song syllable strings annotated by three

human experts in analysis of birdsong have higher-order context

dependency. The three experts labeled based on visual inspection

on sonogram. We cross checked by computing Fleiss’s k coefficient

[12], which measures the degree of agreement among more than

two annotators (see Methods). As a result, the k-coefficients were

0.972 + 0.028 (mean + SD) for the 16 birds, and all within the

range of ‘‘Almost perfect agreement’’, indicating annotation by the

three experts was reliable. Hereafter, we use the labeling results by

only one of the labeling experts.

We conducted a hypothesis test for each syllable to verify

whether the preceding syllables of the syllable being tested affects

the occurrence probability of the next syllable (see Methods). We

found more than one significant second-order dependency in all

16 birds. When we restricted the analysis to non-repeated syllables,

significant syllables were found in the songs of 11 birds. In total,

there were 33 significant syllables (21 for non-repetitive syllables)

of 72 candidate syllables. An example is shown in Figure 1. In this

song, the syllables labeled ‘‘b’’ are preceded by either ‘‘a’’ or ‘‘c’’,

and are followed by ‘‘a’’, ‘‘c’’, or ‘‘d’’ (Fig. 1B). If syllable ‘‘c’’

precedes syllable ‘‘b’’, the transition probability from ‘‘b’’ to ‘‘d’’ is

0.99, but if we do not care about the preceding syllable of "b", the

transition probabilities to syllables ‘‘a’’, ‘‘d’’, and ‘‘c’’ are 0.13, 0.55

and 0.31, respectively. There was a significant difference between

these two probability distributions (x2(2)~511:99,pv10{5),

indicating that preceding syllables ‘‘a’’ and ‘‘c’’ had a significant

effect on the transition probabilities from syllable ‘‘b’’.

This second-order context-dependency can be visually captured

by splitting the syllables into distinct states depending on the

preceding states. Such representation, in which different states are

allowed to emit the same syllable, is regarded as a model called the

partially observable Markov model (POMM) [11], thus we call this

the POMM representation. For example, the state corresponding

to ‘‘b’’ in Fig. 1B is divided into states b(/a) and b(/c)
depending on the preceding syllables (a or c). From the transition

diagram where the first-order history dependency was assumed

(Fig. 1B), it may seem that transition from syllable ‘‘b’’ to ‘‘a’’, ‘‘d’’,

and ‘‘c’’ are random, but with the POMM representation (Fig. 1C),

Figure 1. Example of sonogram of Bengalese finch song and its syllable label sequence. (A) Sonogram of Bengalese finch (BF09) with
syllable labels annotated by three human experts. Labeling was done based on visual inspection of sonogram and syllables with similar spectrogram
given same syllable. (B) Bigram automaton representation (transition diagram) of syllable sequences obtained from same song set as (A). Ellipses
represent one syllable and arrows with values represent transitional probabilities. Rare transitions with probabilities v0:01 are omitted. (C) POMM
representation of same sequences as (B). Syllables that have significant higher-order dependency on preceding syllables (colored states in (B)) are
divided into distinct states depending on preceding syllables (context).
doi:10.1371/journal.pone.0024516.g001
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we can capture the tendency that if ‘‘a’’ precedes, ‘‘b’’ is followed

by the syllables ‘‘a’’ or ‘‘c’’, but if ‘‘c’’ precedes, ‘‘b’’ is followed by

the syllable ‘‘d’’ almost deterministically. In addition, from the

POMM representation, we can see that the syllable sequences

‘‘bcbd’’ and ‘‘jcd’’ are sung in chunks. Taken together, we

conclude that the sequencing rules of the Bengalese finch song

have higher order Markov dependency, and cannot be described

using a simple Markov process, where states and syllables have

one-to-one mapping. Nevertheless, a transition diagram in which a

simple Markov process is implicitly assumed has been often used

for analyzing Bengalese finch songs because of its simplicity [7,13].

We need to be careful when interpreting such representation if we

derive the information about variability of the syllable sequence.

Even if branching points are found in the diagram, it does not

necessarily imply that the following syllable is variable (or

stochastic): it may be a stereotyped given more than one previous

syllables.

Hidden Markov model analysis on acoustic features
Next we searched for a suitable statistical description of the

Bengalese finch song directly from acoustic feature data extracted

from the audio-signal of the song. We used HMMs [14], which

have been widely used for time-series data modeling, including

human speech recognition and also birdsong annotation (but used

differently from the present study) [15]. In HMMs, the observed

data are assumed to be generated from probabilistic distributions

(here, we use a single Gaussian distribution) associated with hidden

states, which are usually assumed to be generated from a first-

order Markov process. We extend the HMMs to incorporate

second-order transition dynamics of hidden states, in accordance

with the above results (see Methods section). In addition, we also

include the ‘‘zeroth-order HMM’’, which has the same structure as

the first-order HMM but without a transition matrix (i.e., context

dependency). This model exactly corresponds to the GMM, a

statistical model used for data clustering. HMMs with higher than

second-order are in principle possible to construct. However,

because of their computational cost, which increases exponentially

with order, we did not examine them. Furthermore, as can be

expected from the following results, such higher-order HMMs

would not produce better results than with the first-order HMM.

In addition to the order in hidden Markov processes, there is a

degree of freedom in the model structure, that is, the number of

hidden states, denoted by K . Based on the Bayesian model

selection technique (see Methods section) and cross-validation, we

explored the best model for describing the Bengalese finch song

within a set of our models.

Model comparison
Figures 2A and B compare the lower bound on the log marginal

likelihood, which is a model selection criterion (see Methods

section), among various hidden states (K ) and orders of Markov

processes. The model that gives the largest lower bound is

regarded as the most appropriate for the given data. This criterion

automatically embodies a Bayesian Occam’s razor [16,17]: a model

with many parameters are given a larger penalty than one with

fewer parameters. Thus, the simplest model, which can sufficiently

describe the given data set, is selected. We see that for a

representative bird (Figure 2A) and the average over all birds

(Figure 2B), the second-order HMMs showed a larger bound when

a small number of states (K ) were given. However, for a large

number of states, the first-order HMMs gave the largest bound.

Similar results were obtained for almost all the song data from

other birds we analyzed. The exceptions were for the songs in

which no significant second-order context dependency (excluding

the repetitive syllables) was observed. Two-way ANOVA with

factors K and the model order revealed that there were main

effects of both factors (F (15,225) = 295.25, pv10{5 for K ;

F (2,30) = 1123.3, pv10{5 for model order) and interaction

(F (30,450) = 68.559 pv10{5). The results of post hoc comparison

between the first- and second- order models for each K (with

Bonferronni corrections) are plotted in Figure 2B. We see that the

lower bounds for the first-order HMM (with Kw14) were

significantly larger than those for second-order HMM. These

results with the approximate Bayesian model comparison suggest

that the first-order HMM would suffice when sufficient hidden-

states are available. Here, ‘‘sufficient hidden-states’’ is related to

the number of syllable types in song and degree of second-order

history dependency. The number of syllable types for each bird

derived from manual annotation was 9.7562.77 (mean 6 SD).

We see that if the number of states is larger than this number, the

first order HMM reaches the performance of the second order

model (Figure 2B, D; see Table S1 for for detailed data of

individual bird). We will interpret these results in more detail in

the Discussion section.

To evaluate how well the models describe the statistics of song

acoustic features more directly, we computed the predictive

performance of the models based on cross-validated log-likelihood

on test data (that were not used for model training). The test data

consisting of ten bouts for each bird were constructed from the

song recorded from the same bird on the same date with the

training data. The results for a representative bird and all birds are

shown in Figures 2C and D, respectively. The number of states

and model order significantly affected the predictive performance

(F(15,225) = 301, pv10{5 and F(2,30) = 1107.2, pv10{5, respec-

tively). Also, there was significant interaction between the number

of states and model order (F(30,450) = 68.861 pv10{5). The post

hoc comparison between the first- and second- order models for

each K revealed that the second-order model yielded significantly

better performance than the first-order model if K was small, and

for Kw10 there was no significant difference between the two

models (Figure 2D). Thus, we cannot claim that the first-order

HMM is superior in predictive performance, but it is at least

comparable to the second-order HMM.

Comparison with manual annotation
Next we discuss how each model annotates given song syllables.

We first compare them with the manual annotations described

above (For details in computing the model annotation, see

Methods section). We evaluated the agreement between the

annotations of the models and of human experts by computing

Cohen’s kappa coefficient, which measures the degree of

agreement between two annotators (see Methods section).

Figure 3A shows the results for all songs. With a sufficient number

of hidden states, the average performances (thick lines) of the first-

and second-order HMMs reached the region of ‘‘almost perfect

agreement’’, while the GMM saturated in the region of

‘‘substantial agreement’’. Thus, the syllable sequences obtained

from the first- and second-order HMMs were in almost perfect

agreement with those obtained from manual labeling, while GMM

did not provide a comparable result.

Kappa coefficients for each model-order (with K selected using

the lower bound) were 0.781 + 0.103 (mean + SD) (range from

0.566-0.905) for the zeroth-order model (GMM), 0.911 + 0.055

(range from 0.790-0.978) for the first-order HMM, and 0.873 +
0.090 (range from 0.688-0.973) for the second-order HMM. There

were significant differences between GMM and the-first order

HMM (pv0:001), and between GMM and the second-order

HMM (pv0:001). While the mean performances of the-first order

Statistical Models for Complex Birdsong
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HMM were slightly better than those of the second-order HMM,

there was no significant difference between them. The differences

between GMM (zeroth-order HMM) and the two HMMs suggest

that taking into account the context information improves stable

labeling. Human experts may use such context information.

Figure 3B compares manual labeling and the labeling of two of

models, first-order HMM and GMM, in which the number of

hidden states K is selected based on the model selection criteria

described in the Methods section. We observed that the two

models tended to divide syllables into larger letters. For example, a

human labels the first repeated introductory notes using only ‘‘a’’,

but the two models label them using two states ‘‘a1’’ and ‘‘a2’’.

This may reflect the fact that our method is more sensitive to

differences in acoustic features than humans. An important

difference between the zeroth-order model and first-order HMM

is in the sequence ‘‘bcbd’’ by manual labeling. As shown in

Figure 1, the subsequent syllable after the first ‘‘b’’ and the second

‘‘b’’ depends on the previous syllable (whether ‘‘a’’ or ‘‘c’’), and

these two syllables "b" are divided into distinct states in the

POMM representation (Figure 1C). The first-order HMM

obtained the following representation: it divided the syllable "b"

into the states ‘‘b1’’ and ‘‘b2’’, while the zeroth-order model, the

GMM, did not (red rectangle in Figure 3B). This difference is due

to context dependency. As we can see in the red rectangle in

Figure 3C, the distributions of ‘‘b1’’ and ‘‘b2’’ largely overlap;

thus, indistinguishable without using information of the preceding

syllables. For the other songs we analyzed, similar properties were

often observed: of the 54 syllables where significant second-order

dependency was found in manual annotation-based analysis, the

first-order HMM divided 30 syllables into distinct states according

to the preceding syllables, while the GMM did so for 17 syllables

and the second-order HMM did for 23. As a recent study showed,

the contexts affect the acoustic properties [13]. Thus, even the

GMM, which does not incorporate pre-state dependency, aligned

the different states for the same syllables solely on the differences in

acoustic features. However, the difference between the GMM and

HMMs suggests that HMMs tend to align different syllables

depending on the context, not solely on the acoustic features.

Figure 2. Comparison of statistical models with various states K and model orders on acoustic features of Bengalese finch song. (A-
B) Plot of lower bound on marginal log likelihood. Larger this bound, the more appropriate model is for representing given data. For both cases, first-
order HMM gave largest bound provided there was sufficient number of states available. (C-D) Cross validated log-likelihood on test data sets
obtained from same bird on same date but ten different bouts from those used for training model. (A,C): representative bird (BF08). (B, D): average
over all birds on normalized value. Error bars indicate standard deviation.
doi:10.1371/journal.pone.0024516.g002
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Figure 3. Comparison of annotation results using various models and human experts. (A) Kappa’s coefficients, which are measure for
agreement between model annotations and manual annotation by human experts, are functions of number of states, K . Thin lines represent results
for individual birds, and thick lines represent average for each model order. (B) Example of annotations for song of BF09. Black labels represent
manual annotations done by visual inspection of sonograms. Red and blue labels are labeled using Gaussian mixture model (zeroth-order model)
with K~13 and first-order HMM with K~18, respectively. Number of states (K) that gives the highest lower-bound on log marginal likelihood were
used. (C) Example of model fitting results on sound feature space (duration and spectral entropy) for same song as (B). Results from first-order HMM.
Ellipses represent contour of Gaussian distribution of each state, and letters indicate syllable aligned to state.
doi:10.1371/journal.pone.0024516.g003
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Discussion

We explored the statistical properties of complex sequencing

rules of the Bengalese finch song. To achieve this, we analyzed

history dependencies in the syllable sequences annotated by

human experts. Then we applied statistical models to acoustic

feature data. We discuss the implications of our results and

possible neural implementation.

First-order HMM is sufficient for producing higher-order
Markov sequences

We have seen that in all songs we examined, the first-order

HMMs showed comparable or superior performance (i.e., gave a

larger lower bound, better agreement with manual annotation,

and cross-validated prediction error) compared with the second-

order HMMs when there were enough hidden states compared to

the number of syllable types, whereas when the number of states

was small, the second-order HMMs performed better. These

results suggest that (1) when the number of hidden states (labels) is

small, considering the higher-order context dependency among

hidden states, it leads to a better explanation of the birdsong data,

but (2) when we use enough hidden states, the first-order HMMs

become sufficient for explaining the data. Such models give better

descriptions of data by using a smaller parameter set than higher-

order HMMs.

These findings perhaps are counterintuitive given that our first

observation was that some syllables in the Bengalese finch song

sequences have dependence on at least two previous syllables. We

interpreted our results as follows. Even if the hidden state

sequences of the first-order HMMs have only first-order

dependency, the emitting syllable acoustic features can have

higher-order dependency. This can occur when the different

hidden states (States 2 and 4 in Figure 4A) have similar emission

distributions (corresponding syllable ‘‘b’’ in Figure 4A). Although

the hidden state sequence is a first-order Markov sequence

(‘‘12345…’’), the emitted syllables can have second-order

dependency (‘‘abcbd…’’). This representation was that the first-

order HMM was indeed attained through an automatic parameter

fitting process. This representation is possible when the first-order

HMM can use redundant states to assign the distinct states to the

syllables with similar acoustic features. Here, ‘‘redundant’’ refers to

the situation when the number of states is larger than the number

of syllable types.

By adopting this representation, we can avoid exponential

growth in the number of parameters when second-order context

dependency is sparse. Let us consider an extreme case where all

syllables truly depend on two previous syllables (i.e., all

components of the transition matrix from the previous two states

to the next state are mutually independent). For this case, if we use

first-order HMMs to represent the data in the above manner, we

need K2 hidden states. This requires a K2|K2 transition matrix,

which is larger than that of second-order HMMs (K2|K ). In

addition, first-order HMMs have parameters for K2 Gaussian

components, whereas second-order HMMs have those for only K
components. If two different models can represent the true data

distribution, the model with fewer parameters gives a larger

marginal log likelihood and better predictive performance. Thus,

in this case, a second-order HMM will be selected. On the other

hand, if most syllables depend only on one last syllable, and some

portion of the syllable depends on the two previous syllables, a

first-order HMM can represent the statistical structure of the

sequence and will be selected. Our results suggest that the

statistical structure of the Bengalese finch song is close to the latter.

Possible neural implementation
These results motivate us to discuss neural implementation of

this statistical model structure. In songbirds, two nuclei are mainly

related to generating songs: the HVC (proper name) and the

robust nucleus of the archistriatum (RA). Neural activity in the

HVC appears to encode sequential information [18,19], while RA

encodes the acoustic structure of individual song syllables

[18,20,21]. The HVC projects to the RA, while the RA projects

to the nuclei that control the syrinx and respiration muscles. The

sequential pattern in birdsongs is assumed generated in a

feedforward chain of RA-projecting neurons in the HVC

[19,22,23]. A theoretical study has shown that such a feedfor-

ward-chain mechanism can be extended to generate stochastic

branching sequences that obey a first-order Markov process [11].

Whether it can be extended to a higher-order Markov process is

unknown. Our results imply that a feedforward chain mechanism

Figure 4. Schematic diagram representing how first-order HMM generates sequences that have higher-order context dependency
and its neural implementation. (A) key point is that different states (States 2 and 4) can generate similar acoustic feature space (‘‘b’’). This
mechanism allows observed song sequences to have higher-order context dependency, even if hidden state sequences are generated from simple
Markov process. (B) Schematic of proposed model for neural implementation of Bengalese finch song syntax. Each circle in HVC represents neuron
group consisting of feedforward chain of RA-projection neurons. Each group in HVC plays role in generating particular syllables through neuron
group in RA. Groups 2 and 6 in HVC project to same RA neuron group that generates song syllable ‘‘b’’, as do States 2 and 4 in (A).
doi:10.1371/journal.pone.0024516.g004
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that obeys the first Markov process would suffice and be suitable to

explain the song syntax of the Bengalese finch. We propose a

mechanism that relates our statistical model and the neural

circuits. First, we relate a group of feedforward chains to the

hidden state of a first-order HMM. Figure 4B illustrates this

model. The circles in the HVC represent the neuron groups

consisting of a feedforward chain of RA-projecting neurons. The

arrows represent the firing order of the chain. The firing order is a

first-order Markov process that includes stochastic transitions from

group 2 to group 3 or group 5. We assume that different groups

(groups 2 and 6) generate the same syllables, ‘‘b’’, by having a

similar projection pattern to the RA. Due to this mechanism, even

though the firing order of the HVC(RA) neurons in the HVC is a

first-order Markov process, the observable syllable sequences

obeys higher-order Markov processes, as observed in our song

analysis with the first-order HMM. Although this mechanisms

have been predicted in our own theoretical work [9] and another

study [11], our present method automatically extracted the same

representation of sequence from real acoustic data of birdsong,

strengthening the plausibility of this mechanism.

Related work
Jin and Kozhevnikov recently proposed a statistical model for

describing the sequencing rules of Bengalese finch songs

independently of us [24]. While the mechanism behind their

model is similar to ours in the sense that many-to-one mapping

from states to syllables allow the model to generate sequences with

higher-order history dependency, the present study differs from

theirs in several respects. First, Jin and Kozhevnikov adopted two-

stage methods for extracting syllable sequences from audio signals:

they first assigned syllable labels for the audio signals of segmented

syllables by using an automatic clustering method and then they

constructed syntax models for describing the sequences of syllable

labels. On the other hand, our method using HMMs directly

extracts sequence structure from audio features, thus, the results

are not directly affected by the property of syllable labeling.

Instead, the results of our method depend on the selection of

auditory features and emission probability models for each state.

As the HMMs in the present study can represent sequential

variability and acoustical variability in a common statistical model,

dissociating these variabilities is relatively easy. The sequential

variability is represented by the entropy of state transition, while

acoustical variability is represented by the entropy of emission

probability distribution for each state. It may be possible to

associate these two kinds of variability with corresponding neural

variability. The former may be related with the activity of HVC

and the later the activity of RA. Second, Jin and Kozhevnikov did

not compare the annotation obtained by their automatic method

with manual annotation made by visual inspection. Although

manual annotation involves arbitrariness, it has been used in many

studies on birdsong. A novel point of the present study is to

compare the model-based annotation and manual annotation

while checking the reliability of the manual annotation by cross-

checking between three annotators. Third, as Jin and Kozhevni-

kov analyzed the songs from only two Bengalese finches; whether

their results are common properties for Bengalese finches is

questionable. In the present study, we analyzed the songs from 16

Bengalese finches and found that some of them have no second-

order dependency excepting in the repetitive syllables. Fourth, Jin

and Kozhevnikov did not consider the models with state transition

that obey higher-order Markov processes: state transitions in their

models obey a first order Markov process (except for the effect of

adaptation). Thus, the possibility that the model with higher-order

Markov process could describe the song sequences better than

their models was not discussed. In contrast, we included the model

with second-order Markov processes and showed that the many-

to-one mapping with first-order Markov process is at least

comparable to the second-order model. These differences of the

present study do not produce results contradicting those of Jin and

Kozhevnikov. The results rather strengthen the claims also made

in Jin and Kozhevnikov. What was missing in our model, though

incorporated in Jin and Kozhevnikov’s, is the effect of adaptation.

This serves to describe the statistics of repetitive syllables. In the

present study, we did not focus on repetitive syllables. Incorpo-

rating the effect of adaptation in our model would improve the

descriptive power for the Bengalese finch songs.

Future work
We showed that the first order HMM gives annotations that

were close to manual annotations compared to a standard

clustering technique (GMM), which does not use context

information. This result suggests that our method with an ordinary

HMM can be used as a convenient tool for annotating the

Bengalese finch song, instead of time-consuming manual annota-

tion. We applied our method to the songs of only adult healthy

Bengalese finches. Investigating the developmental change of the

Bengalese finch song or those developed with abnormal conditions

such as isolated from song tutors, or with lesions in the song-

related nucleus, may be for future study. Such studies will give

valuable insight into how complex sequencing rules are formed

through learning. We also applied HMMs to neural activities

recorded from HVC in an anesthetized condition for extracting

neural state transitions in a previous study [25]. It would be

interesting to see the relationship between the state transitions

extracted from activities in HVC of singing bird using such

methods, with the state transitions extracted from its song as we

did in the present study.

Methods

Recording
We analyzed undirected songs (songs in the absence of a female)

of 16 adult male Bengalese finches (labeled as BF01-BF16) ranging

133-163 days of age. They were raised in colonies at the RIKEN

Brain Science Institute. Before recording, each bird was moved to

a sound proof room and isolated from the other birds. Songs were

recorded for 24 hours using a microphone placed in the room. All

experimental procedures and housing conditions were approved

by the Animal Care and Use Committee at RIKEN (approval ID:

H22-2-217).

Sound feature extraction
To extract acoustic features from each syllable, we used Sound

Analysis Pro (SA+) software [26], which is a widely used tool for

quantifying song features in birdsongs ([27] and references

therein). We used three representative features: syllable duration,

mean pitch, and mean Wiener (spectral) entropy. We applied a

feature batch module in SA+ for extracting the acoustic features

from wave format audio files. We then randomly picked and

analyzed thirty song bouts for each bird from all recordings. For

cross-validation, ten additional bouts were also randomly picked.

Evaluation of agreement of annotations
Annotation analysis. To evaluate the agreement between

manual annotations by different human annotators and between

manual and model annotation, we used Fleiss’s k coefficient and

Cohen’s k coefficient, respectively [12]. They are statistical

measures of inter-annotator agreement for categorical items.
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They are more robust measures than simple percent agreement

calculation since they take into account agreement occurring by

chance. Cohen’s kappa measures agreement between two raters,

while Fleiss’ kappa does when there are more than two raters. For

both measures, if k-coefficients fall in the range of 0.81-1.00, the

result is interpreted as ‘‘Almost perfect agreement’’. For the range

of 0.61-0.80 - ‘‘Substantial agreement’’, 0.41-0.60 - ‘‘Moderate

agreement’’, 0.21-0.40 - ‘‘Fair agreement’’, 0.0-0.20 - ‘‘Slight

agreement’’, and v0 - ‘‘Poor agreement’’.

Evaluation of second-order context dependency
To evaluate second-order context dependency, we conducted a

hypothesis test for each syllable to verify whether the preceding

syllable of the syllable being tested affects the occurrence

probability of the next syllable. In particular, we seek the syllable

that has both more than one preceding syllable and more than one

subsequent syllable. We then tested whether the probabilities of

transitions from the syllable depend on the preceding syllable by

doing a x2 test of goodness of fit between the probability

distributions that ignore the preceding syllables and those

conditioned on the most frequent preceding syllable [11]. We

interpret the syllable having second-order context dependency if

pƒ0:05=n, where n denotes the number of candidate syllables (the

Bonferroni correction).

Higher-order hidden Markov models
We consider a second-order HMM, whose directed graphical

model is shown in Figure S1. At first glance, it may seem difficult

to apply a forward-backward algorithm, which is the standard

algorithm for inferring hidden state sequences, to this model.

However, if we combine two succeeding states into one context

states, we can transform this graphical model into one with the

same form as the first-order HMM, as shown in Figure S1. We

introduced a dummy state denoted as d1 for the beginning of the

sequences. If we use an m-th order HMM, m{1 dummy states

(d1,:::,dm{1) are required. For the second-order HMM, there are

KzK2 context states, including ones that contain dummy states.

In general, there are
Pm{1

l~1 KlzKm context states. For each

context state, the number of transition targets is K . Hence, the

transition matrix has (
Pm{1

l~1 KlzKm)|K elements.

Parameter fitting
To train HMMs using given acoustic feature data, we used the

Variational Bayes (VB) method [28,29,17]. The VB method has

been widely used as an approximation of the Bayseian method for

statistical models that have hidden variables. The VB method

approximates true Bayesian posterior distributions with a

factorized distribution using an iterative algorithm similar to the

expectation maximization (EM) algorithm. For the limit of a large

number of samples, the results of the VB coincides with those of

the EM algorithm. We used VB because of the following two

advantages: (1) its low computational cost, which is comparable to

the EM algorithm, and (2) it can select an appropriate model based

on the model-selection criterion computed in a model learning

process. Full Bayesian approaches based on a sampling technique

give a more accurate model-selection criterion, but their high

computational cost is unfavorable for our purpose (especially for

the second order HMMs, which have a large number of

parameters).

The VB algorithm for the GMM is detailed in [17], while those

for the first-order HMMs are detailed in [29]. We derived the VB

algorithm for the second-order HMMs for the first time, but we

only have to change the transition matrix from the algorithm for

the first-order HMMs, which is a straightforward extension as

described above.

Model selection
We denote the model index M, which refers to the number of

states K and order of Markov process m. By using Bayes theorem,

the posterior of the model index given data X is given by

p(MjX )~
p(X jM)p(M)

p(X )
: ð1Þ

We naturally assume that p(M) is the uniform distribution, i.e.,

we have no a priori assumption of the model structure. Then,

p(MjX )!p(X jM), hence the model gives the highest posterior

probability that corresponds to the one that gives the highest

marginal likelihood p(X jM). Ideally, the marginal likelihood

p(X jM) is obtained by marginalization over hidden variable sets

(denoted as Y ) and parameter sets (denoted as h) as

p(X jM)~
X

Y

ð
d hp(X ,Y jh,M)p(hjM): ð2Þ

However, this marginalization procedure is infeasible. Therefore,

we used a lower bound on the log marginal likelihood log p(X jM)
instead. The variational free energy F , which is computed in a

model learning process, gives an upper bound on { log p(X jM).
In other words, the log marginal likelihood log p(X jM) is lower

bounded by negative variational free energy {F . To emphasize

the statistical meanings, we call {F the lower bound on the log

marginal likelihood.

Computing model annotation
We assumed that each hidden state in the models we used

represents one syllable. The models asigned the label that

corresponds to the state that gave the highest posterior probability

of generating the acoustic features for each syllable (see Methods).

The posterior probabilities were computed using the Baum-Welch

algorithm [14]. We then aligned a syllable label to each state so

that the aligned labels were the most frequently labeled syllables by

human experts in the syllable set that the model state aligned. We

allowed more than one state to share the same syllable (many-to-

one mapping from states to a syllable).

Supporting Information

Figure S1 Graphical model representation for second-
order HMM describing how parameter estimation for
second-order HMM can be done. (A) Naive graphical model

for second-order HMM. In this graph, we introduce a node

(represented as a circle) for each random variable. For each

conditional distribution, we add arrows to the graph from the

nodes corresponding to the variables on which the distribution is

conditioned. (B) Another representation of second-order HMM

using context states that combine two states.

(TIF)

Table S1 Statistics of songs recorded from individual
birds.

(DOC)
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