
METHODS

Selection of confounding variables should not be based
on observed associations with exposure

Rolf H. H. Groenwold • Olaf H. Klungel •

Diederick E. Grobbee • Arno W. Hoes

Received: 18 March 2011 / Accepted: 7 July 2011 / Published online: 28 July 2011

� The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract In observational studies, selection of con-

founding variables for adjustment is often based on

observed baseline incomparability. The aim of this study

was to evaluate this selection strategy. We used clinical

data on the effects of inhaled long-acting beta-agonist

(LABA) use on the risk of mortality among patients with

obstructive pulmonary disease to illustrate the impact of

selection of confounding variables for adjustment based on

baseline comparisons. Among 2,394 asthma and COPD

patients included in the analyses, the LABA ever-users

were considerably older than never-users, but cardiovas-

cular co-morbidity was equally prevalent (19.9% vs.

19.9%). Adjustment for cardiovascular co-morbidity status

did not affect the crude risk ratio (RR) for mortality: crude

RR 1.19 (95% CI 0.93–1.51) versus RR 1.19 (95% CI

0.94–1.50) after adjustment for cardiovascular co-morbid-

ity. However, after adjustment for age (RR 0.95, 95% CI

0.76–1.19), additional adjustment for cardiovascular co-

morbidity status did affect the association between LABA

use and mortality (RR 1.01, 95% CI 0.80–1.26). Con-

founding variables should not be discarded based on bal-

anced distributions among exposure groups, because

residual confounding due to the omission of confounding

variables from the adjustment model can be relevant.
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Introduction

Selection of covariates for adjustment in randomized

trials is still frequently based on observed baseline

imbalances between the study groups [1], even though

this strategy is flawed and hence not recommended [2–4].

For example, relatively small imbalances (indicated by

large P values) of strong prognostic factors may still

result in bias, when omitting such variables from an

adjustment model [3].

In observational studies, the selection of covariates for

adjustment should not be based on baseline imbalances

either [5, 6]. Nevertheless, it is likely that this practice is

even more common in observational studies than in trials

[7], since adjustment for confounding is known to be an

important issue in observational designs. Similar to the

situation in trials, a variable that is a strong prognostic risk

factor of the outcome, yet weakly associated with exposure

may not be selected for adjustment, yet such omission may

result in confounding. Also, adjusting for variables that are

related to the exposure under study, yet are no true con-

founding variables, may actually introduce bias, rather than

remove it. Examples include so-called M-bias, Z-bias, and

adjustment for variables that are intermediates in the causal

chain [8, 9]. Hence, baseline imbalances should not guide
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selection of covariates for adjustment in observational

research.

Using observational data on the effects of long-acting

beta-agonist use on mortality risk in patients with

obstructive pulmonary disease, we here illustrate that even

a situation of ‘perfect’ balance of prognostic characteristics

between study groups should not result in omitting such

variables from being selected for adjustment for con-

founding. Before turning to this clinical example, we first

illustrate the invalidity of this strategy for selecting con-

founding variables using a numerical example on hypo-

thetical data.

Numerical example

Suppose an observational study was conducted among

20,000 subjects on the effects of a certain exposure. Two

variables (e.g., age and gender) were considered potential

confounding variables, because both were known risk

factors for the outcome of interest. Age (dichotomized at

e.g. 50 years), was imbalanced between the exposure

groups: of those exposed 75% were of old age, whereas

25% of those unexposed were of old age. Gender, however,

was equally distributed among the exposure groups, since

both groups included 50% females (Table 1).

The incidence of the outcome (e.g., mortality) among

those exposed was 13.5%, and among those unexposed

19.5%, resulting in an estimated risk ratio (RR) of 0.69.

Since gender was clearly balanced between the exposure

groups, stratification by gender was not expected to result

in a difference between the crude (i.e., unadjusted) RR and

gender-adjusted RR. Indeed, after adjustment for gender

the RR was equal to the crude RR (i.e., RR = 0.69).

Clearly, age was unevenly distributed among the expo-

sure groups. Stratification by age controlled for the con-

founding by age and resulted in a change in the risk ratio:

RR = 0.44. What is more, in these hypothetical data old

age and female gender were related, such that women

tended to be older (odds ratio = 6). However, by adjusting

(stratifying) for age, the gender distribution that was ini-

tially balanced between exposure groups changed: the

proportion females among exposed and unexposed subjects

of young age became 20 and 40%, respectively. Among

exposed and unexposed subjects of old age, the proportion

females became 60 and 80%, respectively. Hence, due to

the relation between age and gender, stratification by age

resulted in an uneven distribution of gender among the

exposure groups within age strata.

As a result, gender is likely to be considered a con-

founding variable within strata of young and old subjects.

Indeed, stratification by gender after stratification by age

resulted in another change in the risk ratio: RR = 0.50

(age- and gender-adjusted) versus RR = 0.44 (age-adjus-

ted RR). In Table 2, the cell counts of the two-by-two

tables for the exposure-outcome associations are given for

the different age-gender strata. By merging these tables, the

steps described above can be replicated in detail.

Clinical example

It has been suggested that inhaled beta-agonist therapy for

pulmonary obstructive diseases (i.e., asthma and COPD)

increases the risk of major cardiovascular events [10]. To

study the effects of ever versus never inhaled long-acting

beta agonist (LABA) use on all-cause mortality, we used a

sample from the Netherlands University Medical Center

Utrecht General Practitioner Research Network on the

period 1995–2005. Subjects were included in the cohort

when a diagnosis of asthma [ICPC code R96], or COPD

[ICPC code R95] was mentioned in the electronic database.

Ever versus never exposure to LABA was based on ATC

coding [ATC R03AC12, R03AC13, R03AK06, or

R03AK07]. The relation between LABA use and mortality

was analyzed using a Poisson regression model with robust

standard errors to estimate risk ratios [11]. Potential con-

founding variables were age, gender, and a diagnosis of

cardiovascular co-morbidity, because these are known risk

factors for myocardial infarction. For this example age was

arbitrarily dichotomized at 50 years: those older than

50 years, were considered ‘old’, the others ‘young’. Car-

diovascular co-morbidity was considered present when a

subject was treated with a cardiovascular drug (anti-

thrombotic drugs [ATC B01], cardiac therapy [ATC C01],

diuretics [ATC C03], beta-blockers [ATC C07], or agents

acting on the renin-angiotensin system [ATC C09]).

Among 2,394 asthma and COPD patients included in the

analyses, the LABA ever-users were considerably older

than never-users (Table 3). These groups did not differ,

however, with respect to cardiovascular co-morbidity sta-

tus (P = 0.99), or gender (P = 0.98). Consequently,

adjustment for cardiovascular co-morbidity status or gen-

der did not change the observed risk ratio (RR) for mor-

tality: unadjusted RR 1.19 (95% CI 0.93–1.51), RR 1.19

(95% CI 0.94–1.50) after adjustment for cardiovascular co-

morbidity status, and RR 1.19 (95% CI 0.94–1.51) after

adjustment for gender. However, adjustment for age

affected the RR considerably: RR 0.95 (95% CI

0.76–1.19). In this clinical example, old age and presence

Table 1 Characteristics of a hypothetical study population of 20,000

subjects

Exposed (n = 10,000) Unexposed (n = 10,000)

Female gender 5,000 (50%) 5,000 (50%)

Old age 7,500 (75%) 2,500 (25%)
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of cardiovascular co-morbidity were related (odds

ratio = 11). As a result, within age strata, cardiovascular

co-morbidity was no longer balanced between groups of

LABA users. For example, after stratification by age, the

proportions of cardiovascular co-morbidity among ever-

users and never-users of old age were 33.6 and 42.0%,

respectively (P = 0.002). Due to these imbalances, addi-

tional adjustment for cardiovascular co-morbidity status

indeed changed the risk ratio: RR 1.01 (95% CI 0.80–1.26).

The stratum-specific RRs were indeed approximately

similar (Table 4).

Since old age was also related to female gender (odds

ratio = 1.3), after stratification by age the groups of LABA

users were no longer comparable with respect to gender

either (e.g., proportions females among users among young

ever-users and never-users were 40.5 and 46.5%, respec-

tively (P = 0.04)). Consequently, additional adjustment

for gender resulted in another change in the risk ratio: RR

0.98 (95% CI 0.79–1.23).

Discussion

In observational studies, the selection of variables in a

model to adjust for confounding is often based on known

associations with the outcome under study (i.e., the vari-

ables are known risk factors for the outcome), and observed

associations with the exposure of interest [7]. Potential

confounding variables with an uneven distribution among

the exposure groups are then selected for (multivariable)

adjustment, whereas evenly distributed ones are omitted

from the adjustment model. Both the hypothetical and

clinical example show that this approach is incorrect and

can result in relevant residual confounding.

The observation that a variable is equally distributed

among exposure groups indicates that it is marginally (i.e.

unconditional on other variables) independent of the

exposure under study. If, however, two variables are mar-

ginally independent and both are related to a third variable,

they are dependent, conditional on that third variable [12].

Table 2 Association between

exposure and outcome within

age-gender strata in a

hypothetical study

Young men Exposed

(n = 2,000)

Unexposed

(n = 2,000)

Young women Exposed

(n = 500)

Unexposed

(n = 3,000)

Outcome Yes 100 450 Outcome Yes 50 600

No 1900 4050 No 450 2400

RR = 0.50 RR = 0.50

Old men Exposed

(n = 3,000)

Unexposed

(n = 500)

Old women Exposed

(n = 4,000)

Unexposed

(n = 2,000)

Outcome Yes 300 100 Outcome Yes 900 800

No 2700 400 No 3600 1200

RR = 0.50 RR = 0.50

Table 3 Distribution of patient characteristics by ever versus never long-acting beta-agonist (LABA) use

Patient characteristics Ever LABA-users (n = 795) Never LABA-users (n = 1599) P value�

Old age (%) 402 (50.6) 628 (39.3) \0.001

Cardiovascular co-morbidity status 158 (19.9) 318 (19.9) 0.99

Female gender (%) 378 (47.5) 759 (47.5) 0.98

Data are presented as numbers (percentage)
� P values were calculated using Chi-square test

Table 4 Association between ever versus never long-acting beta-agonist (LABA) use and mortality, stratified by age and co-morbidity status

Stratum Number of subjects Number of ever LABA-users Mortality RR (95% CI)a

Young age, co-morbidity absent 1286 370 (28.8) 10 (0.8) 1.06 (0.28–4.08)

Young age, co-morbidity present 77 23 (29.9) 7 (9.1) 1.76 (0.43–7.25)

Old age, co-morbidity absent 631 267 (42.3) 110 (17.4) 1.10 (0.78–1.54)

Old age, co-morbidity present 399 135 (33.8) 126 (31.6) 0.88 (0.64–1.20)

Data are presented as numbers (percentage), unless indicated otherwise
a Risk ratio (95% confidence interval)
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This means that although exposure and gender (hypothet-

ical example) or LABA use and cardiovascular co-mor-

bidity status or gender (clinical example) were marginally

independent, they were dependent conditional on age,

because both were related to age.

The amount of (residual) confounding by the initially

balanced confounding variable after adjustment for age

alone likely depends on the strength of the association

between the two variables as well as the strength of the

association between the initially balanced confounding

variable and the outcome. In both examples these associ-

ations were substantial. Obviously, if age is not related to

the initially balanced confounding variable, stratification

by age will not result in an uneven distribution of the latter

variable within age strata, and hence no residual con-

founding due to that variable. In the clinical example, two

initially balanced confounding variables became imbal-

anced after stratification by age. In practice, the number of

initially balanced confounders could be even larger and

residual confounding due to omitting all these variables

from the adjustment model may become substantial,

especially when these variables are strong risk factors for

the outcome. Likewise, adjusting only for imbalanced

baseline covariates in a randomized trial may actually

induce bias by imbalancing other baseline covariates that

are strong risk factors for the outcome.

In textbooks on epidemiology, a confounding variable is

defined as a variable that is a risk factor for the outcome

under study and also related to the exposure of interest

[13, 14]. Furthermore, an intermediate to the causal chain

is by definition not a confounding variable. Thus, what is

considered a confounding variable depends on the outcome

of interest and exposure under study and hence the clinical

research question. However, it also depends on the stage of

analysis, since in the examples presented here, gender and

co-morbidity status did not confound the observed crude

association, but they were confounding variables for the

age-adjusted association.

Different strategies for selecting confounding variables

have been proposed. A frequently applied strategy is based

on some change-in-estimate criterion (e.g. 10% change in

OR), but variables may then be falsely identified as con-

founding variables due to non-collapsibility [15]. Statistical

tests to assess whether a certain variable is associated with

either the exposure, the outcome, or both, are typically

insensitive in small datasets, but raising the significance

level can reduce this problem [16]. However, even ‘per-

fect’ balance of prognostic characteristics among exposure

groups can result in confounding (as shown in our exam-

ples). Based on prior knowledge, common causes of both

exposure and outcome (or causes of either exposure or

outcome [17]) may be identified. Obviously, this relies on

available knowledge, but in any case established risk

factors for the outcome will be selected. Even if these

variables are not related to exposure, statistical power will

likely increase with adjustment for such risk factors [18].

Hence, selection of confounding variable for adjustment

starts with identifying risk factors for the outcome.

In conclusion, a risk factor for the outcome under study

that is evenly distributed among exposure groups can still

be a confounding variable. Hence, observed balance of

important prognostic variables among the exposure groups

in a baseline table should not result in omitting such

variables from the model to adjust for confounding.
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