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Abstract
Motivation—Transcription regulation is a fundamental process in biology, and it is important to
model the dynamic behavior of gene regulation networks. Many approaches have been proposed
to specify the network structure. However, finding the network connectivity is not sufficient to
understand the network dynamics. Instead, one needs to model the regulation reactions, usually
with a set of ordinary differential equations (ODEs). Because some of the parameters involved in
these ODEs are unknown, their values need to be inferred from the observed data.

Results—In this article, we introduce the generalized profiling method to estimate ODE
parameters in a gene regulation network from microarray gene expression data which can be rather
noisy. Because numerically solving ODEs is computationally expensive, we apply the penalized
smoothing technique, a fast and stable computational method to approximate ODE solutions. The
ODE solutions with our parameter estimates fit the data well. A goodness-of-fit test of dynamic
models is developed to identify gene regulation networks.

1 INTRODUCTION
Gene expression is a highly regulated and fundamental biological process. Transcription is
directed by a set of transcription factors, which may interact with each other for proper
activation or inhibition of genes. A transcriptional regulatory network refers to the collection
of genes, their regulators and their interactions. With recent advances in genomics
technologies, there have been extensive research efforts on elucidating regulatory networks.
See Alon (2007) for an excellent review on this topic. One of the first discoveries in
genomic-level analysis of networks is that certain regulation patterns occur much more often
than by chance, and these patterns are called network motifs. Among these motifs, the feed
forward loop (FFL) involves three Genes X, Y, Z in which X regulates the expressions of Y
and Z, and Y regulates the expression of Z. Gasch et al. (2000) collected time course gene
expression data in the yeast Saccharomyces cerevisiae under different environmental
changes and found that a large set of genes responded to almost all environmental transitions
they made. Figure 1 shows the expression profiles of three genes (X: Gene GCN4; Y: Gene
LEU3; Z: Gene ILV5) after the temperature is increased from 25°C to 37°C. These three
genes compose a so-called Coherent Type 1 FFL, a type of FFL where X activates the
expressions of Y and Z, and Y activates the expression of Z (Mangan and Alon, 2003).
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An FFL can be modeled by a set of simple first order ODEs (Barkai and Leibler, 1997;
Mangan and Alon, 2003; Savageau, 1976; Shen-Orr et al., 2002). For example, the
following ODEs have been used to model a Coherent Type 1 FFL:

(1)

(2)

where X(t), Y(t) and Z(t) represent the expression levels of Genes X, Y and Z, respectively,
at time t. The activation function f(u,K)=(u/K)H/(1+(u/K)H) has two parameters H and K.
Parameter H controls the steepness of f(u,K), and we choose H=2 in our following analysis.
Parameter K defines the expression of Gene X required to significantly activate expression
of other genes. When u=K, f(u,K)=0.5. Assuming Genes X and Y regulate Gene Z
independently, the activation function from Genes X and Y to Gene Z is
g(t)=f(X(t),Kxz)f(Y(t),Kyz). Our objective is to estimate the vector of ODE parameters θ
=(βy,βz,αy,αz,Kxy,Kxz,Kyz) from the noisy measurements for gene expression.

ODEs are popular tools to model dynamic processes in engineering, biology and many other
areas. For example, in classical mechanics, the motion of a body is described in terms of its
position, velocity (the first derivative of the position function) and acceleration (the second
derivative of the position function) as time varies. Newton’s Laws relate the position,
velocity, acceleration and forces acting on the body with differential equations. How to
estimate ODE parameters is an old but difficult problem. When ODEs have analytical
solutions, this is essentially a non-linear regression problem (Bates and Watts, 1988).
Unfortunately, most ODEs do not have analytical solutions.

Many methods have been proposed for estimating ODEs which cannot be solved
analytically. Bock (1981) proposed a multiple shooting method, which partitioned the whole
time interval into segments and applied the non-linear optimization procedure over each
segment. Himmelblau et al. (1967) converted ODEs to non-linear equations by integrating
ODEs with numerical quadrature. de Boor and Swartz (1973) approximated ODE solutions
with piecewise polynomial functions by collocation. Ramsay and Silverman (2005)
estimated the derivatives of the underlying curves by non-parametric smoothing, and then
estimated ODE parameters with standard non-linear regression. Huang et al. (2005)
proposed a Bayesian approach by numerically solving ODEs when updating ODE
parameters.

Most recently, Ramsay et al. (2007) proposed a generalized profiling method to estimate
ODE parameters. The ODE solution is approximated with a linear combination of basis
functions. The basis coefficients are estimated with penalized smoothing with an ODE-
defined penalty. The smoothing parameter controls the trade off between fitting the data and
fidelity to the ODEs. Their method has several unique aspects. For example, the
computation load is much lower than the other methods because it avoids the computational
expense to obtain numerical ODE solutions. The method can estimate some ODE
components when they are missing. It can also estimate initial values of ODE components
by evaluating the fitted curves at the first time points. Cao and Ramsay (2007) extended this
method and estimated the smoothing parameter in three nested levels of optimization.
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Our article is organized as follows. Section 2 introduces the generalized profiling method in
details. Section 3 applies the generalized profiling method to estimate the ODE parameters
in (1) and (2) from the noisy measurements for gene expression. Section 4 validates the
generalized profiling method by simulations. Section 5 introduces a goodness-of-fit test for
the adequacy of the FFL to model the observed expression data. Section 6 gives the
conclusions and discussion.

2 THE GENERALIZED PROFILING METHOD
We start with a simple dynamic system composed of one single component, and then extend
to more general cases. Let X(t) be a process modeled by one ODE dX/dt=f(X|θ), where f(X|θ)
is known. We have n observations y(tj) at a number of time points with mean X(tj) and SD
σj, j=1,…,n, where X(t) is the solution to the ODE over t. The parameter vector θ is
unknown and has to be estimated from data y=(y(t1),…,y(tn)). Two nested levels of
optimization are implemented. In the inner level, we approximate X(t) with a smooth curve
x(t) by penalized smoothing with the ODE-defined penalty, conditional on the ODE
parameter vector θ. So the fitted curve  can be treated as a function of θ. In the outer
level, the ODE parameter vector is estimated by minimizing the likelihood function (the
likelihood function is a function of the fitted curve, and thus is also a function of θ). The
standard error for  is estimated by the modified delta method, which includes the
uncertainty coming from the fitted curve.

2.1 The point estimate for the ODE parameter
The ODE solution is approximated by a linear expansion of K basis functions φk(t),k=1,
…,K, as follows:

The basis system must have the flexibility to approximate ODE solutions and their
derivatives. Many dynamic systems have sharp features, such as peaks, valleys, high
frequency oscillations and discontinuities in derivatives. Ramsay and Silverman (2005)
showed that the B-spline basis system can accommodate the discontinuities by assigning
multiple knots to the critical locations. The B-spline basis functions are only non-zero in
local intervals, and the computation can be made efficient using this property of local
supports. In practice, the cubic B-splines are often used as the basis system. Usually we put
one knot on each point with observations, but when data are sparse or the dynamic systems
have sharp features, more knots are required to make the cubic B-spline flexible enough.

The basis coefficient c is estimated by optimizing the penalized likelihood function:

where l(c|y) is the log likelihood function for c. The fit of the smoothing curve x(t) to the
ODE is measured in the second term, which is the integrated squared difference between the
two sides of the ODE. The smoothing parameter controls the tradeoff between fitting the
data and fidelity to the ODE.

In general, suppose the dynamic system has G ODEs and T components:
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where fg(x1(t),x2(t),…,xT(t)|θ) is known, and θ is the ODE parameter that has to be
estimated. Each component is approximated by a linear combination of basis functions:
xi(t)=ciφi(t),i=1,…,T. Suppose we have observations for only M≤T of these components:

ym=(ym(tm1),…,ym(tmnm)),m=1,…,M. Let  and  then the fitting
criterion can be generalized to be:

(3)

where ωj is the normalizing weight, which can be used to keep different components having
comparable scales. For example, in this study we set the values of ωj as the reciprocals of
the variances taken over observations for the j-th component. There are sometimes some
unobservable components, that is, M<T, but the basis coefficients for missing components
are involved in the second term and can still be estimated. When fg(x1(t),x2(t),…,xT(t)|θ) is a
non-linear function, the integration terms can be approximated by numerical quadrature. For
each given value of θ, we obtain one estimate ĉ optimizing (3), so ĉ by can be viewed as a
function θ.

In the outer level, we estimate the ODE parameter θ by optimizing the log likelihood
function:

We can obtain the gradients and Hessian matrices analytically, so the optimization can be
fast and stable. When fg(x1(t),x2(t),…,xT(t)|θ) is a non-linear function, ĉ is an implicit
function of θ, and the Implicit Function Theorem can be used to get the analytical gradients
and Hessian matrices.

2.2 Statistical inference for the ODE parameter
Let Σ be the variance–covariance matrix for the data y. Ramsay et al. (2007) show that the
variance estimate for  can be obtained with a modified delta method:

where  can be derived with the implicit function theorem:

where

Cao and Zhao Page 4

Bioinformatics. Author manuscript; available in PMC 2011 September 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and

The variance for ĉ can also be estimated with the modified delta method:

where

(4)

In (4), ∂ĉ/∂y denotes the partial derivative of ĉ with respect to y, and dĉ/dy denotes the full
derivative of ĉ with respect to y. Whenĉ is an implicit function of θ, ∂ĉ/∂θ can be attained
with the Implicit Function Theorem. This method considers the functional relationship
between c and θ, so the estimated variance for a parameter includes the uncertainty of other
parameter estimates.

3 APPLICATIONS
To estimate the model parameters, we fix the value of Kxy, vary values for αy and βy to solve
the ODE (1) with these parameter values, and calculate the sum squared differences between
the ODE solution and the measured expression of Gene Y. Figure 2 displays the contour plot
of the logarithms of these sums of squared differences. The optimal values of the two
parameters αy and βy show strong collinearity, and most of them are located around the line
αy=0.11+0.15βy. Similar conclusion can be found for αz and βz. So in the following, we fix
the two parameters βy=1 and βz=1, and estimate parameters αy,αz,Kxy,Kxz,Kyz in ODEs (1)
and (2).

We estimate dynamic models for three different FFLs—FFL 1 is composed of X: Gene
GCN4; Y: Gene LEU3; Z: Gene ILV5; FFL 2 is composed of X: Gene GCN4; Y: Gene
LEU3; Z: Gene ILV1; FFL 3 is composed of X: Gene PDR1; Y: Gene PDR3; Z: Gene
PDR5. The expression function for Gene X, X(t), is estimated by penalized spline
smoothing. We estimate parameters αy,αz,Kxy,Kxz,Kyz with the generalized profiling method
from the measured gene expression of Gene Y and Z. Each component is approximated by
cubic B-splines with 40 equally spaced knots. The smoothing parameter λ=1000. Table 1
shows the parameter estimates and their standard errors. FFL 1 and FFL 2 have the same
Genes X and Y, and they are measured together in the same environmental changes (the
temperature is increased from 25°C to 37°C), so the parameters for Gene Y to regulate Gene
X, αy and Kxy, have the same values. The self-regulation parameter αz for Gene Z have
different values, which means Gene Z in FFL 2 is more self-repressed than Gene Z in FFL 1.
The parameter Kyz has a larger value in FFL 2 than FFL 1, so Gene Y in FFL 2 has a higher
level of threshold required to significantly activate the expression of Gene Z. For FFL 3, Kxy
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and Kxz are relative high, which indicates that Gene X in FFL 3 has a high threshold to
significantly activate the expression of Genes Y and Z.

In order to validate the estimates of dynamic models, it is useful to compare gene
expressions to ODE solutions with the parameter estimates. To solve ODEs it numerically
requires the initial values for Genes Y and Z. We estimate the initial values for Genes Y and
Z by evaluating the smoothing curves at the start time point t0=5, where the smoothing
curves are estimated by minimizing penalized smoothing criterion (3). Figures 3-5 shows the
numerical solutions to ODEs (1) and (2) with the ODE parameter estimates and the
estimated initial values for the three FFLs. The ODE solutions are all close to the
expressions of Genes Y and Z, which suggests ODEs (1) and (2) are good dynamic models
for the FFL regulation network.

4 SIMULATIONS
We construct simulated data by adding Gaussian error with SD 0.1 to the solutions of ODEs
(1) and (2) (shown in Fig. 4) at n equally spaced time points in [5, 80]. The true values of
ODE parameters are chosen as the parameter estimates from the real data, and initial values
of Y(t) and Z(t) are Y(t0)=0.55 and Z(t0)=0.47. The smoothing parameter λ=1000. Table 2
shows the summary of parameter estimates from 100 simulations. We choose n=10 or n=76
to explore the effect of the number of observations on parameter estimations. When we have
10 observations for each gene, the biases for parameter estimates are around 15% of the real
parameter values, and the coverages of the 95% confidence intervals are above 86% for each
parameters. After the number of observations is increased to 76, the biases for parameter
estimates are decreased to below 4% of the real parameter values except around 10% for αz
and Kxz. The estimated 95% confidence intervals have coverage near 95%.

5 TEST THE GOODNESS OF FIT OF DYNAMIC MODELS
The goodness-of-fit test of dynamic models can be used to identify whether three genes of
interest compose a FFL. Since the generalized profiling method is computationally efficient
(<20 s for parameter estimation for our problem), parametric bootstrap is used to test the
goodness of fit of dynamic models, which is described as following. The ODE parameters θ
in ODEs (1) and (2) are estimated from the expressions of Genes X, Y and Z, then we
calculate the sum of squared errors:

where y(ti), z(ti) are expression profiles of Genes Y and Z at ti, and , are
solutions of ODEs (1) and (2) with parameter values  at ti. The variance for residuals is

estimated as , where p is the number of ODE parameters.
Then 1000 simulated datasets are generated, and each simulated dataset, y(j)(ti), z(j)(ti), j=1,

…,1000, is generated by adding Gaussian noise with variance  to ODE solutions ,

. The generalized profiling method obtain the ODE parameter estimate, , from

each simulated dataset. Let , be the ODE solutions with the parameter value , then

we can calculate the sum of squared errors, , for each simulated
dataset. The empirical P-value can then be obtained.
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As one example, three genes are randomly chosen from 6152 genes in yeast (X: YLL044W;
Y: YER096W; Z: YDR279W). We use the time course gene expression data measured when
the temperature is increased from 25°C to 37°C (Gasch et al., 2000), which is displayed in
Figure 6. The sum of squared errors from the real data to ODE solutions, SSE(y,sy,z,sz), is

equal to 0.84. The histogram for  is displayed in Figure 7. The
parametric boostrap gives the empirical P-value 0.046, which indicates that the three genes
do not compose a Coherent Type 1 FFL.

In contrast, the real data for the three sets of genes used in Section 3 are applied to test if
they compose FFLs. The sum of squared errors from the real data to ODE solutions,
SSE(y,sy,z,sz), are displayed in Table 3. The empirical P-values from the goodness-of-fit test
are all much larger than 0.05, which verify that the three sets of that genes do compose
FFLs. The parametric boostrap for the goodness-of-fit test is computionally intensive, which
takes 11 h to finish the above example on a standard computer. Formal test statistics are
required to find out all FFLs in thousands of genes, which will be addressed in the future
study.

6 DISCUSSION AND CONCLUSIONS
ODEs are widely used for modeling dynamic processes in engineering, biology, medicine,
economics and many other areas. In this article, we propose to apply the generalized
profiling method to estimate parameters in a set of non-linear ODEs for modeling gene
regulation networks. The initial values for the gene expression are estimated by evaluating
the fitted curves at the start time points. We show that the ODE solutions found with our
estimated parameter values and initial values fit the data well. This is a good validation to
show that the dynamic model can describe the observed behavior of the regulation system
well. We also find two pairs of parameters show strong collinearity, an issue that can be
alleviated with more observations.

Most differential equations used to model real systems are non-linear and do not have
analytic solutions. Many methods for estimating ODEs have to solve ODEs numerically
when searching for optimized ODE parameter values, which is computationally expensive
and requires knowing the initial values of the ODE components. On the other hand, the
generalized profiling method approximates ODE solutions with penalized smoothing
splines, which requires a much lower computational load. A modified Delta method is
developed to estimate the standard errors of the ODE parameter estimates, which takes into
account the uncertainty of other parameter estimates.

Although technologies for gene expression analysis are becoming less expensive, analysis of
such complex systems is still limited by the constraints on the number of microarray
experiments that can be performed due to array cost and limitations of biological sample
collection. We have found that some ODE parameters cannot be reliably estimated from
sparse data routinely collected in microarray experiments. It is interesting to determine the
frequency requirement for data collection in order to estimate ODE parameters of interest
precisely. At the same time, the locations of measurement points also play an important role
in the parameter estimations. This experimental design issue will be addressed in future
research.

In conclusion, ODEs provide elegant models for gene regulation networks. The generalized
profiling method can estimate ODE parameters quickly from noisy observations. The
resulting ODE solutions using the estimated parameter values can fit the data well, which
can lend evidence to the validity of the proposed ODE models.
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Fig. 1.
The expression profiles of three genes (X: Gene GCN4; Y: Gene LEU3; Z: Gene ILV5)
measured at 5, 10, 15, 20, 30, 40, 60, 80 min. The data were collected by DNA microarrays
from yeast after the temperature was increased from 25°C to 37°C (Gasch et al., 2000). The
solid lines are the smooth curves estimated by penalized spline smoothing (The basis
functions are cubic B-splines with 40 equal-spaced knots, and the value of the smoothing
parameter is 10).
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Fig. 2.
The contour plot of the logarithm of the sums of squared differences between the measured
expression of Gene Y shown in Figure 1 and the ODE (1) solution with different values of
αy and βy. The value of Kxy is fixed as 0.93. The dashed line is αy=0.11+0.15*βy.
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Fig. 3.
The dynamic models for FFL 1 (X: Gene GCN4; Y: Gene LEU3; Z: Gene ILV5). The
circles are the real expression profiles of three genes, and the solid lines are the numerical
solutions to ODEs (1) and (2) with the ODE parameter estimates
αy=0.44,αz=0.69,Kxy=0.90,Kxz=0.60,Kyz=0.56 and the estimated initial values Y(t0)=0.55 and
Z(t0)=0.47.
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Fig. 4.
The dynamic models for FFL 2 (X: Gene GCN4; Y: Gene LEU3; Z: Gene ILV1). The
circles are the real gene expression profiles of three genes. The solid lines in the top panel is
the estimated X̂(t), and the solid lines in the bottom panels are the ODE solutions to ODEs
(1) and (2) with the ODE parameter estimates αy=0.44,αz=0.90,Kxy=0.90,Kxz=0.75,Kyz=1.21
and the estimated initial values Y(t0)=0.55 and Z(t0)=0.70.
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Fig. 5.
The dynamic models for FFL 3 (X: Gene PDR1; Y: Gene PDR3; Z: Gene PDR5). The
circles are the real gene expression profiles of three genes. The solid lines in the top panel is
the estimated X̂(t), and the solid lines in the bottom panels are the ODE solutions to ODEs
(1) and (2) with the ODE parameter estimates αy=0.32,αz=0.56,Kxy=2.11,Kxz=1.06,Kyz=0.76
and the estimated initial values Y(t0)=0.92 and Z(t0)=2.02.
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Fig. 6.
The expression profiles of three genes measured at 5, 10, 15, 20, 30, 40, 60, 80 min. The
data were collected by DNA microarrays from yeast after the temperature was increased
from 25°C to 37°C (Gasch et al., 2000).
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Fig. 7.
The histogram for the sum of squared errors from the simulated data to ODE solutions.
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Table 3

Identify whether three genes can compose a FFL with the goodness-of-fit test of dynamic models

Gene X Gene Y Gene Z SSE P-values

GCN4 LEU3 ILV5 0.090 0.25

PDR1 PDR3 PDR5 1.17 0.33

GCN4 LEU3 ILV1 0.092 0.34

YLL044W YER096W YDR279W 0.84 0.046

SSE is the sum of squared errors from the real data to ODE solutions.
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