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Abstract
Deep sequencing of the 16S rRNA gene provides a comprehensive view of bacterial communities
in a particular environment and has expanded our ability to study the impact of the microflora on
human health and disease. Current analysis methods rely on comparisons of the sequences
generated with an expanding but limited set of annotated 16S rRNA sequences or phylogenic
clustering of sequences based on arbitrary similarity cutoffs. We describe a novel approach to
characterize bacterial composition using deep sequencing of 16S rRNA gene. Our method defines
operational taxonomic units based on phylogenetic tree reconstruction and dynamic clustering of
sequences using solely sequencing data. These OTUs can be used to identify differences in
bacteria abundance between environments. This approach can perform better than previous
phylogenetic methods and will significantly improve our understanding of the microfloral role on
human diseases by providing a comprehensive analysis of the microbial composition from various
bacterial communities.
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Background
Recent advances in high-throughput DNA sequencing provide an unprecedented opportunity
to characterize the composition of bacterial populations in environmental samples. In
particular, recent efforts have focused on bacterial communities that surround and abound
within the human body (i.e. the human “microbiome”) and have been shown to influence
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human health and disease [1–5]. In contrast with classical microbiology techniques that rely
on culture and are therefore difficult to apply to anaerobic environments (such as the human
gut), molecular approaches can provide a comprehensive and quantitative description of all
bacteria present in a given environment. A common method for studying the diversity of the
microflora is through sequencing of the 16S ribosomal RNA gene (16S rRNA). This gene is
required in all prokaryotic cells and its DNA sequence has highly variable regions flanked
by conserved regions which allows for i) amplification using universal primers and ii)
phylogenetic analysis and taxonomic identification [6, 7]. This locus also represents a choice
target for taxonomic studies since it has been comprehensively studied and extensive records
of annotated 16S sequences from all main taxonomic subdivisions are kept in curated
databases.

Studies of 16S rRNA gene DNA sequences typically rely on two separate data analysis
approaches. Phylogenetic approaches, such as UniFrac [8, 9], have been developed to infer
global differences in bacterial composition between environments (or samples): a
phylogenetic tree including all sequences generated is reconstructed and used to calculate
the total length of the branches leading to sequences unique to one of the environments. This
method generates distances between environments and is powerful for detecting overall
microflora composition differences or similarities among environments or samples [10–13].
However, since this methodology relies on global difference in bacterial composition, it is
often difficult to identify the particular taxa responsible for these differences.

To overcome this limitation, researchers usually conduct a taxonomic analysis
(independently of the phylogenetic analysis) to estimate which bacterial communities are
most different among samples/environments. A taxonomic analysis generally entails
comparing individual DNA sequences generated by high-throughput sequencing to a
database of annotated 16S rRNA DNA sequences and assigning each sequence to a
particular taxon based on DNA sequence similarity. The microflora composition obtained
from this type of analysis can then be used to determine whether one particular taxon is
more abundant in one sample than another. While this taxonomic approach has been
successfully applied to various studies [10–13], it suffers from two important limitations.
First, the appropriate taxonomic level (i.e. species, genus, family, class or phylum) used to
determine the bacterial composition is not obvious: depending on the biological question
investigated, relevant differences in bacterial composition may occur at the phylum level or
at a much more subtle level. Second, the characterization of the microflora composition
depends on the DNA sequences present in the database: while this approach might work
very efficiently for well-characterized environmental samples, it will perform poorly if
closely related bacteria have not been sequenced. An alternative approach is to group
sequences into “Operational Taxonomic Units” (OTUs) based on a reconstructed
phylogenetic tree. For example, the Unifrac package allows defining OTUs by cutting the
phylogenetic tree at a specified distance from the root and analyzing each lineage that exists
at this distance. While this approach alleviates the requirement for reference 16S RNA
sequences, it suffers from the use of an arbitrary and unique cutoff to define OTUs which
does not take into account variation in sequence divergence among taxa.

Here we describe a novel method of analyzing deep sequencing 16S rRNA data that
overcomes the limitations of traditional phylogenetic and taxonomic approaches. We
developed an analysis method that relies solely on the DNA sequences generated to i)
reconstruct a phylogenetic tree and ii) apply a dynamic tree cutting algorithm to group
closely related sequences into OTUs while accounting for the tremendous variation in
branch lengths along the tree. We apply this method to several deep sequencing 16S rRNA
datasets generated by others and us and show that our novel method is advantageous over
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previous methods and provides a better resolution of the communities differing among
environmental samples.

Materials and methods
Data collection and high-throughput sequencing

We analyzed four independent datasets for this study (Table 1). The RDP dataset consists of
annotated 16S rRNA sequences downloaded from the Ribosomal Database Project [14, 15].
We restricted our analysis to high quality sequences that cover the amplified DNA sequence
used in our studies (see below) and have complete taxonomic information. A total of 99,097
sequences from 27 phyla were included in our analysis. The TLR5 knock-out dataset (kindly
provided by Dr. Ruth Ley) was generated from stools from the ceca of mice deficient in
Toll-like receptor 5 [11]. The sequences were generated using the same primers as in our
datasets (see below). The human data set was generated in our lab from intestinal mucosal
samples of colorectal cancer patients.

Mucosal samples were rinsed with water before processing to remove bacteria present in the
lumen but not specifically adhering to the intestinal wall. DNA extraction, amplification and
sequencing was performed as described below. The Apc/Sigirr data set was generated from
stool samples of C57BL/6 mice that were Apc+/+/Sigirr+/+, Apcmin/+/Sigirr+/+, Apc+/+/
Sigirr−/−, or Apcmin/+/Sigirr−/− [16]. Stool samples were flash frozen before processing.
Enzymatic lysis buffer (18 mg/ml lysozyme, 45 U/ml lysostaphin diluted in 1X TE Buffer
with 0.01% Triton X) was added to each sample and vortexed briefly before incubation at
37°C for one hour. DNA was extracted using Qiaquick column purification. The 16S rRNA
gene was amplified by PCR using primers that incorporated the 8F
(AGAGTTTGATCCTGGCTCAG) and 338R (CATGCTGCCTCCCGTAGGAGT)
universal primers. These primers amplify the V1 and V2 regions of the 16S ribosomal RNA
gene. It is possible that some bacterial sequences will be better amplified than others (e.g.,
due to uncharacterized sequence differences in the “universal” primer sites). However, these
PCR biases will not affect our findings as they affect all samples similarly (e.g., the same
taxon will be poorly amplified in all samples). Additionally, the amplification primers
include i) a sample-specific 8-nucleotide barcode which allows for pooling of multiple
samples for sequencing and ii) Roche 454 sequencing primers. The 8-mer barcodes were
designed to take into consideration errors in sequencing and were selected such that each
barcode differs from all other barcodes used by at least two nucleotides [17]. After PCR
amplification, the PCR products were purified using Qiaquick columns and pooled at
equivalent concentrations. Sequencing of the amplicons was performed using a Roche 454
Titanium Genome Sequencer [18]. This platform is well suited for this study because of the
longer reads compared to other next-generation sequencing platforms. The amplified regions
are approximately 300 base pairs (after removing the primers), which is well within the read
length limits of this technology. All sequences are available from the Sequence Read
Archive, accession number SRR136595.1.

Data analysis
We analyzed each of the 4 datasets separately according to the pipeline described in Figure
1. We assigned sequencing reads to the appropriate sample based on the barcode sequences
using scripts developed in our lab. Sequencing reads were kept only if the entire barcode and
the forward and reverse universal primer sequences could be identified (Table 1). To speed
up the computational analysis and decrease the memory burden, we removed all non-unique
sequences (regardless of whether identical sequences originated from the same sample or
not). The abundance or number of occurrences of each unique sequence was recorded for
each sample using in-house scripts. All unique sequences were aligned to each other using
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the INFERNAL algorithm [19], an alignment program catered for RNAs that uses sequence
information and secondary structure conservation information to generate a multiple
sequence alignment. The aligned sequences were then used to reconstruct a phylogenetic
tree using FastTreeMP [20]. FastTreeMP reduces the computational footprint by storing
sequence profiles of internal nodes instead of a full distance matrix. Neighbor-joining and
heuristics were then applied to generate the phylogenetic tree. We then used the branching
patterns (i.e. topology and branch lengths) of the resulting phylogenetic tree to group closely
related DNA sequences into operational taxonomic units (OTUs). We applied a dynamic
tree cutting method originally developed for the analysis of gene expression data [21] but
applicable to any hierarchically structured dataset. This algorithm assigns terminal branches
into OTUs based on a dynamic assessment of the shape and height of the dendrogram. The
algorithm assigns branches into OTUs following four criteria 1) a minimum number of
terminal branches or members in the cluster (determined by the user) 2) a maximum
distance between two clusters even in the same branch 3) clusters must be separated by a
gap as defined by the distance between the lowest members of the cluster and the cut and 4)
the lowest merged objects in the group must be tightly connected. Therefore, the only input
required for the OTU definition is the minimum number of members required to define an
OTU. To avoid inclusion of small taxa containing too few sequences, we requested that each
OTU contains at least 0.01% of the total number of sequences generated for the experiment
and can be adjusted in each experiment according to the depth of sequencing coverage. A
decrease in the minimum number of members required in an OTU would increase the
number of OTUs and increase the taxonomic resolution (by subdividing groups into smaller
OTUs). However, the increased resolution is accompanied with a decrease in statistical
power as 1) the multiple testing correction burden increases and 2) the number of
observations in each OTU decreases. We calculated the numbers of reads from each sample
assigned to each OTU (including all non unique reads). We then used these results to test for
differences in microflora composition between sample groups (e.g. samples from wild-type
vs. knock-out mice). We used a Student’s t-test to test each OTU for differences between
groups using the proportions of reads from a given sample assigned to this particular OTU
(i.e. the number of reads from sample X assigned in a given OTU divided by the total
number of reads for sample X). We adjusted the significance cutoff for multiple testing
using Bonferroni correction. We decided to use a Student’s t-test for our analyses since it
provided the most conservative results but note that with larger number of samples in each
group, it may be more appropriate to use non-parametric testing or likelihood ratio tests as
suggested for RNA-Seq data [22].

In parallel and independently of this phylogenetic analysis, we determined the taxonomic
assignment of each sequencing read using the RDP Naïve Bayesian Classifier [23]. This
algorithm splits each query sequence into 8-mers and compares them to ~880 genera in the
16S ribosomal RNA database to determine its most likely taxonomic assignment
hierarchically (and generates confidence estimates by bootstraps).

Results
In contrast to other phylogenetic methods, such as UniFrac, that focuses on global
differences in bacterial composition [8, 9], our method identifies groups of closely related
bacteria that can then be tested for differences in abundance among samples. An overview of
our phylogenetic approach is summarized in Figure 1. Briefly, a phylogenetic tree is
generated from the alignment of all unique 16S rRNA gene sequences. The OTUs are then
defined by cutting the branches of the phylogenetic tree dynamically by assessing the shape
and height of each branch and comparing it to the neighboring branches (see Material and
Methods for details). We hypothesized that, given the large variation in mutation rates and
divergence times existing among prokaryotes, dynamic clustering would be more suitable
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for grouping bacterial sequences than using an arbitrary similarity cutoff (e.g. 97% sequence
identity using USEARCH [24]) or cutting the tree at a specific distance from the root (as it is
implemented in the UniFrac lineage specific analysis, see Figure 2). Once the sequences
have been grouped into OTUs, one can then test whether each OTU is more abundant in
some samples than others.

Our first objective was to assess whether our method could provide biologically relevant sets
of OTUs. To test this, we analyzed 30,582 16S rRNA gene sequences from the Ribosomal
Database Project [14, 15] for which we have annotated GenBank taxonomies. These
sequences represent 27 phyla. After alignment of all sequences and tree reconstruction
(Figure 3), we used dynamic tree cutting to group closely related branches into OTUs. This
procedure clustered the 30,582 sequences into 71 OTUs. To assess the relevance of these
clusters we compared the annotated taxonomy of sequences assigned to the same OTU. On
average, 95.9% of the sequences within a defined OTU belong to the same phylum, 92.7%
of the sequences fall within the same class and 83.3% the same order (Figure 4). By
comparison, when we used the RDP classifier on the same set of sequences, 97.2% of the
sequences are clustered in the correct phylum, 96.1% in the correct class and 94.1% in the
correct order. (Note that some of these sequences are the reference sequences used by RDP
to determine taxonomy). These results show that our method efficiently groups 16S rRNA
gene sequences into categories consistent with their taxonomic annotations but without
relying on a reference sequences (and will therefore perform equally well on well-
characterized or unknown sequences that sometimes constitute a large proportion of all 16S
RNA sequences, see above).

We then applied our methodology to a 16S rRNA sequence dataset generated from mouse
stools for which a large proportion of the sequences could not be robustly assigned to even a
phylum using the RDP classifier (see Discussion and Supplemental Figure 1). We analyzed
16 samples from mice with different genotype combinations of the Sigirr (a negative
regulator of Toll-like receptor signaling [25]) and Apc genes and generated 128,526 16S
rRNA sequences. In this dataset, our phylogenetic approach clustered the 128,526 sequences
into 63 OTUs comprising between 49 and 36,493 sequences (mean = 2,040). We then tested
each of the OTUs to determine whether its abundance significantly differed according to the
mouse genotype. We identified one OTU that remained significantly different between
Apcmin/+/Sigirr−/− and all other mouse genotypes after Bonferroni correction for multiple
testing (Fisher’s exact test, two-tail, p ≤ 0.02). Apcmin/+/Sigirr−/− mice showed a
significantly higher proportion of reads in OTU 38 compared to wild type mice and either of
the mutations alone (Figure 5). 386 of the 396 unique sequences that are contained in this
OTU could not be confidently assigned to even a specific phylum using the RDP classifier
(the remaining 10 sequences were assigned to the Firmicutes phylum). Due to the lack of
closely related sequences in the 16S sequence database, most of these sequences would thus
have been placed into an “unknown” bin by comparison-based methods and this pattern
would have been missed. Alternatively, classifying all these sequences with all other
Firmicutes sequences would have diluted the difference (p ≥ 0.09 before Bonferroni
correction). This example illustrates some of the advantages of our approach: it allows
analyzing sequences distant from any annotated sequences and alleviates the need to specify
which taxonomic level to test. A phylogenetic tree reconstruction including representative
annotated sequences shows that the sequences (Figure 6, yellow dots) form a distinct branch
related to the Firmicutes and Tenericutes phyla. In addition, our analysis of the Apc/Sigirr
mouse dataset identified two distinct OTUs for which more than 95% of the sequences are
classified as Lactobacillus using the RDP classifier. We were interested in determining
whether the two clusters represent more subtle taxonomic differences, perhaps capturing
species or subspecies differences. Overlaying the sequences from these two OTUs on a
phylogenetic tree with sequences with known classifications corroborates their differences
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(Figure 6, green and orange dots). Our assignment of these sequences in two OTUs may
illustrate differences at the sub-genus level (or misclassifications by the RDP classifier).
Whether or not these differences are biologically relevant remains to be determined, but this
example demonstrates the high level of specificity of our approach that is sometimes capable
of distinguishing bacteria at a subtle taxonomic level.

For comparison, we applied to the same dataset a traditional clustering method to define
OTUs using a fixed identity percentage cut-off of 97% using the UCLUST algorithm [24].
This clustering algorithm assigns sequences to clusters based on a user-defined identity
threshold to seeds generated as the query is processed. New seeds are defined by sequences
that do not match a previously defined seed. This method is comparable to CD-HIT [26] and
is implemented in the QIIME package for 16S rRNA studies [27]. This analysis, using a
97% cut-off typically considered to represent sequences sharing the same genus, grouped the
128,526 sequences into 5,183 OTUs (mean=25 sequences) compared to only 63 OTUs
(mean=2,040 sequences) in our analyses (see above). Such a partitioning of the 16S RNA
sequences into numerous groups each containing a small number of sequences dramatically
reduces the power to identify statistical differences among samples (by decreasing the
sample size for each test and increasing the multiple-testing correction burden). In our
dataset, no difference in composition between genotype groups remained significant after
multiple-testing correction using this approach.

We finally applied our phylogenetic analysis to a published dataset from Vijay-Kumar et al.
[11]. In their study, Vijay-Kumar and colleagues compared the bacterium collected from the
cecum of TLR5−/− mice with samples from wild-type mice to test whether knocking out the
TLR5 gene resulted in a change in the gut microflora. They observed a significant change in
the overall species composition using UniFrac analyses [9, 11]. Additionally, they assigned
sequences to phylotype groups (i.e. OTUs) based on a 97% pair-wise identity to sequences
within the pool using megablast and determined the taxonomic status of each phylotype
using the best megablast hit to sequences in the Greengenes database [28]. They identified
several phylotypes that were significantly depleted or enriched in the TLR5 knock-out mice.
These phylotypes varied in their taxonomic assignment, ranging from phyla to genus.
Examinations of the phylogenetic tree including the various phylotypes suggested to us a
clustering of many of the significant phylotypes. This likely represents a unique biological
group that could not be easily defined by sequence identity cutoffs. We used phylogenetic
reconstruction and dynamic tree cutting to cluster 23,139 sequences into 34 OTUs. Our
analysis identified two OTUs that were significantly different between TLR5 knock-out
mice and wild-type mice (Student’s t-test, p≤0.01 after Bonferroni correction for multiple
testing). The two OTUs contain reads that match predominantly with the phylum
Bacteroidetes (one of the two OTUs contains specifically a large proportion of sequences
assigned to the bacteroidales order, Supplemental Figure 2). Interestingly, analyses
conducted using the RDP classifier at the phylum or order level failed to identify these
differences (respectively, p>0.68 and p>0.07 before correction for multiple testing). This
difference can be explained by i) the number of unknown sequences that are not included in
the RDP analysis and ii) inclusion of numerous additional sequences into larger groups
(respectively Bacteroidetes and bacteroidales) that swamp the more subtle difference. Both
the method used in the original study and our novel method identified a depletion of
Bacteroidetes in the TLR5 knock-out mice which demonstrates the validity of our approach.
However, we believe that our method provides a much greater power to detect taxa that are
present in different frequencies among samples: the approach used by Vijay-Kumar et al.
identified of a large numbers of phylotypes each represented by a few sequences, while our
phylogenetic approach yielded fewer OTUs (leading to a smaller multiple-testing correction
burden) comprising many more sequences (increasing the power to detect differences among
samples).
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Discussion
Current sequencing techniques have paved the way for the comprehensive analysis of the
microflora. However, the methods used to analyze these large datasets need to be further
improved to advance our understanding of the link between the microbiome and human
health. A popular method for assigning reads generated by deep sequencing of 16S rRNA
gene to taxa is by comparing them to an annotated database (e.g. using Megablast or RDP
classifier). We applied the RDP Naïve Bayesian Classifier [23] to two microbiome studies
conducted in our laboratory (see Materials and Methods) and found that the performance of
the RDP classifier is highly dependent on the dataset. In our analysis of mucosal tissues
collected from colorectal cancer patients (Table 1), the RDP classifier assigned over 90% of
the reads with more than 90% confidence at the phylum level (Supplemental Figure 1) and
approximately 90% of the reads with 90% confidence at the class level (data not shown). In
contrast, the same algorithm applied to sequences generated using the same protocol but
from mouse stool samples resulted in less than 60% of the sequences classified with more
than 90% confidence at the high-order phylum level. Lowering the confidence threshold to
80% allowed approximately 90% of the sequences to be classified, with most of the
previously unassigned sequences attributed to Firmicutes. This analysis illustrates that, at
least in some instances, the RDP classifier pools in a single group heterogeneous sequences
(i.e. those that were classified in Firmicutes using stringent criteria and those that were
originally unassigned) which may hamper subsequent analyses. These results also show the
limitations of using a method relying on comparisons with annotated sequences since it
performs poorly for bacterial species that are not well represented in the database. In this
regard, we note that the RDP classifier efficiently assigned most of the sequences generated
from human intestinal samples and will likely perform well on more diverse environments
as the reference database continues to expand and additional characterized sequences are
contributed from multiple environments.

However, to provide an unbiased and reliable methodology for all type of environments, we
developed a phylogeny-based approach to assign 16S sequences into OTUs without relying
on a priori information. We believe that the analysis pipeline presented here fulfills two
important criteria. First, the analysis needs to include all sequences generated. One of the
main advantages of deep sequencing over traditional microbiology techniques is its ability to
characterize “unculturable” bacteria. If the analytical approach only allows analysis of
known bacteria sequences (or sequences closely related to known sequences), most of this
advantage is lost. Second, the analysis of 16S deep sequencing data should provide some
indications on the communities that differ among samples (and not simply show that,
overall, the bacterial composition differs). The analysis pipeline described here fulfills these
two aspects by incorporating the advantages of a phylogenetic analysis (i.e. independence of
prior knowledge) with the ability to define OTUs and to identify bacteria communities that
differ most among samples. Importantly, the OTUs in our method are defined by a dynamic
assessment of the phylogenetic tree and do not require a fixed arbitrary branch length cutoff.
The labeling of the taxonomic status of each OTU still requires comparisons to reference
sequences but the clustering of the sequences into OTUs is performed independently and can
therefore allow investigating the role of uncharacterized bacteria. Furthermore, even if the
taxonomic status of a particular OTU remains unknown, the findings of microbiome studies
conducted using our approach can still be followed-up with primers designed to target DNA
sequence motifs unique to this OTU. This feature is particularly appealing for developing
clinical tests (using PCR as a screening tool) or to accelerate the taxonomic annotation of
OTUs (by screening bacteria cultures). Overall, we believe that the method described here
presents key advantages over previous methods and addresses some of the main limitations
of current 16S rRNA deep sequencing analysis and will, in combination with developments
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achieved by the Human Microbiome Project, contribute to better understand the role of the
indigenous microflora in regulating human health and disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Overview of the analysis pipeline.
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Figure 2. Dynamic tree cutting versus fixed height cutoff
Dotted lines 1 and 2 represent arbitrary fixed cutoffs commonly implemented in
phylogenetic analysis, which can result in a few large groups (1) or many small groups (2).
Boxes A–D represents groups of bacteria defined by the dynamic tree cut algorithm based
on the shape and height of the tree branches.
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Figure 3. Assessment of the phylogenetic clustering approach using reference 16S ribosomal
RNA gene sequences
A phylogenetic tree of 30,582 16S ribosomal RNA genes sequences from the Ribosomal
Database Project (each branch of the tree represents a unique sequence). Below the tree are
OTUs defined using the dynamic tree cutting method. Sequences assigned to the same OTU
are represented in the same color.
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Figure 4. Annotated taxonomic assignments within OTUs
Each panel shows the GenBank annotations of the sequences within an OTU (represented by
columns in the same order as in Figure 3) at the Phylum, Class, and Order level (each color
represents a different taxonomic assignment). Note that each OTU is represented largely by
one taxon, illustrating the validity of the approach (see the main text for details).
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Figure 5. Proportion of the sequences assigned to OTU38 according to the mouse Apc/Sigrr
genotypes
(N=4 per genotype group).
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Figure 6. Phylogenetic tree showing the relationships among sequences from three OTUs
identified in the Apc/Sigrr mouse dataset with regards to annotated RDP 16S sequences
Different colors indicate different phyla: Firmicutes are shown in blue dots, Proteobacteria
in red, Actinobacteria in pink, Bacteroidetes in grey and Tenericutes in black. Mouse
sequences assigned to OTU 38, 20 and 7 are represented in yellow, green and orange
respectively.

Chan et al. Page 15

Genomics. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chan et al. Page 16

Table 1

Datasets analyzed in this study

Dataset No. Samples Reads w/Barcode and Primers Unique Sequences No. OTUs

RDP na 30582 52.9% 71

Human
26 186552 58.9% 55

Colorectal

TLR5 Mice 10 23139* 56.4% 34

Apc/Sigirr
16 128526 40.2% 63

Mice

*
The TLR5 data set had shorter reads and therefore only one of the primers was identified.
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