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Abstract
The cAMP-dependent protein kinase A (PKA) is targeted to specific compartments in the cardiac
myocyte by A-kinase anchoring proteins (AKAPs), a diverse set of scaffold proteins that have
been implicated in the regulation of excitation-contraction coupling and cardiac remodeling.
AKAPs bind not only PKA, but also a large variety of structural and signaling molecules. In this
review, we discuss the basic concepts underlying compartmentation of cAMP and PKA signaling,
as well as a few of the individual AKAPs that have been shown to be functionally relevant in the
heart.
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In the heart, stimulation of Gs-protein coupled receptors by catecholamines, prostanoids and
peptide hormones all increase levels of the second messenger cyclic-adenosine
monophosphate (cAMP). Through cAMP signaling pathways, these receptors differentially
control inotropy (strength of muscle contraction), lusitropy (rate of relaxation), and
chronotropy (heart rate), as well as myocyte hypertrophy (growth), metabolism, and cell
survival. cAMP is synthesized by adenylyl cyclases (AC) and degraded by
phosphodiesterases (PDE), both present in a large number of isoforms subject to diverse
modes of regulation [1, 2]. Direct cAMP targets include protein kinase A (PKA), the small
G protein guanine nucleotide exchange factor Epac, and hyperpolarization-activated and
cyclic-nucleotide gated ion channels. PKA holoenzyme contains two regulatory “R” and two
catalytic “C” subunits. cAMP binding to R-subunits causes release of the C-subunits and
activation of the protein kinase. Over thirty years ago, it was recognized that stimulation of
β-adrenergic receptors, but not prostanoid receptors, was inotropic, even though both
increased intracellular cAMP levels and activated PKA [3–5]. Together, these fundamental
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observations raised a profound question which has been the subject of intense research to
this day: how can a diffusible second messenger that activates a diffusible protein kinase
differentially activate downstream signaling pathways that control distinct cellular
processes?

One mechanism by which cAMP signals are spatially and temporally restricted is through
the formation of multimolecular complexes or “signalosomes” by A-kinase anchoring
proteins (AKAP) [6, 7]. There are over fifty known AKAPs (including alternative-spliced
forms) that target PKA to different sites within the cell [8]. While AKAPs share in common
their ability to bind PKA, they are remarkably diverse scaffold proteins. Within each
signalosome, AKAPs couple PKA to different substrates, enhancing the rate and fidelity of
their phosphorylation by the kinase. By incorporating select ACs, AKAPs direct the specific
phosphorylation of these substrates in response to relevant stimuli [9]. In contrast, which
phosphodiesterase is present in individual AKAP complexes affects the duration, amplitude,
and spatial extent of cAMP signaling, as well as defining crosstalk with other signaling
pathways [10, 11]. By bringing together different combinations of upstream and downstream
signaling molecules, AKAPs provide the architectural infrastructure for specialization of the
cAMP signaling network.

Compartmentation of the Second Messenger cAMP
Cyclic AMP is a small, freely diffusible hydrophilic molecule. While it is straightforward
that through direct protein-protein interactions, scaffold proteins may physically organize
the cAMP machinery within individual compartments, it is less intuitive how inappropriate
signaling between adjacent compartments is prevented. This “compartmentation” can be
imposed by either physical or functional barriers [12]. Functional compartmentation
involves the production of areas of cAMP rarefaction by distinct pools of PDE anchored by
AKAPs and other scaffold and adaptor proteins. Investigations using ion channels and
fluorescence resonance energy transfer (FRET)-based cAMP and PKA activity sensors have
demonstrated the importance of this mechanism in cardiac myocytes [12]. The importance
of PDEs to cAMP compartmentation was first demonstrated in live cells in 1996 when
Jurevicius and Fischmeister showed that local application of the β-adrenergic receptor
agonist isoproterenol resulted in local L-type Ca2+ currents that were more generalized after
addition of the general PDE inhibitor IBMX [13]. Of the PDEs expressed in myocytes,
PDE3 and PDE4 family members account for the majority of activity [14–16]. In particular,
PDE4 is responsible for limiting the distance that cAMP signals may diffuse when generated
by β–adrenergic receptors [17, 18]. Type I PKA (PKAI) contains RIα or RIβ subunits, while
type II PKA (PKAII) contains RIIα or RIIβ subunits; of these, RIα and RIIα are expressed in
the heart [19]. Recently, Benedetto, et al., compared PKAI and PKAII compartments by
fusing RI and RII-docking domains to the Epac1-camps FRET sensor [20]. “RII_epac”
sensor was concentrated at the M-line and less so at the Z-line of the sarcomere, while
“RI_epac” displayed a striated pattern that overlapped both the M and Z-lines. Although
PKAI, but not PKAII, is typically soluble upon tissue fractionation [21], they showed using
fluorescence recovery after photobleaching (FRAP) that PKAI is also anchored by AKAPs
in myocytes, albeit more loosely than PKAII. Reminiscent of early data showing that
particulate PKA is activated preferentially by β-adrenergic receptors [22], RII_epac was
selectively activated by isoproterenol and inhibited by PDE4, while RI_epac was activated
by isoproterenol, PGE1, glucagon and GLP-1 and preferentially inhibited by PDE2.
Together, these results argue that multiple cAMP compartments regulated by distinct sets of
receptors and PDEs may be present within the same organelle in a cell.

Physical compartmentation utilizes membrane barriers or the direct transfer of cAMP
between AC and cAMP targets that are physically associated [23]. Although less well
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studied than PDEs, the differential association of ACs with select downstream pathways can
contribute to specificity in cAMP signaling, promoting the generation of threshold cAMP
fluxes near relevant targets. With the exception of soluble AC, all ACs are transmembrane
proteins localized primarily at the cell membrane, providing close coupling of cAMP
production to G-protein coupled receptors as well as calcium ion influx [24]. In myocytes,
the plasma membrane is extended by the transverse tubule system deep into the interior of
cell, thereby permitting the synthesis of cAMP within compartments close to intracellular
targets. In particular, dyads composed of transverse tubules and either the sarcoplasmic
reticulum or the outer nuclear membrane may facilitate the coupling of cAMP signaling to
calcium ion release important for the contractile cycle and other functions such as
hypertrophy [25, 26]. Of the nine AC isoforms known to be expressed in the heart, type 5
and type 6 cyclases account for the majority of AC activity [27]. These cyclases are
similarly regulated, including activation by Gαs and Gβγ, and inhibition by Gαi, PKA
feedback phosphorylation and Ca2+ [28]. However, AC5 and AC6 do not exhibit functional
redundancy in vivo. For example, in response to transverse aortic constriction, a model for
chronic pressure-overload, AC5−/− mice exhibited decreased myocyte apoptosis and
increased Bcl2 expression, while AC6−/− mice exhibited decreased hypertrophy and
unchanged Bcl2 expression [29, 30]. Together, these findings suggest that different cAMP
compartments may be defined by different combinations of ACs and PDEs targeted by
individual scaffold proteins. Like PDEs, clustering of ACs by AKAPs and other scaffolds
within different plasmalemmal microdomains may account for their differential function
[26, 31].

PKA binding to AKAPs
PKA R-subunits contain N-terminal docking (residues 1–23) and dimerization domains (24–
44) followed by an inhibitor site and two cAMP binding domains (residues 158–426) that
bind and inhibit a C-subunit [32]. AKAPs vary greatly in structure, localization, and the
proteins for which they serve as a scaffold. What they share in common is an amphipathic,
14–18 amino acid residue motif capable of binding the PKA R-subunit docking domain.
Most AKAPs show a preference for PKAII, while a few bind both PKAI and PKAII. The
structure of PKA bound to AKAPs has been studied in great detail [33]. The N-terminal
docking and dimerization domain of the R-subunit dimer forms a X-type, antiparallel four-
helix bundle with a hydrophobic groove that binds the hydrophobic face of the AKAP
amphipathic helix [34]. Differences in the depth of the groove and the conformation of the
extreme N-terminal residues in the RI and RII dimer account for the differences in affinity
for AKAPs between PKAI and PKAII [35].

Synthetic peptides based on AKAP sequences have proven instrumental in the elucidation of
PKA anchoring-dependent events [8]. These peptides can either bind both PKAI and PKAII
or show high specificity for a single type of PKA [36–38]. For example, expression by
adenoviral infection of the Ht31 PKA-binding peptide that is selective for PKAII globally
competed PKAII-AKAP complex formation in adult cardiac myocytes [39]. When
introduced by in vivo adenoviral gene transfer into rat hearts, Ht31 inhibited isoproterenol-
induced phosphorylation of troponin I (cTnI), phospholamban and the ryanodine receptor
(RyR2) [40]. While baseline +dP/dtmax, −dP/dtmax and left ventricular end-diastolic
pressure, but not ejection fraction, were decreased, at high doses of isoproterenol, ejection
fraction and stroke volume were elevated. The authors suggest that the paradoxically
increased inotropy in the face of inhibited PKA activity may be due to increased cTnI N-
terminal proteolysis, which can in turn promote cardiac function. More recently, the cell-
permeable peptide “TAT-AKAD” that binds both RI and RII with nanomolar affinity has
been introduced into isolated myocytes and Langendorff-perfused hearts [41]. As with Ht31,
cTnI and phospholamban phosphorylation were inhibited. Remarkably, TAT-AKAD
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inhibited both the contraction and relaxation rates and shortening of paced myocytes.
Importantly, TAT-AKAD inhibited β-adrenergic induced ex vivo heart rate, peak pressure,
+dP/dtmax and −dP/dtmax. Together, these results imply that AKAP anchoring of PKA is
critical for cardiac function. There are at least 15 AKAPs expressed in the heart (see Table).
In the discussion that follows, we now review what is known about some of these individual
AKAPs. While global peptide disruptors are important research tools, future clinical therapy
will likely target individual AKAP complexes dedicated to distinct cellular functions,
thereby avoiding the complexities and side-effects of broad-based signaling inhibition.

AKAP79/150/75
The AKAP5 gene product (AKAP79 in humans, AKAP150 in rodents, AKAP75 in bovine)
is the best described AKAP and has recently been shown to be critical for sympathetic
control of cardiac myocytes (Figure 1) [31]. It is a prime example of a scaffold protein that
facilitates and integrates upstream signaling with far-reaching downstream effects on
cellular function. Associated with a variety of ion channels and membrane receptors in
excitable cells (neurons and myocytes), AKAP79/150/75 binds and integrates cAMP,
calcium, and phospholipid signaling through PKA, protein kinase C and the Ca2+/
calmodulin-dependent protein phosphatase calcineurin [42]. AKAP79/150/75 is targeted to
the plasma membrane through the direct binding of phospholipids and is a major
determinant of PKA anchoring at the neuronal post-synaptic density where it plays an
important role in learning and memory [43–45]. Early on, it was shown that
AKAP79/150/75 can bind both β1 and β2-adrenergic receptors in heterologous systems,
facilitating both downstream signaling and PKA-regulated downregulation and
desensitization [46–48]. Later, in the first demonstration of an AC-AKAP complex, it was
discovered that AC5/6 associated directly with AKAP79/150/75, coupling cAMP production
to PKA activation and negative feedback regulation of the cyclase [49]. Interestingly,
AKAP79/150/75 is present in cardiac myocytes with β1-adrenergic receptors at caveolin-3-
deficient synapses formed with sympathetic neurons in co-culture [50].

Although AKAP79/150/75 has been the subject of intense investigation of over 20 years, the
specific function of this AKAP in the cardiovascular system has only recently been
addressed. In the past, AKAP79/150/75 appeared in the cardiac literature mainly due to the
use of its consensus PxIxIT calcineurin-binding domain as a potent inhibitor of calcineurin
activity. Expression of the AKAP79/150/75 site, like other calcineurin-binding peptides,
inhibits NFAT-dependent myocyte hypertrophy [51]. Experiments using a AKAP79/150/75
knock-out mouse have more directly tested whether this scaffold is important in the heart
and vasculature. AKAP79/150/75 facilitates the association of the L-type Ca2+ channel with
PKA and PKC in excitable cells, potentiating channel opening by direct phosphorylation of
the channel [52–54]. In arterial smooth myocytes, AKAP79/150/75 expression was required
for the generation of persistant Ca2+ “sparklets” that promote vascular tone, as well as
angiotensin II-induced hypertension [55]. Interestingly, in this cell type, anchoring by
AKAP79/150/75 of PKC, but not PKA, was critical for promoting Ca2+ influx through the
channel. In contrast, Nichols et al, recently demonstrated that in cardiac myocytes,
AKAP79/150/75 mediates the association of β1/2-adrenergic receptors, AC5/6, PKAII,
calcineurin and a caveolin-3-associated sub-population of Cav1.2 L-type Ca2+ channels,
facilitating the selective PKA phosphorylation of that pool of ion channels in response to β-
adrenergic stimulation [31]. Importantly, β-adrenergic stimulation of Ca2+ transients was
absent in myocytes from AKAP79/150/75 knock-out mice, even though the overall
stimulated influx of Ca2+ through L-type Ca2+ channels remained intact. Further, β-
adrenergic stimulation of Ca2+ transients was normal in myocytes isolated from an
AKAP79/150/75 knock-in mouse in which the AKAP79/150/75 PKA binding domain is
deleted, suggesting that overall Ca2+ transients depend on the scaffold, but not PKA-
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phosphorylation of Cav1.2. Remarkably, even though AKAP79/150/75 does not form a
complex with RyR2 and phospholamban, AKAP79/150/75 knock-out resulted in decreased
sarcoplasmic reticulum loading and spontaneous Ca2+ release through ryanodine receptors
in response to β-adrenergic stimulation, as well as reduced PKA phosphorylation of both
RyR2 and phospholamban. Although this study raises more questions than it answers,
including the unclear relationship of Cav1.2 pools associated with or separate from
AKAP79/150/75 to Ca2+ transients, it does establish the central role of a single AKAP in
orchestrating the sympathetic stimulation of Ca2+ transients in adult myocytes [31].

AKAP18/15
AKAP79/150/75 is not the only AKAP associated with Cav1 channels. AKAP18/15
(AKAP7) is expressed in myocytes as multiple alternatively-spliced forms that are
differentially localized to the plasmalemma and the sarcoplasmic reticulum. AKAP18/15α,
the smallest AKAP with only 81 amino acids, is localized to the plasma membrane by dual
N-terminal myristoylation and palmitoylation [56]. A leucine zipper motif mediates binding
of the scaffold to the Cav1 family of voltage-gated channels, facilitating PKA
phosphorylation and potentiation of the channels [56–58]. Interestingly, in myocytes, the
distal C-terminal domain of Cav1.2 containing the AKAP18α binding site is often cleaved
from the remainder of the pore-forming subunit, associating non-covalently and auto-
inhibiting the channel in the absence of cAMP elevation [59]. Importantly, introduction of a
competing leucine zipper peptide (AKAP18/15α residues 38–54) into adult cardiac
myocytes that blocks association of the scaffold with the C-terminal Cav1.2 domain inhibits
β-adrenergic stimulation of ICa [60].

AKAP18/15δ is a longer isoform of AKAP18/15 that is targeted to the sarcoplasmic
reticulum [61]. When not phosphorylated, phospholamban binds and inhibits the sarco-
endoplasmic reticulum Ca2+-ATPase 2A (SERCA2A). Upon sympathetic stimulation, PKA
phosphorylation causes the dissociation of phospholamban from the pump, increasing Ca2+

re-uptake into internal stores (lusitropy) and cardiac contractility. AKAP18/15δ binds
phospholamban and activates SERCA2 by promoting PKA phosphorylation of
phospholamban [61]. The requirement for AKAP18/15δ for adrenergic-stimulated reuptake
in cultured myocytes was confirmed by AKAP18/15δ RNA interference. Recently, we
reported that AKAP18/15δ also binds protein phosphatase 1 and its inhibitor Inhibitor-1,
facilitating PKA phosphorylation of the inhibitor and inactivation of the phosphatase [62].
This phosphatase is responsible for the inhibition of SERCA2A through phospholamban
dephosphorylation [63]. Thus, by promoting Inhibitor-1 phosphorylation, AKAP18/15δ may
further increase lusitropy. Taken together, in vitro evidence suggests that AKAP18/15
isoforms are important for both the regulation of Ca2+ influx through L-type Ca2+ channels
and Ca2+ re-uptake through SERCA2A. In vivo evidence is, however, pending to support
these hypotheses.

Yotiao
Repolarization of the cardiac myocyte after contraction is facilitated by the slow outward
potassium ion current (IKs) contributed by the KCNQ1-KCNE1 channel. β-adrenergic
stimulation increases IKs through PKA phosphorylation of KCNQ1, an event important for
reducing action potential duration during states of increased chronotropy. Mutations in the
subunits of this channel induce Long QT syndrome due to prolonged myocyte repolarization
and are a cause of fatal cardiac arrhythmia. Through the binding of a leucine zipper motif on
KCNQ1, Yotiao (AKAP9; AKAP350, AKAP450) is the AKAP responsible for targeting
PKA to the IKs channel [64]. Importantly, mutations in either the human KCNQ1 leucine
zipper (G589D) or the corresponding yotiao binding site (S1570L) block association of the
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scaffold with the channel, inhibiting KCNQ1 phosphorylation and inducing Long QT
syndrome, and making yotiao the first AKAP known to be associated with the etiology of a
human disease [64, 65].

Like AKAP79/150/75, yotiao binds other signaling molecules besides PKA, including AC
(types 1–3 and 9), the phosphodiesterase PDE4D3 and protein phosphatase 1 that can affect
localized PKA phosphorylation [64, 66, 67]. Interestingly, yotiao is also a PKA substrate
and phosphorylation of yotiao affects IKs independently of PKA phosphorylation of the
channel [68].

Sarcomeric AKAPs
Several sarcomeric proteins are phosphorylated in response to β-adrenergic stimulation,
including cardiac troponin I (cTnI), myosin binding protein C and titin [69]. Recently,
cardiac troponin T (cTnT) was shown to be dual AKAP capable to binding either PKAI or
PKAII [69]. Remarkably, deletion of cTnT Lys-210, a mutation found in human familial
dilated cardiomyopathy that reduces the phosphorylation of cTnI and myosin binding
protein C, inhibited binding of PKA to cTnT.

The intermediate filament protein synemin is a PKAII AKAP that is localized to the Z-line,
intercalated discs, and the sarcolemma [70]. The targets of PKA-anchored synemin remain
unknown. In contrast, the large 449 kDa AKAP and PKA substrate myospryn is a calpain 3
and titin-binding protein [71]. A gene polymorphism for myospryn has been associated with
left ventricular hypertrophy in hypertension [72].

AKAP-Lbc
AKAP-Lbc (AKAP13; Brx-1, and proto-Lbc) is essential for cardiac development and
pathologic myocyte hypertrophy [73, 74]. AKAP-Lbc is perhaps better known for Ht31
(human thyroid clone 31), an AKAP-Lbc fragment containing its PKA-binding site [75].
The Ht31 peptide was used in early studies to define the determinants of PKA anchoring and
to demonstrate the functional importance of anchored PKA in various cell types [6]. Later,
full-length clones for this scaffold were isolated and the AKAP was recognized to be a
longer splice variant of the Lbc proto-oncogene expressed most highly in the heart [76].
AKAP-Lbc is a homo-oligomeric Rho-selective guanine nuclear exchange factor (Rho-GEF)
that binds Gα12/13, inducing Rho activity and stress fiber formation in lysophosphatidic
acid-stimulated fibroblasts [76, 77]. One target for AKAP-Lbc activated Rho is PKNα,
which in turn regulates a MLTK, MKK3 and p38α cascade associated with the scaffold [78].
Interestingly, when PKA phosphorylated, AKAP-Lbc activation of RhoA is inhibited by the
binding of the small protein 14-3-3 [79, 80]. As a result, cAMP signaling inhibits RhoA
activation through AKAP-Lbc.

In cardiac myocytes, AKAP-Lbc expression is required for α-adrenergic-induced
hypertrophy and is itself increased in expression by hypertrophic stimuli [74]. Although
AKAP-Lbc mediates α-adrenergic-stimulated RhoA activation, [74]. AKAP-Lbc Rho-GEF
activity does not appear to be required for hypertrophic signaling, but instead depends on
anchoring of PKD1 [81]. Besides being a Rho-GEF, AKAP-Lbc facilitates the activation of
PKD1 by PKCη bound to the scaffold [82]. Together with PKA, activated AKAP-Lbc
anchored PKD promotes the nuclear export of the class II histone deacetylase HDAC5
through 14-3-3 binding, resulting in increased MEF-2-dependent gene transcription [81].
The requirement for AKAP-Lbc in vivo in adult pathologic cardiac hypertrophy has not yet
been tested, since the AKAP-Lbc knock-out mouse was embryonic lethal at embryonic day
10.5–11.0 [73]. Nevertheless, the hearts of AKAP-Lbc null embryos displayed thin walls,
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were dilated, and developed a pericardial effusion. Accordingly, null myocytes displayed
decreased sarcomere formation and reduced MEF2C expression.

Recently, signaling through AKAP-Lbc has been shown to be even more extensive. AKAP-
Lbc can bind both the Ras effector Raf and the scaffold kinase suppressor of Ras (KSR-1)
that anchors MEK1/2 and ERK1/2, thereby, bringing together the entire classical ERK1/2
cascade [83]. In HEK293 cells, AKAP-Lbc was required for efficient mitogen stimulation of
ERK1/2 signaling. Furthermore, phosphorylation of KSR by PKA associated with the
complexes sustained ERK1/2 activation. While this pathway has not been studied in
myocytes, it will be important to study AKAP-Lbc activation of ERK1/2 signaling in the
heart, especially in light of recent studies that ERK1/2 regulates the balance between
concentric and eccentric cardiac myocyte growth [84].

mAKAPβ
mAKAPβ (AKAP6; AKAP100 is a C-terminal fragment of mAKAP) is a scaffold protein for
a large signalosome located at the striated myocyte nuclear envelope that we have proposed
serves as a gatekeeper for transcription factors involved in cardiac remodeling [85, 86]. The
mAKAPβ signalosome contains all of the required machinery for cAMP synthesis,
degradation and function, including AC5, PDE4D3, PKAII, and Epac1 [10, 26, 87, 88]. In
addition to these enzymes, mAKAPβ also can bind the following molecules important for
cardiac remodeling and contractility: calcineurin Aβ, protein phosphatase 2A (PP2A),
NFATc transcription factor family members, MEK5, ERK5, and the type 2 ryanodine
receptor (RyR2) [10, 89–93]. Recently, we have discovered mAKAPβ also contributes to the
regulation of the transcription factor hypoxia-inducible factor 1α (HIF-1α) by binding
HIF-1α and ubiquitin E3 ligases [94], while others have reported that mAKAPβ can also be
co-immunoprecipitated with the sodium/calcium exchanger NCX1 and the CaN substrate
myopodin [95, 96].

Work on the mAKAPβ signalosome has contributed importantly to our understanding of
how AKAPs may modulate local cAMP fluxes (Figure 2). The direct binding of PDE4D3 to
mAKAPβ was the first example of a PDE-AKAP complex [87]. As part of a negative
feedback loop, PDE4D3 is activated by PKA phosphorylation at serine residue 54 (S54),
resulting in increased cAMP degradation [16, 97]. PDE4D3 mediates the recruitment of an
ERK5 signaling module to the complex [10]. Upon activation, ERK5 phosphorylates
PDE4D3 S597, inhibiting PDE4D3 activity and increasing cAMP activation of PKA.
Together these results suggest that upstream cAMP and ERK5 signals will synergistically
activate mAKAPβ-bound PKA, a mechanism potentially important in the chronically
stressed heart exposed to increased circulating catecholamine levels and IL-6 type cytokines.
Besides ERK5, mAKAPβ-associated PDE4D3 binds Epac1 directly, thus establishing the
mAKAPβ signalosome as the first identified to include two different cAMP effectors (PKA
and Epac1) [10]. Through Rap1, Epac1 inhibits ERK5, as part of another negative feedback
loop intrinsic to the mAKAPβ complex. Because Epac1 is a relatively low affinity cAMP
target, Epac1 feedback may be important for homeostasis when sympathetic stimulation is
maximal, such as during cardiac decompensation. Recently, we showed that PDE4D3 S54 is
dephosphorylated by PP2A [98]. PP2A bound to mAKAPβ contains a B56δ-subunit that
confers PKA activation, comprising an incoherent feedforward loop that opposes PDE4D3
activation. Moreover, we have also found that mAKAPβ-bound AC5 is inhibited by PKA
phosphorylation, constituting yet another negative feedback loop [26]. Mathematical
modeling suggests that negative feedback and incoherent feedforward loops are
characteristic of systems that exhibit high sensitivity (the amplitude of the output in response
to a stimulus) with precise adaptation (the ability of a signaling system to reset to baseline
after termination of a stimulus) [99]. Through the organization of these interlinked feedback
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and feedforward loops, the mAKAPβ signalosome should confer tight control of local
cAMP levels in response to stress-induced neuroendocrine and paracrine stimuli. cAMP
fluxes local to mAKAPβ are likely to be autonomous of cAMP fluxes elsewhere in the
myocyte that are regulated by signalosomes containing different sets of signaling enzymes.

An important substrate for mAKAPβ-bound PKA is RyR2 (Figure 2B), a Ca2+-induced
Ca2+ release channel potentiated by PKA phosphorylation [90, 91]. RyR2 is important for
excitation-contraction coupling at the sarcoplasmic reticulum (SR), but is also present within
dyads formed between perinuclear transverse tubules and the outer nuclear membrane [25].
Since mAKAPβ is primarily located at the nuclear envelope through the binding of the
KASH domain protein nesprin-1α [100], we propose that mAKAPβ complexes include a
small subset of RyR2 molecules present within these perinuclear dyads [91]. There
mAKAPβ-RyR2 complexes may modulate the activity of hypertrophic transcription factors
that translocate to the nucleus. Upon norepinephrine stimulation, active calcineurin Aβ is
recruited to mAKAPβ complexes where the phosphatase can promote the dephosphorylation
of NFATc3 [93]. Accordingly, mAKAPβ RNAi inhibits NFATc nuclear translocation and
transcriptional activity, as well as the adrenergic and cytokine-induced hypertrophy of
cultured neonatal rat ventricular myocytes [10, 89, 93].

Although in vivo mAKAPβ function remains to be determined, it is interesting that AC5,
calcineurin Aβ, NFATc2 and NFATc3 knock-out mice are resistant to pathologic cardiac
hypertrophy [101–104]. In addition, a human nesprin-1 missense mutation has been
described in a patient with dilated cardiomyopathy [105]. Conversely, unstressed PDE4D
knock-out mice exhibit a progressive, exaggerated age-dependent cardiomyopathy [106].
mAKAPβ is one of the least abundant AKAPs in the heart (MSK, unpublished
observations). In rescue experiments, we have found that myocytes expressing full-length
mAKAPβ mutants lacking either the PKA or calcineurin Aβ binding domains have impaired
hypertrophic signaling [89, 93]. It is remarkable that specific disruption of such a small pool
of anchored PKA can have such an obvious effect on cellular phenotype. It is possible that
in the future, drug therapy directed at specific AKAPs such as mAKAP may provide a
strategy for the treatment or prevention of pathologic cardiac remodeling and heart failure in
the absence of effects on cardiac contractility.

Summary
Through research on AKAPs, our view of the cell has changed dramatically. Traditionally,
intracellular signal transduction was perceived to be driven primarily by the abundance of
relevant molecules and the catalysis of specific post-translational modifications, as these
molecules freely diffused within the cytosol. It has become clear that through scaffold and
adaptor proteins that much of intracellular signaling actually occurs in defined
compartments in which relevant molecules, that are either recruited or constitutively
associated, interact due to specific protein-protein interactions. Thus, enzyme specificity is
conferred as much by co-localization as by the intrinsic selectivity of the active site. Given
that the inhibition of the catalytic activities of many enzymes is clinically problematic due to
their pleiotropism, we propose that the disruption of unique protein-protein interactions is an
alternative therapeutic strategy permitting the selective inhibition of cellular processes.
While intracellular protein-protein interactions have not been traditionally considered
feasible drug targets, recent work, including the inhibition of NOTCH transcriptional
complexes by synthetic peptides, has shown that protein binding may be specifically
inhibited in vivo with directed physiologic effects [107]. A more complete understanding of
the structure-function relationships underlying AKAP complexes will result in the
development of a new generation of therapeutics that moves clinical medicine beyond
receptor ligands and enzyme inhibitors.
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Research Highlights

• In this review, we discuss A-kinase anchoring proteins expressed in the heart.

• AKAPs are important for cAMP compartmentation.

• AKAP scaffold proteins confer specificity and fidelity to cAMP signaling.
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Figure 1. AKAPs Involved in Sympathetic Regulation of Excitation-Contraction Coupling
AKAP79/150/75 and AKAP18/15α can regulate the L-type Ca2+ channel, yotiao the
KNCQ1 slow outward potassium ion current, and AKAP18/15δ phospholamban and Ca2+

reuptake. Troponin T, myospryn, and synemin are sarcomeric AKAPs. The AKAP
responsible for PKA phosphorylation of RyR2 at the sarcoplasmic reticulum is unclear,
albeit AKAP5 knock-out mice have diminished RyR2 phosphorylation [31].
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Figure 2. Signal integration by the mAKAPβ signalosome
The yellow boxes represent the mAKAPβ signalosome. A. There is evidence for three
conjoined negative feedback loops intrinsic to the mAKAPβ complex that control local
cAMP levels: (1) AC5, cAMP, PKA; (2) cAMP, PKA, PDE4D3; and (3) cAMP, Epac1,
Rap1, MEK5, ERK5, PDE4D3. βAR stimulation will activate AC5, resulting in cAMP
production and PKA activation. PKA phosphorylation inhibits AC5 and activates PDE4D3
activity, resulting in decreased cAMP accumulation [31, 97, 108]. The MEK5/ERK5 MAPK
pathway is activated in myocytes by α1AR and gp130/LIF-R agonists [109]. Activation of
ERK5 will lead to PDE4D3 inhibition and increased PKA activity [10]. When high cAMP
levels activate the guanine nucleotide exchange factor Epac1, Rap1 will inhibit the ERK5
pathway, reversing the ERK5-mediated inhibition of PDE4D3 and limiting downstream
signaling. In addition, there is an incoherent feedforward loop that will oppose PKA
phosphorylation of PDE4D3 resulting from PKA phosphorylation and activation of PP2A in
the complex. An incoherent feedforward loop is present when two pathways lead to the
same effector with opposite results [99]. Compare PKA-PDE4D3 and PKA-PP2A-PDE4D3.
B. Calcineurin Aβ (CaNAβ) may serve as an mAKAPβ signalosome effector. RyR2 bound
to mAKAPβ is PKA phosphorylated when myocytes are stimulated by β-agonists,
potentially increasing local Ca2+ levels [89]. Norepinephrine-treatment of myocytes results
in CaNAβ recruitment into the complex, where it can catalyze the dephosphorylation and
nuclear translocation of NFATc transcription factors [93]. While not illustrated in this
Figure, ERK5 and HIF-1α are also potential effectors for mAKAPβ complexes.
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