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SUMMARY
In this paper, we develop a Bayesian method for joint analysis of longitudinal measurements and
competing risks failure time data. The model allows one to analyze the longitudinal outcome with
nonignorable missing data induced by multiple types of events, to analyze survival data with
dependent censoring for the key event, and to draw inferences on multiple endpoints
simultaneously. Compared with the likelihood approach, the Bayesian method has several
advantages. It is computationally more tractable for high-dimensional random effects. It is also
convenient to draw inference. Moreover, it provides a means to incorporate prior information that
may help to improve estimation accuracy. An illustration is given using a clinical trial data of
scleroderma lung disease. The performance of our method is evaluated by simulation studies.
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1. INTRODUCTION
In many studies, a response variable (e.g. biomarker) is repeatedly measured during the
followup and the occurrence of some key event is monitored for each subject. Often the key
event is dependently censored by some events such as disease-related dropout. An example
is the Scleroderma Lung Study (SLS) [1]. The objective of this study is to evaluate the
effectiveness of oral cyclophosphamide (CYC) versus placebo in the treatment of active,
symptomatic lung disease due to scleroderma. The primary lung function outcome is forced
vital capacity (FVC, as % predicted) measured longitudinally. The time to treatment failure
or death is also recorded. In addition to independent censoring such as moving to another
place, there is also dependent censoring by disease-related or treatment-related dropouts,
such as those due to worsening disease, or serious adverse events (AEs).

When modeled separately, random effects models [2] and Cox proportional hazards models
[3] are often used to evaluate treatment effect on the repeated measures and survival data,
respectively. However, joint modeling of both outcomes is often necessary. First of all, for
the longitudinal analysis, missing data of the longitudinal response induced by the events

Copyright © 2009 John Wiley & Sons, Ltd.
*Correspondence to: Wenhua Hu, Bristol-Myers Squibb, 5 Research Pkwy, Wallingford, CT 06450, U.S.A. wenhua.hu@bms.com.

NIH Public Access
Author Manuscript
Stat Med. Author manuscript; available in PMC 2011 September 7.

Published in final edited form as:
Stat Med. 2009 May 15; 28(11): 1601–1619. doi:10.1002/sim.3562.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



might be related to the response itself, making the missing mechanism nonignorable. The
separate model without modeling the missing mechanism, such as a linear mixed effects
model may give biased inference. For instance, in the SLS study, patients with lower
(worse) %FVC may tend to experience failure or drop out from the study earlier than
healthier individuals. This leads to fewer measurements of low %FVC, which might result in
overestimating the overall %FVC level for the period after the dropouts. Second, some
unmeasured variable or latent factor associated with time to events might induce unobserved
heterogeneity among subjects. With the help of joint modeling longitudinal measurements,
the estimation is expected to be more efficient for parameters in survival endpoint. Third,
joint modeling makes it possible to evaluate treatment effects on the two endpoints
simultaneously.

Joint modeling has been studied extensively in recent years. Much of the previous work on
joint modeling can be classified into three categories: (i) inference for longitudinal
measurements with nonignorable missing data due to dropout [4–7]; (ii) inference for time-
to-event conditional on the time-dependent covariate [8–12]; and (iii) simultaneous
inference for the longitudinal measurements and time-to-event [13, 14]. Most of these joint
models assume single failure type with independent censoring. Most recently, Elashoff et al.
[15, 16] considered a more general joint model, which incorporates competing risks model
for survival endpoint, using a likelihood approach. Their model allows dependent censoring
by treating it as a competing risk. Their proposed competing risks models could be a cause-
specific model [17] or a mixture sub-model [18], in which the probability of failure type and
the conditional hazard rate for each failure type were modeled with the logistic model and
the proportional hazards model, respectively. They derived EM-based algorithms to obtain
the parameter estimates, and a profile likelihood method was used to estimate the standard
errors. However, their EM algorithm involves multi-dimensional integration which can be
formidable and computationally expensive for high-dimension random effects problems.
The rounding error from numerical integration may also result in inaccurate inference for the
parameters. Another problem with the likelihood approach is that variance estimation
usually requires asymptotic arguments and can be quite complicated to derive [19].
Moreover, there is always the issue of whether the sample size is large enough for the
asymptotic approximation to be valid.

The purpose of this paper is to develop a Bayesian framework for joint modeling of
longitudinal measurements and competing risks failure time data. Faucett and Thomas [9],
Wang and Taylor [10], and Brown and Ibrahim [11] explored a Bayesian method for a
single type of failure with independent censoring. To the best of our knowledge, this paper is
the first to apply the Bayesian idea to the more general joint model of Elashoff et al. [16]
with multiple types of failures in the failure time data. Under the Bayesian framework,
variance estimates and other posterior summaries can be calculated directly from the
posterior samples using standard Markov chain Monte Carlo (MCMC) sampling techniques.
Unlike the likelihood approach, the Bayesian method can avoid high-dimensional
integration and computational implementation is typically not more difficult as the number
of random effects grows. For instance, in the SLS study (Section 4, Table I), the cost of
computation for the four models are similar even though the last model involves four
random effects. The Bayesian method also enables one to incorporate prior information into
the current analysis [20] in a natural way. As illustrated in our simulation (Section 5, Table
V), for small samples, incorporation of appropriate informative priors may improve the
estimation accuracy of some parameters by decreasing the bias or standard error.

The remainder of the paper is organized as follows. Section 2 gives the formulation of our
joint model. Section 3 describes the posterior densities and the sampling procedures. Section
4 presents the analysis of a clinical trial data for Scleroderma lung disease using the
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developed method. In Section 5, the performance of our joint model is evaluated with
simulation studies. We conclude with a discussion in Section 6.

2. THE JOINT MODEL
Our joint model consists of two submodels: a linear mixed effects model and a competing
risk model. Suppose there are m subjects in the study. For subject i, the longitudinal
response Yi follows a linear mixed effects model:

(1)

where Yi is ni ×1,  is an ni × p design matrix for fixed effects, β is a p×1 parameter
vector of regression coefficients, commonly referred to as fixed effects in the model, Zi is an
ni ×Q matrix of covariates for the Q×1 vector of errors Ui, and εi is an ni It is assumed that εi
is independent of Ui and is normally distributed Nni (0,σ2 Ini).

During the followup, each subject may experience one of K distinct types of failure or could
be right censored. Occurrence of one type of failure precludes us observing other types of
failures. Let Ci =(Ti, Di) be the competing risks data on subject i, where Ti is the failure time
or censoring time, and Di takes a value from 0,1,…, K, with Di =0 indicating a censored
event and Di =k, where k =1,…, K, indicating that subject i fails from the kth type of failure.
Dependent censoring can be treated as one of the K types of failure. The censoring
mechanism other than the considered dependent censoring is assumed to be independent of

the survival time. Let  be a 1×R row vector of covariates potentially related to the
competing risks process. A cause-specific hazard model with random effects is assumed for
competing risks survival data:

(2)

where the function  gives the instantaneous hazard rate from cause k at

time t, given the regression vector  and the latent unknown factor vi, in the presence of
the other failure types. The regression coefficient ν(k) represents the effect of the latent

variable vi and γ(k) represents the effects of the observed covariates in  to the kth type

of failure. Suppose that ,  where  is time-

independent and  is time-dependent. Our model allows both nonignorable monotone
missing data caused by death/dropout and ignorable missing data (missing-at-random) at
intermittant visit times. It is possible to have two types of missing data for the longitudinal
measurements after the event time.

We assume that Ui and vi jointly have a multivariate normal distribution:

(3)

The parameter ν(1) is set to 1 to ensure identifiability. We further assume that the kth

baseline hazard is a step function, , for , where  is
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a partition of (0, ∞). Here S(k) is the total number of pieces of the step function for type k
failure and s=1,…, S(k). Note that any hazard function can be approximated by a piecewise
step function. More discussion on this issue is given later in the discussion section.

The parameters Σuv measure the latent association between the longitudinal measure and
time-to-event introduced by U and v. If Σuv =0, then the joint model we proposed would
reduce to those of separate analysis and the joint model and separate model give identical
inference for fixed effects. In addition, recall that dependent censoring can be treated as one
of the K competing risks. The magnitude of heterogeneity induced by the unobserved factor
v to the first type of event is characterized by . The parameters ν measure the latent
association between the competing risks. The parameter ν(k) measures the latent dependence
of the kth type of failure and the first type of failure. For example, in our SLS application,
σuv<0 would indicate that there is a latent dependence between the longitudinal response
%FVC and the survival process. The significance of the coefficient σ(2) would indicate that
there is a latent association between the two types of events and that the censoring of the key
event treatment failure or death is informative. The negative value of σuv and the positive
value for ν(2) would indicate that there is a higher risk of treatment failure and/or disease-
related dropout for subjects with more rapidly declining %FVC during the study, which
could lead to biased estimation of the time trend and the variance of the random slope.

3. ESTIMATION METHODS
3.1. The likelihood

This section describes our Bayesian estimation procedure. The parameters in the joint model
are (Ui, vi, i = 1,…,m), β, σ2, Σu, Σuv, , γ=(γ(1), γ(2),…, γ(K)), ν=(ν(2),…, ν(K)), and

.

To ease the computation, we reparameterize (3) as

(4)

where θ is Q vector, ei~N(0, ), and Ui~N(0, Σu). It is easy to see that =θ′Σuθ+  and
Σuv=Σuθ. The reparameterization of (4) provides an attractive alternative for specitfying the
noninformative priors for the relationship between two latent factors Ui and vi. With this
reparameterization, one only needs to specify priors for θ and . In contrast, (3) would

require specification of noninformative priors for the whole covariance matrix of 
which is notoriously tricky.

Define: Ω=((Ui, ei, i=1,…,m), β, σ(2), Σu, γ, ν, λ0, θ, ). Assume that parameters β, σ2, Σu,
γ, ν, λ0, θ, and  have independent priors. Assume further that for each subject, the
longitudinal data are independent of the survival data conditional on Ω, Xi, Zi, and the latent
factors Ui and vi. Then, the contribution of subject i to the conditional likelihood is:

(5)
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where  exp  and  exp

 dt.

Note that, under the piecewise constant assumption,

(6)

with  exp  dt, s=1,…,S(k).

3.2. MCMC sampling procedure
Markov chain Monte Carlo (MCMC) methods are used for posterior sampling [21].
Itinvolves sampling directly from the full distribution, Metropolis–Hastings (MH) sampling
[22, 23], and adaptive rejection sampling (ARS) [24], as described below.

The full conditional distribution of the parameters is given in the Appendix. For parameters
β, σ2, Σu, , and λ0 in our joint model, each of the conditional distributions is the product of
some standard distribution and the prior. If a conjugate prior is used, drawing random
variates from their full conditional distributions is straightforward. For the parameters Ui
(i=1,…,m) the full conditional density is the product of a normal density from the
longitudinal data and a factor from the survival data. We use the one-step MH algorithm to
obtain the update in the sampling sequence, and the normal density from the longitudinal
data as the proposal density. The parameter Ui is obtained by first sampling a random variate
from the conditional density based on the longitudinal data and then using the conditional
likelihood contribution from the survival data to determine the acceptance of the new draw.
For the parameter  (k=1,…, K, r=1,…, R), in the survival model, we use a Metropolis
sampler to update the values of these parameters since the direct sampling is not available.
For each of these parameters, we propose a normal density as the proposal density, which
has the current parameter value as its mean and its standard deviation set to four times the
standard error of a maximum partial likelihood estimate from a standard Cox model [10].
The parameter ei (i=1,…,m) is obtained by first sampling a random variate from the normal
densities as its assumption and then by using the conditional likelihood contribution from
the survival data to determine the acceptance of the new draw. Parameters θ and ν(k) are
obtained using ARS.

The initial values of the parameters for sampling are obtained by modeling the longitudinal

data and survival data separately. The initial value for (s=1,…,S(k), k=1,…,K) can be
obtained by drawing a random variate from the gamma full conditional distribution in the
Appendix.

3.3. Inference
We estimate the parameters by the posterior medians. The approximate 95 per cent
probability interval is based on the 2.5th percentile and the 97.5th percentile. Standard errors
are obtained using the standard deviations of the posterior samples. The procedure has been
shown to work well by the application and simulation study in the later sections.
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4. APPLICATION
In this section, we apply our method to analyze the SLS data [1] discussed earlier in the
Introduction. The SLS is a double-blinded, randomized, placebo-controlled trial on patients
with evidence of active alveolitis and scleroderma-related interstitial lung disease. The
primary study objective is to determine if oral cyclophosphamide (CYC) compared with
placebo can either improve pulmonary function as measured by forced vital capacity (FVC,
as % predicted) or reduce the risk of treatment failure or death. Patients received CYC or
placebo for 1 year and were followed for an additional year. Initially, patients were given a
partial dose, and the dose was gradually increased to the target level within the first 6
months. %FVC was assessed every 3 months. Our analyses use data from 6–21 months from
the 140 subjects who completed at least six months of treatment. Baseline covariates such as
age and degree of fibrosis in the lung (FIB) were also recorded. It should be noted that the
data we use here do not include the measurements of %FVC after the observed treatment
failures since the patients might have switched to other treatments after the treatment
failures, which differs from the analysis by Elashoff et al. [16].

We observed 16 treatment failures or deaths, 37 disease-related dropouts due to worsening
disease or AE, and 12 independent dropouts with no evidence that the dropouts were related
to disease. The rest were administratively censored. We consider treatment failure or death
as risk 1 and disease-related dropout as risk 2. The average number of visits per patient was
6.0. As discussed earlier in Section 1, both treatment failure or death and disease-related
dropout could cause nonignorable missing data for the longitudinal measure %FVC.

We applied the joint model described in Section 2 to the SLS data after adjustment of
baseline %FVC, age, and degree of fibrosis in the lung to their means. In the sub-model for
%FVC, we fitted the following linear mixed effects model with random effects Ui:

(7)

in which, for subject i, Agei is the age at baseline, FVC0i is the baseline %FVC, FIBi is the
degree of fibrosis in the lung, CYCi is the CYC treatment group indicator, timeij is the
measurement time for visit j in months, Ui represents random effects, and the εij's are
mutually independent normal measurement errors with mean 0 and variance σ2. Here, Zij
includes covariates for random effects. We considered multiple choices for Zij and selected
the model based on the DIC criterion [25]. The results are shown later.
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A competing risks sub-model is used to model treatment failure or death (risk 1) and
disease-related dropout (risk 2):

(8)

and

(9)

in which the latent variables follow a bivariate normal distribution:

in which Σuv=[σu1v, σu1v,…,σuQv]T.

We used a piecewise exponential baseline hazard function with three knots for the event of
treatment failure or death and the event disease-related dropout, respectively, and the time
points defining the steps are taken to be 3 equally split percentiles of the observed dropout
times for the two event types, respectively. We used a combination of weakly informative
and standard prior distributions. The corresponding priors for the parameters are given as
β0~ N(70, 400) with other β's βl~N(0, 400) such that l=1,…,9, σ2~IG(0.001, 0.001), 

~IG(0.001, 0.001), ~IG(0.001, 0.001), θ~N(0, 1010), ~Γ(0.1, 0.1) such that s 1,…, S(k)

and k=1, 2; ~N(0, 20) such that k=1, 2and r=1,…,7, and ν(k)~N(0, 20) where k=2. Recall
that θ is defined in (4). In case θ is a vector, we used an independent element of flat normal
prior N(0, 1010) for each element of θ.

Table I summarizes the results for some models with different structures of random effects
Zij. The model with a random slope ([Timeij]) has the smallest DIC, indicating that it
provides the best fit for the data among the four models. The inference for Σuv indicates that
there exists latent dependence between the longitudinal measurements and the survival data
since at least one element in Σuv is negatively significant in each model. It is worth noting
that all the models give a positive significance of ν(2), indicating that there is latent
association between the two types of failures and censoring for the key event of treatment
failure or death by disease-related dropout may be dependent. Subjects with larger latent
factor v tend to experience treatment failure and disease-related dropout earlier than those
with a lower v.

The results of parameter estimates and 95 per cent confidence intervals based on the selected
random slope model with Zij as ([Timeij]) are summarized in Table II, together with those
from a separate analysis. In the separate analysis, the longitudinal and survival data are fitted
separately using two marginal sub-models, a linear mixed model (7) and a cause-specific
competing risks model with a common frailty (8)–(9), respectively.

It is seen from Table II, based on our joint model, that the degree of fibrosis in the lung is
negatively correlated with %FVC (  per cent CI: (−2.76,−0.58)). The baseline
%FVC is highly correlated to %FVC during the followup (  per cent CI:
(0.81,1.00)). The %FVC for the placebo group declines significantly by a factor of 0.22 each
month (95 per cent CI for β8: (−0.38,−0.05)). This result differs from the analysis by
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Elashoff et al. [16], who included the measurements of %FVC after the observed treatment
failures and found nonsignificant time trend. After carefully examining the available %FVC
values after the observed treatment failures, we find that these measurements tend to get
greater than those values prior to the treatment failures, which results in a weakened decline
time trend in their analysis. The significance of the interaction term between the treatment
group and time indicates that the developing trend of %FVC for the CYC group is different
from that of the placebo group. During one month, the %FVC decreases for the CYC group
is 0.25 (95 per cent CI for β9: (0.01,0.48)) less than that of the placebo group. In contrast to
a declining %FVC in the placebo group, there is an increasing trend for %FVC in the CYC
group (  per cent CI: (−0.14,0.19)).

Our joint analysis for the survival endpoint concludes that older subjects have an increased

risk in experiencing treatment failure (  per cent CI: (0.02,0.20)) and disease-

related dropout (  per cent CI: (0.01,0.09)). Baseline %FVC also affects the risk

to experience disease-related dropout (  per cent CI: (−0.12,−0.02)), but this

effect in the CYC group differs from the placebo group (  per cent CI:
(0.02,0.16)).

The joint and separate analyses give different results on the time trend parameters. Based on
our joint model, the %FVC for the placebo group declines significantly ( , 95 per
cent CI (−0.38,−0.05)). The interaction term between time trend and the treatment group is
significant ( , 95 per cent CI: (0.01,0.48)). However, the separate linear mixed effects
model analysis fails to detect a significant decline in %FVC for the placebo group
(  per cent CI (−0.31,0.03)), and does not reach significance for the difference
of developing trends between the placebo and CYC groups ( , 95 per cent CI:
(−0.03,0.44)). The posterior distribution of β8 (time trend for the placebo group) and β8+β9
(time trend for the CYC group) are noticeably seen different, as shown in Figures 1 and 2.

Asides from the time trends, the variance of the random slope estimated with the separate
analysis ( , 95 per cent CI (0.20,0.36)) is smaller than that in joint analysis
( , per cent CI:(0.22,0.41)). Our simulations in the later section show the
underestimation of this parameter with the separate analysis in presence of nonignorable
missing data due to the response related events.

We also notice that in the survival submodel the estimates and confidence intervals for some
parameters derived with the joint model differ greatly from the separate models. With the
help of modeling longitudinal outcomes, the joint model is expected to improve the
estimation of the parameters in the survival model.

The differences between the separate and joint analysis might be explained by the negative
significance for the covariance σuv (estimate −1.18, 95 per cent CI: (−2.16, −0.62)) between
the latent variable of the longitudinal model and that of the survival model. This indicates
that there is a dependence between the longitudinal response %FVC and the survival
process. The significance of the coefficient ν(2) (estimate 0.21, 95 per cent CI: (0.01,0.52))
indicates that there is a latent association between the two types of events. The negative
value of σuv and the positive value for ν(2) indicate that there is a higher risk of treatment
failure and/or disease-related dropout for subjects with more rapidly declining %FVC during
the study, which leads to biased estimation of the time trend and the variance of the random
slope.
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5. SIMULATION STUDY
First we conducted a simulation to compare the performance of the likelihood and the
Bayesian approaches for the joint model we proposed. The longitudinal responses were
simulated from a random slope linear mixed model

(10)

for j=1,…,ni, where εij ~N(0,σ2). The covariate X1i was simulated from a Bernoulli
distribution with success probability of 0.5 acting as a treatment group indicator for a 1:1
allocation in randomization trials. The data for longitudinal measurements were generated
for every 0.5 unit from 0 to 5. We simulated two competing risks, risk 1 and 2, from the
following cause-specific proportional hazards model with the random effects vi:

(11)

(12)

where X1i was shared with the longitudinal model and covariate X2i was simulated from a
normal distribution with mean 0 and variance 0.1. We used constant baseline hazards of 0.1
and 0.2 for risk 1 and risk 2, respectively, to generate the event time data. The latent
variables were generated from the following bivariate normal distribution:

The censoring time was generated from an exponential distribution with a constant hazard
rate of 0.1. The parameters are given in Table III. With this setup, the rate of risk 1 is
approximately 0.43, the rate of risk 2 is 0.38, and censoring rate is 0.19. Longitudinal
responses are missing after the observed or censored event times. The average number of
total longitudinal observations is 3.7 per subject.

Vague priors were used in the Bayesian model. We used N(0,1010) priors for β0, β1, β2, ,
ν(2), θ, IG(10−3,10−3) for σ2, , , and Γ(10−2, 10−2) for λ0s. The Jeffreys' [26] priors give
similar results and are not shown here. The MCMC sampling in all simulation studies was
run using 5 000 iterations, and the estimation results were based on the last 4000 iterations.

For this simulation, sample sizes of 100, 200 and 500 were considered. Table III shows that
except for the frailty parameters in the survival submodel, both the Bayesian model with
noninformative priors and the likelihood method have small bias and good coverage
probabilities in almost all cases. For the frailty parameters, larger samples are needed to get
good estimate.

We did another simulation to compare our joint analysis with a separate analysis and a joint
analysis that ignores the dependent censoring (i.e. treats the dependent censoring as
noninformative censoring). The data were generated same as (10)–(12). We analyzed 200
Monte Carlo data replications with the joint analysis incorporating-dependent censoring (i.e.
our joint model treating-dependent censoring as a competing risk), the joint analysis
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ignoring-dependent censoring and the separate analysis. We compared bias, coverage rate of
the 95 per cent intervals and standard deviations of the posterior medians in Table IV. For
the separate analysis, a random slope linear mixed model (10) was fitted to the longitudinal
outcome and a cause-specific competing risks model (11)–(12) was fitted to the two types of
failures separately. In the joint analysis ignoring-dependent censoring, only (10) and (11)
were included, with the second type of risk treated as independent censoring. Sample sizes
of 200 and 500 were considered in this simulation study.

We notice from Table IV that the joint analysis incorporating-dependent censoring gives
nearly unbiased estimates for all the parameters, and the coverage rates for the 95 per cent
confidence intervals are close to the nominal value. In the separate analysis, the time trend
β2 (the time trend for the control group) and the variance of the random slope  are
underestimated, even for the larger sample size of 500. This is a consequence of having
nonignorable missing data induced by two types of failures. Because the coefficients σuv,
ν(2) are positive, a higher risk of failures is expected for those subjects with greater
ascending rates in the longitudinal outcome. This cannot be handled properly by the separate
linear mixed effects model. Moreover, the joint analysis incorporating-dependent censoring
as a competing risk provides much more accurate estimates than treating it as
noninformative censoring. In addition, the standard deviations of the posterior estimates in
the separate analysis for the survival data are larger than those in the joint analysis. The
accuracy for estimating the frailty and the efficiency for estimating the other parameters in
the survival endpoint are improved by incorporating the longitudinal outcome in our
proposed joint model. In the joint analysis ignoring the dependent dropout, β2 (the time
trend for the control group) is also biased (underestimated). Because the nonignorable
missing values are due to both failure types, considering one failure type may only partially
correct this problem. Moreover, the variance of the latent variable in the survival sub-model
is overestimated without considering the second type of failure. This shows that the latent
variable might not be correctly estimated if dependent censoring is treated as noninformative
censoring.

A third simulation was conducted to demonstrate that appropriate informative priors could
improve estimation for the parameters, especially for smaller samples. Sample sizes of 50
and 100 were considered. We considered two methods. The first method used the same
noninformative priors as in the previous simulations. The second method used informative
priors for some parameters, with the prior means set as the true parameter values. We used

N(1,0.04) for β2, N(0.8,0.25) for , N(1.2,1) for ν(2), N(0.8,4) for θ, IG(5.56,1) for  and
the same priors for the other parameters as the previous simulation. We used N(0,4) for β2,

N(0,25) for , N(0,4) for ν(2), N(0,4) for θ, IG(1,1) for  and the same priors for the other
parameters as the previous simulation. The results are summarized in Table V.

It is seen that for the relatively small sample sizes of 50 and 100, some parameters such as
β2, , σuv, , and ν(2) are not well estimated when using noninformative priors. However,
with good informative priors, the estimation accuracy is greatly improved. Finally, we note
that informative priors should be used with caution since poor prior information may induce
additional bias.

Finally, we conducted a simulation using a setup similar to the SLS. The longitudinal
response and the competing risks event times were simulated from models (7)–(9) with Zij
as ([Timeij]), in which the covariates were generated from distributions similar to those in
the SLS. All the parameters for generating the data were set close to the estimated values
from the joint analysis for the SLS listed in Table II. Weibull baseline hazard functions were
used to produce similar risk rates to those in the SLS since we observed increasing estimated
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baseline hazard trends for both failure types. The results from the joint analysis and the
separate analysis are compared in Table VI using 200 simulated data sets with m equal to
140. We used a piecewise exponential baseline hazard function with three knots for
modeling the sample size of 140. The time points defining the intervals are taken to be 33th,
67th, and 100th percentiles of the observed failure times.

Table VI shows that joint analysis incorporating-dependent censoring gives good point
estimates and coverage rates for the parameters in the longitudinal submodel. The separate
analysis produces comparable estimates for most parameters except a biased time trend β8

and an underestimated variance , which confirms the analysis in Section 4. These biases
do not decrease even for the larger sample size of 500 (simulation results are not reported
here). The separate competing risks model estimated the random effect parameters (ν(2), )

and some others ( , , , ) poorly. With a small sample size of 140, low event rates
(12 per cent for risk 1 and 28 per cent for risk 2) and small number of intervals for the
piecewise exponential baseline hazard function, even joint analysis incorporating-dependent
censoring may not estimate the random effects vi well, resulting in poor parameter estimates

for the survival data ( , ). This can be improved when the sample size increases to 500
and the number of knots increases to 8 (simulation results are not reported here). With more
data and more number of knots to allow a better approximation to the true baseline hazard
function, the frailty at the survival endpoint is better estimated, along with the other
parameters modeling the survival data.

6. DISCUSSION
We proposed a Bayesian method for joint modeling of longitudinal and competing risks
survival data. The joint model provides a useful method for analysis of the longitudinal data
with nonignorable missing data induced by multiple types of events. The competing risks
submodel enables one to handle dependent censoring for the key event by treating it as a
competing risk. It also allows simultaneous inference on both longitudinal and survival
endpoints. Moreover, by combining the information from the longitudinal data, the joint
model improves the accuracy and efficiency of the parameter estimates for the survival
endpoint compared with a separate survival analysis. The developed Bayesian method has
some appealing features. Computationally, it can easily handle high-dimensional random
effects, which is difficult under the frequentist framework (e.g. [15, 27]). In addition,
standard errors and confidence intervals can be conveniently obtained from the posterior
samples. It also allows incorporation of prior information.

Our method requires a specification of the piecewise baseline hazard in the competing risks
submodel (2). In practice, the intervals for the baseline hazard can be defined based on the
quantiles of the observed event times. Our simulations with the data generated with the
Weibull baseline hazard demonstrated this works well. We also studied the appropriate
number of intervals for the function with simulation studies. We observed that an increase in
number might decrease the estimation bias for the parameters in the survival submodel with
the data generated with a Weibull (nonconstant) baseline hazard rate. We also observed
inflated standard errors for these parameters with the data generated with an exponential
(constant) baseline hazard rate. The number of intervals has a small effect on the inference
for the parameters modeling the longitudinal measurements. In practice, we suggest to first
fit the data with a large number of pieces, and then combine the adjacent intervals with
similar baseline estimates.

Our model can be extended to handle clustered data. Clustered data arise frequently from
multi-site clinical trials in which each site can be viewed as a cluster, from studies with
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families data, or from studies with recurrent events for each subject. A simple method is to
add an additional random effect in our joint model to adjust for heterogeneity across the
clusters. Our computational MCMC algorithm can be adopted without much modification.

We assume multivariate normal distribution of random effects in the joint model.
Robustness against the departure from the normality assumption has been studied by several
authors [19, 28, 29]. These authors have reported similar findings that inference seems
generally robust against the normality assumption for the random effects. We also have done
some simulation, which is not reported here, and confirm their findings with symmetric
distributions. On the other hand, if the underlying distribution is asymmetric, such as
exponential, we also observe biased estimation for those parameters directly related to the
random effects. To allow more flexibility and robustness for random effects, Brown and
Ibrahim [11] proposed a semiparametric Bayesian hierarchical joint model with a single
failure type and it can be extended to our situation.

Our limited experience suggests that our method is pretty robust with respect to the
normality assumption of measurement errors, even when underlying error distribution is
asymmetric, such as exponential or unbalanced normal mixtures. However, our method is
observed to be sensitive to outliers. In a sequel, we will develop a robust joint model for
longitudinal and survival data.

Acknowledgments
We are grateful to the associate editor and two referees for their insightful comments and suggestions that lead to
significant improvement of this paper. We would also like to thank Dr Donald P. Tashkin of the UCLA David
Geffen School of Medicine for providing the Scleroderma Lung Study data. Gang L's research was supported in
part by NIH grant CA016042 and NIH grant P01AT003960.

Contract/grant sponsor: NIH; contract/grant numbers: CA016042, P01AT003960

APPENDIX: FULL CONDITIONAL DENSITIES
We used Gibbs sampling to sample from the joint posterior distribution of the parameters:

(Ui, β, σ2, Σu, , ν(k), , ei, ). We use the notation [.] and [.|.] to denote marginal and
conditional densities, respectively.

•
Sample [σ2|.]∝InvGamma [σ2], where , and

.

• Sample [β|.]∝N((XT X)−1 X(Y−ZU), (XT X)−1σ2)[β].

•
Sample [Σu|.]∝InvWish(m−Q−1, S−1)[Σu] where .

• Sample [Ui|.]∝N

, i=1,…,m

where  and  and 
is defined as (6), MH.

•
Sample , k=1,…,K where

 and
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 dt.
Here  is the number of events occurring in the time interval

 for failure type k.

•
Sample , r=1,…,R

k=1,…K where , MH.

•
Sample , k=2,…,K

where , ARS.

•
Sample , q=1,…,Q

where , ARS.

•
Sample , i=1,…,m where

 is defined as (6), MH.

•
Sample ∝ InvGamma( , ) [ ], where , and .
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Figure 1.
Posterior densities of time trend for the placebo group in the SLS study from the separate
models and the proposed joint model. The vertical lines represent the posterior medians. The
estimates and CIs for the two methods are: −0.14(−0.31 0.03), −0.22(−0.38−0.05),
respectively.
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Figure 2.
Posterior densities of time trend for the CYC group in the SLS study from the separate
models and the proposed joint model. The vertical lines represent the posterior medians. The
estimates and CIs for the two methods are: 0.07(−0.10, 0.22), 0.03(−0.14, 0.19),
respectively.
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Table I

Results for the different models examined with specification as (7)–(9).

Latent dependence

Zij # of RE Parameter Inference DIC

[1] 2 σ u1u −12.40 (−25.38,−5.41) 5777.1

ν (2) 0.24 (0.01,0.73)

[timeij] 2 σ u1u −1.18 (−2.16,−0.62) 4921.1

ν (2) 0.21 (0.01,0.52)

[1,timeij] 3 σ u1u −0.84 (−7.20,5.34) 5529.8

σ u2u −1.36 (−3.03,−0.58)

ν (2) 0.27 (0.04,0.64)

[1,timeij,CYCi] 4 σ u1u −0.65 (−8.21,4.43) 5821.6

σ u2u −1.49 (−3.09,−0.64)

σ u1u 0.67 (−7.46,10.46)

ν (2) 0.25 (0.04,0.69)
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Table II

Results from analyzing the SLS data using a random slope model. Entries in boldface indicate different results
from the joint and separate analysis.

Factor Separate analysis Estimate (95 per cent CI) Joint analysis Estimate (95 per cent CI)

Longitudinal outcome %FVC

 Intercept (β0) 66.83 (65.40 68.21) 67.18 (65.87 68.52)

 Age (β1) −0.03 (−0.12 0.06) −0.03 (−0.11 0.06)

 CYC group (β2) −0.82 (−2.75 1.10) −0.99 (−2.88 0.90)

 Fibrosis (β3) −1.67 (−2.74 −0.62) −1.67 (−2.76 −0.58)

 Baseline %FVC (β4) 0.91 (0.82 1.00) 0.90 (0.81 1.00)

 Age × CYC group (β5) 0.07 (−0.07 0.21) 0.07 (−0.07 0.22)

 Fibrosis × CYC group (β6) 1.36 (−0.19 2.94) 1.30 (−0.25 2.89)

 Baseline %FVC × CYC group (β7) 0.11 (−0.03 0.25) 0.11 (−0.03 0.25)

 Time(month) (β8) −0.14 (−0.31 0.03) −0.22 (−0.38 −0.05)

 Time (month) × CYC group (β9) 0.21 (−0.03 0.44) 0.25 (0.01 0.48)

  σ 2 20.22 (17.91 22.86) 19.79 (17.56 22.38)

  σu
2

0.26 (0.20 0.36) 0.30 (0.22 0.41)

Time to treatment failure or death

 Age (γ1
(1)) 0.09 (−0.01 0.45) 0.10 (0.02 0.20)

 CYC group (γ2
(1)) −1.30 (−6.13 1.63) −1.33 (−3.61 0.61)

 Fibrosis (γ3
(1)) −0.14 (−2.49 1.34) −0.45 (−1.77 0.68)

 Baseline %FVC (γ4
(1)) 0.10 (−0.01 0.55) 0.03 (−0.06 0.13)

 Age × CYC group (γ5
(1)) −0.10 (−0.60 0.10) −0.13 (−0.30 0.01)

 Fibrosis × CYC group (γ6
(1)) −0.70 (−4.38 2.42) 0.12 (−1.89 2.25)

 Baseline %FVC × CYC group (γ7
(1)) −0.17 (−0.84 0.02) −0.05 (−0.21 0.12)

Time to disease-related dropout

 Age (γ1
(2)) 0.04 (0.00 0.10) 0.05 (0.01 0.09)

 CYC group (γ2
(2)) 0.44 (−0.43 1.41) 0.40 (−0.41 1.28)

 Fibrosis (γ3
(2)) 0.09 (−0.49 0.68) 0.07 (−0.44 0.58)

 Baseline %FVC (γ4
(2)) −0.07 (−0.14 −0.02) −0.06 (−0.12 −0.02)

 Age × CYC group (γ5
(2)) −0.01 (−0.09 0.06) −0.03 (−0.09 0.03)

 Fibrosis × CYC group (γ6
(2)) 0.11 (−0.67 0.91) 0.18 (−0.55 0.91)

 Baseline %FVC × CYC group (γ7
(2)) 0.10 (0.03 0.19) 0.09 (0.02 0.16)
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Factor Separate analysis Estimate (95 per cent CI) Joint analysis Estimate (95 per cent CI)

 Random effects for survival endpoint

  ν (2) −0.14 (−5.18 4.52) 0.21 (0.01, 0.52)

  σv
2

13.24 (0.00 142.91) 5.07 (1.52, 18.91)

Covariance of ui and vi

  σ uv — −1.18 (−2.16, −0.62)
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