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Abstract
Aims/hypothesis Several lines of evidence suggest that
incretin-based therapies suppress the development of
cardiovascular disease in type 2 diabetes. We investigated
the possibility that glucagon-like peptide-1 (GLP-1) and
glucose-dependent insulinotropic polypeptide (GIP) can
prevent the development of atherosclerosis in Apoe−/− mice.
Methods Apoe−/− mice (17 weeks old) were administered
GLP-1(7–36)amide, GLP-1(9–36)amide, GIP(1–42) or GIP
(3–42) for 4 weeks. Aortic atherosclerosis, oxidised LDL-
induced foam cell formation and related gene expression in
exudate peritoneal macrophages were determined.
Results Administration of GLP-1(7–36)amide or GIP(1–
42) significantly suppressed atherosclerotic lesions and
macrophage infiltration in the aortic wall, compared with
vehicle controls. These effects were cancelled by co-

infusion with specific antagonists for GLP-1 and GIP
receptors, namely exendin(9–39) or Pro3(GIP). The anti-
atherosclerotic effects of GLP-1(7–36)amide and GIP(1–
42) were associated with significant decreases in foam cell
formation and downregulation of CD36 and acyl-coenzyme
A:cholesterol acyltransferase-1 (ACAT-1) in macrophages.
GLP-1 and GIP receptors were both detected in Apoe−/−

mouse macrophages. Ex vivo incubation of macrophages
with GLP-1(7–36)amide or GIP(1–42) for 48 h significant-
ly suppressed foam cell formation. This effect was wholly
abolished in macrophages pretreated with exendin(9−39) or
(Pro3)GIP, or with an adenylate cyclase inhibitor,
MDL12,330A, and was mimicked by incubation with an
adenylate cyclase activator, forskolin. The inactive forms,
GLP-1(9–36)amide and GIP(3–42), had no effects on
atherosclerosis and macrophage foam cell formation.
Conclusions/interpretation Our study is the first to demon-
strate that active forms of GLP-1 and GIP exert anti-
atherogenic effects by suppressing macrophage foam cell
formation via their own receptors, followed by cAMP
activation. Molecular mechanisms underlying these effects
are associated with the downregulation of CD36 and ACAT-1
by incretins.
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GIPR GIP receptor
GLP-1 Glucagon-like peptide-1
GLP-1R GLP-1 receptor
PI3K Phosphatidylinositol-3-kinase
PKA Protein kinase A
PKC Protein kinase C
SMC Smooth muscle cell
SR-BI Scavenger receptor class B type I

Introduction

The incretins, such as glucagon-like peptide-1 (GLP-1) and
glucose-dependent insulinotropic polypeptide (GIP), are
secreted postprandially from the L-cells of the lower gut
and K-cells of the upper gut, respectively, to regulate
glucose homeostasis [1]. New treatments based on incretin
hormones have provided a novel way of addressing parts of
the complex pathophysiology of type 2 diabetes [1]. Type 2
diabetes is well known to accelerate the clinical course of
atherosclerosis, a condition associated with arterial endo-
thelial dysfunction and several metabolic abnormalities.
Incretin-based therapies have been reported to decrease
blood pressure and atherogenic lipoproteins, and to improve
vascular inflammation and endothelial dysfunction [1–3].
The vasoprotective properties of GLP-1 led us to speculate
that treatment with GLP-1 can prevent the development of
atherosclerosis through GLP-1 receptors (GLP-1R). The
effect of GIP on the cardiovascular system is largely
unknown, although GIP receptors (GIPR) have been
detected in vascular tissues [4].

Both GLP-1 and GIP are rapidly metabolised via
enzymatic degradation by the dipeptidyl peptidase-4
(DPP-4) [2]. The DPP-4-resistant GLP-1R agonists (incre-
tin mimetics) and DPP-4 inhibitors are used as therapeutic
agents to enhance the action of incretin [2]. Exendin-4, a
GLP-1R agonist, suppresses monocytic adhesion to the
aortic wall and aortic smooth muscle cell (SMC) prolifer-
ation [5, 6]. Liraglutide, a long-acting GLP-1R agonist, and
vildagliptin, a DPP-4 inhibitor, attenuate production of
plasminogen activator inhibitor 1 (PAI-1) and vascular cell
adhesion molecule-1 (VCAM-1) in vascular cells [7, 8].

The development of atherosclerosis is influenced by
abnormalities in cellular cholesterol homeostasis in sub-
endothelial macrophages. The level of non-esterified
cholesterol within cells is increased by the uptake of
oxidised LDL via CD36 [9]. It is decreased by the efflux
of non-esterified cholesterol mediated by ATP-binding
cassette transporter (ABC) A1, ABCG1 or scavenger
receptor class B type I (SR-BI) [10]. To protect cells from
the toxicity that would result from excessive non-esterified
cholesterol accumulation, the non-esterified cholesterol is

esterified to cholesteryl ester by acyl-coenzyme A:choles-
terol acyltransferase-1 (ACAT-1) [9]. ACAT-1 thereby
promotes cholesteryl ester accumulation in macrophages,
which contributes to foam cell formation.

The present study clarified for the first time the
preventive effects of native GLP-1 and GIP on the
development of aortic atherosclerotic lesions in Apoe−/−

mice. To explore the cellular and molecular mechanisms
underlying the anti-atherosclerotic actions, we assessed the
comprehensive effects of these incretins on macrophage
foam cell formation, aortic SMC proliferation and gene
expression of proatherogenic cytokines in aortic endothelial
cells.

Methods

Chemicals and reagents Human GLP-1(7–36)amide, GIP
(1–42), GIP(3–42) and exendin(9–39), a GLP-1R antagonist,
were purchased from AnaSpec (San Jose, CA, USA). Human
GLP-1(9–36)amide and (Pro3)GIP, a GIPR antagonist, were
purchased from Bachem (Torrance, CA, USA) and Abgent
(San Diego, CA, USA), respectively. Vildagliptin analogue
(PKF275-055) was a generous gift from Novartis (Basel,
Switzerland). MDL12,330A and forskolin were purchased
from Sigma (St. Louis, MO, USA).

Animal experiments Animal experiments were performed
in accordance with the NIH guidelines for the Care and Use
of Laboratory Animals and were approved by the Institu-
tional Animal Care and Use Committee of Showa Univer-
sity. A total of 346 male Apoe−/− mice were purchased at
the age of 8 weeks from Sankyo Labo Service (Tokyo,
Japan) and kept on normal chow until the age of 17 weeks.
From 17 weeks of age, nine groups of Apoe−/− mice were
started to be respectively infused with GLP-1(7–36)amide,
GLP-1(9–36)amide (both 2.2 nmol kg−1 day−1) [11],
exendin(9–39) (22 nmol kg−1 day−1), GLP-1(7–36)amide
+exendin(9–39) (the same doses), GIP(1–42), GIP(3–42),
(Pro3)GIP, GIP(1–42)+(Pro3)GIP (all 25 nmol kg−1 day−1)
[12] and saline (vehicle). Infusion was for 4 weeks by
osmotic mini-pumps (Alzet Model 1007D; Durect, Cuper-
tino, CA, USA). An atherogenic diet containing 30% fat,
20% sucrose and 8% NaCl (Oriental Yeast, Tokyo, Japan)
[13], and continuous administration of incretins were
started at the same time.

Animal measurements Four weeks after infusion into
Apoe−/− mice, systolic blood pressure was measured using
indirect tail-cuff equipment (MK-2000; Muromachi Kikai,
Tokyo, Japan) [14]. Blood samples were collected after 6 h
fast. Plasma concentrations of glucose, total cholesterol,
HDL-cholesterol, triacylglycerol and NEFAwere measured
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by enzymatic methods using an autoanalyser (Hitachi 7020;
Hitachi, Tokyo, Japan) [14]. Plasma concentrations of
active GLP-1, total GIP and insulin were determined by
ELISA (Active GLP-1 ELISA Kit, Millipore, Billerica,
MA, USA; GIP Assay Kit, Immuno-Biological Laborato-
ries, Maebashi, Japan; Ultra Sensitive PLUS Mouse Insulin
ELISA Kit, Morinaga, Yokohama, Japan).

Atherosclerotic lesion assessment At the ages of 17 and
21 weeks (before and 4 weeks after infusion), the Apoe−/−

mice were killed by anaesthetisation with diethyl ether. The
whole aorta was washed with perfused PBS and fixed with
4% paraformaldehyde (wt/vol.) [14]. The aorta was excised
from the root to the abdominal area, and the connective and
adipose tissues carefully removed. The entire aorta and
cross-sections of the aortic root were stained with oil red O
for assessment of atherosclerotic lesions [14]. Macrophage
infiltration into the aortic wall was visualised by anti-mouse
MOMA-2 antibody staining [10, 14]. Haematoxylin was
used for nuclear staining. The areas of the aorta with
atherosclerotic lesions were traced by an investigator blind
to the treatment and measured by an image analyser (Adobe
Photoshop, San Jose, CA; NIH Scion Image, Frederick,
MD, USA) [10, 14]. The severity of atheromatous plaques
and degree of macrophage accumulation were expressed as
percentages of the lesion area relative to the entire cross-
section of the aortic wall [10, 14].

Cell culture Exudate peritoneal cells were isolated from
treated Apoe−/− mice at 21 weeks of age by peritoneal
lavage with 8 ml ice-cold PBS 4 days after intraperitoneal
injection of 4 ml aged-autoclaved thioglycolate broth [13,
14]. The cells were suspended in culture medium (RPMI-
1640 supplemented with 10% FCS, streptomycin and
penicillin) and seeded on to 6-cm dishes (4×106 cells
[2 ml]−1 dish−1) for western blotting analysis or RT-PCR
and 3.5-cm dishes (3×106 cells [1 ml]−1 dish−1) for
cholesterol esterification assay. After 1 h incubation at 37°C
in 5% CO2 to allow adhesion, the medium was discarded to
remove non-adherent cells [13, 14].

Western blotting analysis Adherent macrophages were
extracted with 80 μl 10% SDS (wt/vol.) [10, 14]. Cell
protein (30 μg aliquots) was separated by 10% SDS-PAGE
and subjected to immunoblotting with the following anti-
bodies: rabbit polyclonal antibody against human ACAT-1
(Dartmouth Medical School, Hanover, NH, USA), GLP-1R
(Abcam, Tokyo, Japan), ABCA1 and ABCG1, or against
mouse SR-BI (Novus Biologicals, Littleton, CO, USA);
goat polyclonal antibody against mouse CD36 (R&D
Systems, Minneapolis, MN, USA) or rat GIPR (Santa Cruz
Biotechnology, Santa Cruz, CA, USA); and mouse mono-
clonal anti-β-actin antibody (Sigma). The densities of the

bands were measured using Light-Capture and Densito-
graph software (AE-6962FC, CS Analyser version 2.0;
ATTO, Tokyo, Japan) [10, 14].

Cholesterol esterification assay Adherent macrophages
were incubated for 18 h with culture medium containing
10 μg/ml human oxidised LDL in the presence of
0.1 mmol/l [3H]oleate conjugated with BSA [13, 14].
Cellular lipids were extracted and the radioactivity of
cholesterol [3H]oleate was determined by thin-layer chro-
matography [13, 14].

Confocal microscopy Macrophages seeded on to Lab-Tek
Chamber Slide (Thermo Fisher Scientific, Waltham, MA,
USA) were fixed with 4% paraformaldehyde (wt/vol.) and
stained with rabbit polyclonal anti-GLP-1R antibody
(Abcam) or goat polyclonal anti-GIPR antibody (Santa
Cruz Biotechnology), followed by anti-rabbit or anti-goat
Alexa Fluor 488 (Invitrogen, Carlsbad, CA, USA). Nuclei
were visualised using propidium iodide. Fluorescence-
stained cells were examined on confocal microscope
(Radiance 2100; Bio Rad, Hercules, CA, USA). Fluores-
cence was detected with wavelengths for excitation at
488 nm (Alexa Fluor 488) and 543 nm (propidium iodide).

Real-time RT-PCR Pre-designed TaqMan probe sets of
Glp1r, Gipr and 18S rRNA were purchased from Applied
Biosystems (Carlsbad, CA, USA). Total RNAwas extracted
using a reagent (ISOGEN; Nippon-Gene, Tokyo, Japan)
from exudate peritoneal macrophages, and from brain, liver,
pancreas, aorta and adipose tissues of non-treated Apoe−/−

mice at 9 weeks of age. cDNA was synthesised from
isolated RNA templates with a kit (High-Capacity cDNA
Archive Kit; Applied Biosystems). Real-time PCR was
performed using TaqMan Gene Expression Assays (Applied
Biosystems). Amplification and fluorescent measurements
were carried out during the elongation step with a sequence
detection system (ABI PRISM 7700; Applied Biosystems).

Measurements human GLP-1R and GIPR The investigation
was approved by the Ethics Committee of Showa Univer-
sity. Informed consent was obtained from all participants.
Human peripheral mononuclear cells were isolated from the
blood of six healthy volunteers (four men, two women, age
25±2 years) as described previously [10, 15]. Monocytes
purified using anti-CD14 antibody-conjugated magnetic
microbeads (Miltenyi Biotec, Auburn CA, USA) were
seeded on to 6-cm dishes (4×106 cells [2 ml]−1dish−1)
and incubated in RPMI-1640 containing 10% human serum
for monocytic differentiation into macrophages. Total RNA
was extracted from the monocytes after 1 h and macro-
phages collected 7 days after the incubation, after which
GIPR mRNA levels were quantified by real-time RT-PCR.
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THP1 cells (ATCC, Manassas, VA, USA) were sus-
pended in culture medium and seeded on to 6-cm dishes
(4×106 cells [2 ml]−1dish−1). To induce differentiation into
macrophages, THP1 cells were incubated for 48 h in the
presence of 100 nmol/l phorbol myristate acetate in RPMI-
1640 containing 10% FCS. Total RNAwas extracted from
the cells after 1 h and 48 h after start of incubation, and
GLP1R and GIPR mRNA levels were quantified by real-
time RT-PCR.

Gene expression of proatherogenic cytokines in aortic
endothelial cells Human aortic endothelial cells (Lonza,
Walkersville, MD, USA) in passages 4 to 6 were seeded on
to 12-well plates and grown to semi-confluence in 1 ml
EGM-2 involving EGM-2 Single Quots (Lonza). The
medium was then replaced with 1 ml serum-free RPMI-
1640 with the indicated concentrations of GLP-1(7–36)
amide or GIP(1–42) for 2 h. We determined mRNA levels
of MCP1 (also known as CCL2), VCAM1, ICAM1 and PAI1
(also known as SERPINE1) in endothelial cells by real-time
RT-PCR.

Aortic SMC proliferation assay Human aortic SMCs
(Lonza) were seeded on to 6-well plates (3×104 cells
[1 ml]−1 well−1) and cultured for 24 h in SmBM (Lonza)
containing 5% FCS. The cells were incubated for 29 h with
GLP-1(7–36)amide or GIP(1–42) along with PKF275-055
in order to prevent degradation of incretins, as DDP-4
activity is far higher in aortic SMCs than in aortic
endothelial cells [16]. The cells were exposed to BrdU
(10 μmol/l) for the last 24 h. BrdU-positive cells were
visualised by immunostaining and determined under the
microscope.

Statistical analysis All values are expressed as mean±
SEM. Data were compared by two-tailed unpaired Student’s
t test between two groups and by one-way ANOVA
followed by Bonferroni’s post hoc test among three or
more groups, using Statview-J 5.0 (SAS Institute, Cary,
NC, USA). Differences were considered statistically signif-
icant at p<0.05.

Results

Atherosclerotic lesions In 17-week-old Apoe−/− mice, mild
atherosclerotic lesions were observed in the proximal
portion of the aorta (Fig. 1a, g, m). Atherosclerotic lesions
were significantly developed in 21-week-old Apoe−/− mice
(Fig. 1b, h, n). Infusion of GLP-1(7–36)amide (active form)
for 4 weeks remarkably reduced the surface areas of the
atherosclerotic lesions (p<0.0001; Fig. 1c, s), and sup-
pressed the atheromatous plaque size (p<0.005; Fig. 1i, t)

and macrophage infiltration (p<0.05; Fig. 1o, u) in the
aortic root. The suppressive effects of GLP-1(7–36)amide
were significantly cancelled by simultaneous infusion with
exendin(9–39) (Fig. 1d, j, p). Exendin(9–39) alone had no
significant effects (Fig. 1e, k, q). Infusion of GLP-1(9–36)
amide (inactive form) did not significantly suppress
atherosclerotic lesions and macrophage accumulation
(Fig. 1f, l, r).

Infusion of GIP(1–42) (active form) for 4 weeks also
remarkably reduced the surface areas of the atherosclerotic
lesions (p<0.0001; Fig. 2c, s), and suppressed atheroma-
tous plaque size (p<0.005; Fig. 2i, t) and macrophage
infiltration (p<0.05; Fig. 2o, u) in the aortic root, as
compared with controls (Fig. 2b, h, n). The suppressive
effects of GIP(1–42) were significantly cancelled by
simultaneous infusion with (Pro3)GIP (Fig. 2d, j, p).
(Pro3)GIP alone had no significant effects (Fig. 2e, k, q).
Infusion of GIP(3–42) (inactive form) did not significantly
suppress atherosclerotic lesions and macrophage accumu-
lation (Fig. 2f, l, r).

Foam cell formation and related gene expression in exudate
peritoneal macrophages from Apoe−/− mice The number of
exudate peritoneal cells did not differ significantly among
all groups of Apoe−/− mice administered (Table 1). No
remarkable differences in morphological cell characteristics
were observed among all groups. As shown in Fig. 3a,
oxidised LDL-induced cholesteryl ester accumulation was
significantly decreased in macrophages from the GLP-1(7–
36)amide and GIP(1–42) groups, namely by 45% and 24%
vs controls, respectively (p<0.0001, p<0.05). Infusion with
GLP-1(7–36)amide or GIP(1–42) for 4 weeks significantly
suppressed CD36 and ACAT-1 protein levels in macro-
phages (p<0.005 and p<0.05, respectively; Fig. 3b, c),
without affecting levels of ABCA1, ABCG1 and SR-BI
(Fig. 3d−f).

Characteristics and laboratory data Table 1 shows char-
acteristics and laboratory data from the selected groups in
which GLP-1(7–36)amide and GIP(1–42) exerted anti-
atherogenic effects, and from vehicle control. Food intake,
body weight, systolic blood pressure and plasma concen-
trations of total cholesterol, HDL-cholesterol and triacyl-
glycerol did not differ among the groups. Plasma active
GLP-1 concentrations were significantly higher in the
GLP-1(7–36)amide group. Plasma total GIP concentra-
tions were significantly higher in the GIP(1–42) group.
Plasma NEFA concentrations were significantly lower in
the GLP-1(7–36)amide and GIP(1–42) groups. Neither
glucose nor insulin differed significantly among the
groups. In addition, insulin sensitivity showed no signif-
icant differences among the groups (electronic supplemen-
tary material [ESM] Fig. 1).
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GLP-1 and GIP receptors in macrophages and arterial
SMCs Real-time RT-PCR analyses revealed appreciable
levels of Glp1r and Gipr mRNA in exudate peritoneal
macrophages, compared with the levels found in brain,
liver, pancreas, aorta and adipose tissues from non-treated
Apoe−/− mice (Fig. 4a, b). As shown in Fig. 4c, d, western
blotting analyses confirmed the abundant levels of these
receptors in mouse macrophages as well as in mouse aortic
SMCs and mouse pancreatic islet cells (Primary Cell,
Sapporo, Japan). Immunochemical analyses confirmed the
abundance of GLP-1R and GIPR in exudate peritoneal
macrophages from Apoe−/− mice (Fig. 4e).

Interestingly, we found remarkable changes in expres-
sion of GLP1R and GIPR mRNA in THP1 cells and
THP1-derived macrophages (Fig. 4f, g). Both receptors

were expressed at far higher levels in THP1 cells than in
THP1-derived macrophages. The expression of GIPR
mRNA in human monocytes was far higher than in human
macrophages and human coronary artery SMCs (Lonza)
(Fig. 4h).

In vitro effects of incretins on macrophage foam cell
formation Exudate peritoneal macrophages obtained from
non-treated Apoe−/− mice were incubated for 48 h with
indicated concentrations of GLP-1(7–36)amide, GLP-1(9–
36)amide, GIP(1–42) or GIP(3–42), along with oxidised
LDL (10 μg/ml). Exendin(9–39), a GLP-1R antagonist, and
(Pro3)GIP, a GIPR antagonist, were added 1 h before
addition of GLP-1(7–36)amide and GIP(1–42), respective-
ly. GLP-1(7–36)amide (5 nmol/l) or GIP(1–42) (1 nmol/l)
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Fig. 1 Suppressive effects of GLP-1 on atherosclerotic lesion
development in Apoe−/− mice. Apoe−/− mice aged 17 weeks (n=48)
were infused by osmotic mini-pumps for 4 weeks. Infusions were:
vehicle (control [Cont]), GLP-1(7–36)amide, exendin(9–39) (Ex),
GLP-1(7–36)amide+exendin(9–39) or GLP-1(9–36)amide. At
21 weeks of age (21 W) the 48 mice were killed, as were 15 Apoe−/−

mice at 17 weeks of age (17 W) (before infusion). a–f The aortic

surface was stained with oil red O. Yellow arrows show notable
atherosclerotic lesions. Cross-sections of the aortic root were stained
with oil red O (g−l) or anti-MOMA-2 antibody (m−r). Black arrows
show notable atheromatous plaques. s The surface atherosclerotic area,
(t) the ratio occupied by atherosclerotic lesions and (u) the ratio
occupied by macrophage infiltration in the aortic wall were evaluated.
*p<0.05, †p<0.005 and ‡p<0.0001
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Fig. 2 Suppressive effects of GIP on atherosclerotic lesion develop-
ment in Apoe−/− mice. Apoe−/− mice aged 17 weeks (n=44) were
infused by osmotic mini-pumps for 4 weeks. Infusions were: vehicle
(control [Cont]), GIP(1–42), (Pro3)GIP, GIP(1–42)+(Pro3)GIP or GIP
(3–42). At 21 weeks of age (21 W), these 44 mice were killed, as were
15 Apoe−/− mice at 17 weeks of age (17 W) (before infusion). a–f The
aortic surface was stained with oil red O. Yellow arrows show

remarkable atherosclerotic lesions. Cross-sections of the aortic root
were stained with oil red O (g−l) or anti-MOMA-2 antibody (m−r).
Black arrows show remarkable atheromatous plaques. s The surface
atherosclerotic area, (t) the ratio occupied by atherosclerotic lesions
and (u) the ratio occupied by macrophage infiltration in the aortic wall
were evaluated. *p<0.05, †p<0.005 and ‡p<0.0001

Characteristic Control GLP-1(7–36) GIP(1–42)

n 14 13 13

Food intake (g/day) 3.33±0.47 3.58±0.67 3.41±0.57

Body weight (g) 44.3±1.4 43.1±0.9 44.5±0.9

Systolic BP (mmHg) 111±3 113±2 107±2

GLP-1 (pmol/l) 1.51±0.27 6.14±1.34a 1.16±0.27

GIP (pmol/l) 9.26±1.26 15.2±1.76 69.0±8.43b

Total cholesterol (mmol/l) 11.5±0.72 11.1±0.56 11.5±0.70

HDL-cholesterol (mmol/l) 0.67±0.08 0.65±0.09 0.60±0.11

Triacylglycerol (mmol/l) 1.25±0.13 0.98±0.12 1.08±0.11

NEFA (mEq/l) 0.91±0.06 0.67±0.02c 0.66±0.05c

Glucose (mmol/l) 8.33±0.50 6.06±0.78 6.28±0.72

Insulin (pmol/l) 212±30 268±71 254±43

Exudate peritoneal cells (×106) 9.03±1.86 8.13±1.47 6.68±1.78

Table 1 Characteristics and
laboratory data

Values are mean±SEM
ap<0.0005 and bp<0.0001 vs
others, cp<0.0005 vs control
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(active forms) significantly reduced cholesteryl ester accu-
mulation (p<0.05 for both; Fig. 5a, b). The maximal
reductions in cholesteryl ester accumulation by GLP-1(7–
36)amide (5 nmol/l) or GIP(1–42) (1 nmol/l) were
significantly abolished by pretreatment with exendin(9–
39) (50 nmol/l) and (Pro3)GIP (10 nmol/l), respectively (p<
0.05 for both; Fig. 5e, f). Both effects of incretins were
significantly cancelled by MDL12,330A (5 μmol/l), an
adenylate cyclase inhibitor, and mimicked by forskolin
(10 μmol/l), an adenylate cyclase activator (p<0.01, p<
0.05; Fig. 5g). In contrast, GLP-1(9–36)amide and GIP(3–
42) (inactive forms) had no significant effect on cholesteryl
ester accumulation (Fig. 5c, d).

In vitro effects of incretins on atherogenic gene expression in
aortic endothelial cells, and aortic SMC proliferation GLP-1
(7–36)amide (10 nmol/l) and GIP(1–42) (5 nmol/l) signif-
icantly suppressed expression of MCP1, VCAM1, ICAM1
and PAI1 in human aortic endothelial cells (p<0.05 at least;
Fig. 6a).

GLP-1(7–36)amide (10 nmol/l) or GIP(1–42) (1 nmol/l)
along with PKF275-055 (20 μmol/l) significantly suppressed
the proliferation of human aortic SMCs (p<0.01, p<0.05;
Fig. 6b, c), without cytotoxic effects (Fig. 6d).

Discussion

This study is the first to demonstrate a variety of anti-
atherogenic effects of GLP-1 and GIP on vascular cells
occurring independently of glucose-lowering activity. Active

forms of GLP-1 and GIP suppressed production of monocyte
chemoattractant and adhesion molecules in aortic endothelial
cells, monocyte/macrophage infiltration into the aortic wall,
macrophage foam cell formation and aortic SMC prolifera-
tion, helping to prevent atherosclerotic lesion development in
Apoe−/− mice. However, the blockade of GLP-1R and GIPR
with the specific receptor antagonists alone did not affect the
development of atherosclerotic lesions, suggesting that
endogenous GLP-1 and GIP levels are far too low to
counteract the development of atherosclerosis in this specific
animal model.

Several lines of evidence suggest that GLP-1 and its
receptor agonists, but not GIP, have vasoprotective effects
[1, 2]. GLP-1 and exendin-4 have a protective effect on
oxidative stress-induced DNA damage in HUVECs [17].
Exendin-4 suppresses high glucose-induced TNF-α and IL-
1β levels in THP1 cells, and TNF-α-induced ICAM-1
production in human glomerular microvascular endothelial
cells [18]. Exenatide (synthetic exendin-4) reduces intimal
hyperplasia in balloon-injured carotid arteries of insulin-
resistant Zucker fatty rats [19]. Arakawa et al. [5] recently
reported that exendin-4 attenuates atherosclerotic lesions in
Apoe−/− mice and suppresses monocyte/macrophage adhe-
sion on the arterial wall by inhibiting the inflammatory
response in macrophages. Their report is the initial
demonstration of an anti-atherogenic action of one of the
incretin agents. However, the effects of native GLP-1 and
GIP on atherosclerosis have yet to be determined. Our
findings here are the first to show a potent suppression of
atherosclerotic lesions by long-term infusion of native
incretins into Apoe−/− mice. We demonstrated that GLP-1
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and GIP directly suppressed the expression of MCP1,
VCAM1, ICAM1 and PAI1 in aortic endothelial cells, as well
as suppressing aortic SMC proliferation and macrophage
foam cell formation associated with the downregulation of
CD36 and ACAT-1.

GLP-1R and GIPR, which belong to the seven-
transmembrane domain family of receptors, were pro-
duced in Apoe−/− mouse macrophages. Our in vitro study
showed that the suppressive effects of active forms of
GLP-1 and GIP on macrophage foam cell formation were
abolished by specific antagonists of GLP-1R and GIPR.

These findings indicate that active GLP-1 and GIP
suppress macrophage foam cell formation through GLP-
1R and GIPR, respectively. Compared with GIP, the
somewhat stronger actions of GLP-1 in the suppression
of foam cell formation may depend on the greater
abundance of GLP-1R in macrophages. The in vivo
effects of GLP-1 and GIP on foam cell formation in
exudate peritoneal macrophages from Apoe−/− mice were
much more powerful than these suppressive effects in
vitro. We elucidated these discrepancies by demonstrating
changes in the expression of both receptors using primary
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human monocytes and THP1 cells. The expression of both
receptors decreased during the differentiation from mono-
cytes into macrophages. Thus, monocytes/macrophages
during differentiation in vivo may be more sensitive to

incretins than cultured macrophages obtained after differ-
entiation in untreated Apoe−/− mice, a difference that could
be due to the high levels of the two incretin receptors in
monocytes.
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Activation of GLP-1R and GIPR stimulates the produc-
tion of cAMP via adenylate cyclase action [4], whereupon
cAMP signalling is further amplified and diversified via
activation of several downstream factors, such as protein
kinase A (PKA), phosphatidylinositol-3-kinase (PI3K),
protein kinase C (PKC) and extracellular signal-regulated
kinase (ERK) 1/2 [1, 4]. Arakawa et al. [5] reported that
exendin-4 suppresses the lipopolysaccharide-induced
mRNA expression of TNF-α (also known as TNF) and
MCP1 via the cAMP/PKA pathway. We showed that
suppressive effects of GLP-1 and GIP on macrophage foam
cell formation were cancelled by the adenylate cyclase
inhibitor and mimicked by the adenylate cyclase activator.
These findings indicate that both incretins suppress macro-
phage foam cell formation via cAMP. We also tried to
determine the signal transductions involved in the down-
regulation of CD36 and ACAT-1 by incretins. Previous
studies have shown that CD36 and ACAT-1 levels were
unrelated to cAMP and PKA [20–22], but related to PI3K,
PKC and ERK [23, 24]. However, incretins-induced CD36
and ACAT-1 downregulation was not wholly abolished by
specific inhibitors of adenylate cyclase, PI3K, PKA, ERK
(ESM Fig. 2) or PKC (data not shown). Future studies are
needed to clarify the complex networks of unidentified
signalling pathways concerned.

The doses for the incretin infusions in the present study
were the same as those usually used in studies by others
[11, 12]. Plasma GIP concentrations were sevenfold higher
in Apoe−/− mice infused with GIP vs vehicle-infused
controls, whereas GLP-1 concentrations were only fourfold
higher than the control level in Apoe−/− mice infused with
GLP-1. GLP-1 was measured by an ELISA kit that is only
capable of detecting active GLP-1, while the GIP test kit
measured active and inactive forms of GIP. The increased
plasma levels of GLP-1 and GIP are comparable to the
average physiological concentrations of incretins after a
meal tolerance test in humans [25].

The present study is the first to provide evidence that
incretin-based treatments using native GLP-1 and GIP help
to prevent development of atherosclerotic lesions. This may
open up a new therapeutic window for the treatment of
atherosclerosis and related diseases. Extensive clinical
studies will be required to elucidate whether incretin-
based therapies, above and beyond glycaemic benefits, are
favourable for preventing atherosclerosis in type 2 diabetes.
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