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Fisheries bycatch is a recognized threat to marine megafauna. Addressing bycatch of pelagic species

however is challenging owing to the dynamic nature of marine environments and vagility of these organ-

isms. In order to assess the potential for species to overlap with fisheries, we propose applying dynamic

habitat models to determine relative probabilities of species occurrence for specific oceanographic con-

ditions. We demonstrate this approach by modelling habitats for Laysan (Phoebastria immutabilis) and

black-footed albatrosses (Phoebastria nigripes) using telemetry data and relating their occurrence probabil-

ities to observations of Hawaii-based longline fisheries in 1997–2000. We found that modelled habitat

preference probabilities of black-footed albatrosses were high within some areas of the fishing range of

the Hawaiian fleet and such preferences were important in explaining bycatch occurrence. Conversely,

modelled habitats of Laysan albatrosses overlapped little with Hawaii-based longline fisheries and did

little to explain the bycatch of this species. Estimated patterns of albatross habitat overlap with the

Hawaiian fleet corresponded to bycatch observations: black-footed albatrosses were more frequently

caught in this fishery despite being 10 times less abundant than Laysan albatrosses. This case study

demonstrates that dynamic habitat models based on telemetry data may help to project interactions

with pelagic animals relative to environmental features and that such an approach can serve as a tool

to guide conservation and management decisions.
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1. INTRODUCTION
Fisheries bycatch is a major threat to marine megafauna,

including seabirds, marine mammals, sea turtles and

sharks [1]. With ocean-wide distributions and movement

patterns, these animals interact with a wide range of

fishing gear and fisheries across all oceans and seas. Unin-

tentional capture of these and other non-target species,
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0 Hørsholm, Denmark.
address: NOAA Fisheries, Southwest Fisheries Science

Protected Resources Division, 3333 North Torrey Pines
a Jolla, CA 92037, USA.
address: School for Health, University of Bath, Claverton
ath BA2 7AY, UK.
t address: Institut pour la Recherche et le Développement,
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termed bycatch, during fisheries operations is an issue

of conservation concern both because of the waste of

discarded individuals and the threat to populations

of long-lived species. Bycatch research and management

actions have led to progress in mitigating bycatch for

some species in several regions [2–4], but bycatch

remains a challenge to fishery sustainability.

For bycatch to occur there must be spatial and tem-

poral overlap of fishing operations with the distribution

of species that are susceptible to particular fishing gear.

Although it is possible to track the location of fishing

activity for some fisheries (e.g. via logbooks, observer

programmes, vessel-monitoring systems), understanding

distributions and movements of marine megafauna con-

tinues to be a challenge. The development and use of a

variety of electronic tags for animal tracking have

revolutionized our knowledge of the spatio-temporal

ecology of marine animals over the last decade (e.g.

[5,6]), and conservation applications of these data are

emerging (e.g. [7–9]). Previous efforts have used tracking
This journal is q 2011 The Royal Society
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information to make general inferences about the overlap

of marine megafauna with fisheries. One of the best-

known examples is the ‘Tracking Ocean Wanderers’ initiat-

ive by BirdLife International, a compilation of tracking data

of Procellariiform seabirds (i.e. albatrosses and petrels) and

overlays of species distributions with longline fishing effort,

exclusive economic zones and jurisdictional areas of

Regional Fisheries Management Organizations [10]. Simi-

lar studies exist for sea turtles and marine mammals. For

example, high-use habitats of leatherbacks (Dermochelys

coriacea) have been identified in the northwest Atlantic,

representing areas of turtle concentration and possible

fishery threats [11]. Likewise, tracking harbour porpoises

(Phocoena phocoena) in the Bay of Fundy and Gulf of

Maine has resulted in insights into the periods when the

animals visit areas of high gillnet fishing activity [12].

The majority of published bycatch studies that use

animal telemetry data overlay static layers of animal distri-

butions and fishing effort data to identify areas of potential

interaction (e.g. [8,10,13,14]). This approach has proved

to be a useful means to meet conservation and fishery

management objectives for some applications. However,

static overlays are, by definition, incapable of accurately

representing the dynamic nature of the ocean environment,

which includes intra- (seasonal) and inter-annual (between

year) variation that occurs at both the basin and meso-

scales. As such, they cannot provide a mechanistic under-

standing of animal–fishery interactions in the context of

highly variable oceanographic conditions, e.g. storms or

other anomalies or El Niño/La Niña-Southern Oscillation.

Because static overlays integrate over large spatial and tem-

poral scales, they miss meso-scale oceanographic features

that are targeted by both human fishers [13,15] and ani-

mals (e.g. [16–20]). In response to fluctuating physical

and biological features in the ocean, marine animals cue

on meso-scale oceanographic features when moving and

selecting habitats, and changes in these small-scale oceano-

graphic features result in shifts in animal distribution (e.g.

[16–24]). Because fishing vessels also track environmental

features [25], variation in oceanographic conditions also

influences the likelihood of fisheries encounters. To miti-

gate fisheries bycatch effectively and to minimize overlap

with fishing operations, we need a clear understanding of

the underlying mechanisms that influence bycatch inter-

actions [26]. Such information can allow managers to

develop strategies to avoid fisheries interactions at a finer

scale than is possible with static overlays, while accounting

for dynamic ocean conditions. Based on the large body of

literature characterizing the dynamic nature of marine ver-

tebrate distribution, oceanographic conditions and fishing

activities, we a priori suggest that dynamic models which

accurately relate animal and fishery distributions to

oceanographic characteristics should perform as well as

static models in spatially predictable environments, and

are likely to generate more accurate projections of inter-

actions between bycatch-impacted species and fishing

vessels over time and space in the less predictable ocean

environment.

Here, we integrate animal tracking data with fisheries

information to determine the relative probability of

encounter between two albatross species (Hawaii-breeding

Laysan (Phoebastria immutabilis) and black-footed alba-

trosses (Phoebastria nigripes)) and United States (US)

pelagic longline fishing vessels based in Hawaii. We present
Proc. R. Soc. B (2011)
a dynamic habitat preference model based on albatross

tracking and concurrent oceanographic data, and then

relate modelled predictions of bird occurrence through

time to known locations of the fishing fleet and its associated

bycatch. Before bycatch mitigation measures were enacted

in 2000, the Hawaii-based longline fleet took an estimated

1000–2000 individuals of each albatross species annually

[27–29]. Although bycatch mitigation measures have

substantially reduced albatross bycatch in the Hawaiian

longline fleet since 2000, incidental bycatch remains a sig-

nificant threat to albatross populations that encounter

other fleets in the North Pacific Ocean and to albatrosses

in other ocean regions [10,30]. The quantitative approach

presented here captures the dynamic nature of albatross dis-

tributions in the North Pacific and provides a method for

integrating fisheries and telemetry data to evaluate the over-

all level of risk from interactions and to dynamically identify

likely bycatch ‘hotspots’ from an oceanographic perspective.
2. MATERIAL AND METHODS
(a) Datasets

We used three types of data in this study: (i) telemetry data of

post-breeding Laysan and black-footed albatrosses using

archival tags; (ii) remotely sensed oceanographic data associ-

ated with albatross distribution and longline fisheries; and

(iii) seabird bycatch in the US Hawaii-based longline

fisheries recorded by onboard observers.

Albatross tracking data were collected during the post-

breeding seasons (March–November) of 2004–2006 by the

Tagging of Pacific Predators research group [6]. Adult

Laysan and black-footed albatrosses were fitted with Lotek

LTD 2400 light level and temperature-based geolocator

archival tags (for further description see [31]). Tagging was

conducted at their nesting colony on Tern Island in the

atoll of French Frigate Shoals, Northwestern Hawaiian

Islands (238520 N, 1668170 W) during the breeding season.

Tags were recovered when birds returned to the colony for

the subsequent breeding season in November and recorded

data were delimited to encompass the post-breeding period

only. Tracking data from 28 Laysan and 24 black-footed

albatrosses were used in this study (see the electronic sup-

plementary material, S1). Archival tag data were processed

following methods described in Shaffer et al. [31] and two

daily positions (at universal time noon and midnight) were

obtained for each bird after data were filtered and interp-

olated [32]. On average, Laysan albatross tracks lasted for

172 days (range 58–268 days) and black-footed albatross

tracks lasted for 165 days (range 139–259 days).

Because static maps of bird telemetry locations shift con-

siderably between years (see the electronic supplementary

material, S1), we used tracking information of post-breeding

albatrosses to develop preferred habitat models of albatrosses

in the Northern Pacific. When breeding, albatrosses are cen-

tral place foragers, so they must return to their nests within a

few days. This restricts their foraging to the vicinity of the

nesting colony thus significantly reducing the available habi-

tat they can exploit during this time [18]. By contrast, during

the post-breeding period, albatrosses are not constrained by

the need to return to their chick at the colony and therefore,

have more time to travel farther to locate more favourable

habitats. Using tracking data from post-breeding albatrosses,

who are no longer constrained by colony location, provides

insight into bycatch likelihood as albatrosses exploit a



Table 1. List of remotely sensed oceanographic variables used in the analysis.

no variable source

spatial

resolution

temporal

resolution description

1 depth S2004 0.0178 static

2 ocean bottom
slope

S2004 0.0178 static slope of the ocean bottom in degrees calculated
using bathymetry data

3 distance to shelf
break

S2004 0.0178 static custom-generated raster of distance to the
continental shelf

4 sea surface

temperature
(SST)

Pathfinder

AVHRR v5

0.178 monthly monthly mean temperature

5 SST front
probability

Pathfinder
AVHRR v5

0.178 monthly custom-generated images, identifying daily
SST fronts (0.58C), calculating monthly

front probabilities and then smoothing
probabilities over 10 � 10 pixel window

6 sea surface height
(SSH)

Aviso-merged-
delayed time
updated MSLA

0.338 7 days SSH deviation from 7 year mean SSH above
the geoid

7 ocean
productivity
(VGPM)

Oregon State
University

0.178 8 days derived images obtained from Oregon State
University (http://www.science.oregonstate.
edu/ocean.productivity/)
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broader ocean environment. These data also more accurately

characterize the distribution of non-breeding birds, a sub-

stantial proportion of the adult population.

Because albatrosses were tagged and tags were recovered

at the breeding grounds, we assumed that the first and last

several locations of a trajectory did not reflect foraging habi-

tats but rather the birds’ seasonal migration corridors from

and to breeding sites; we therefore removed the first 5 and

the last 5 days of tracking of each bird in our analyses.

Further, we assumed that albatrosses cue on similar ocean

habitat characteristics year-round and that they are most

likely to be caught by fishing gear deployed in their preferred

foraging habitats. In this analysis, we relate albatross bycatch

observed in Hawaii fisheries year-round to concurrently

modelled albatross habitats, which were developed using

tracking information of non-breeding birds.

Two types of environmental parameters were used as can-

didate predictors in habitat and bycatch models: static

variables describing topographic features and dynamic vari-

ables obtained from publicly available remotely sensed

physical and biological oceanography datasets (table 1). We

sampled depth from the S2004 bathymetric dataset [33].

Ocean bottom slope (measured in degrees) was calculated

from the S2004 bathymetric data using the slope function in

ARCGIS v. 9.2 [34]. We identified the shelf break by selecting

pixels with bathymetric slope values greater than or equal to

18 and falling within a depth range between 100 and 200 m.

We then calculated the distance to the continental shelf by

generating a raster using the path distance function available

in ARCGIS v. 9.2 [34]. Sea surface temperature (SST) was

sampled from the NOAA Pathfinder Advanced Very High

Resolution Radiometer (AVHRR) v. 5 dataset. We used

monthly SST composite images to avoid data loss owing to

cloud cover. SST front probabilities were calculated as

monthly composites, assessing frequency of SST front occur-

rence relative to the number of times a particular image pixel

was visible during a month using two daily SST images (i.e.

not covered by clouds). SST fronts were detected for water

masses with SSTs differing greater than or equal to 0.58C
applying an algorithm available in Marine Geospatial Ecol-

ogy Tool (MGET) package [35]. Sea surface height (SSH)
Proc. R. Soc. B (2011)
data, collected by the Poseidon-2 altimeter on the Jason-1

spacecraft, were downloaded from Aviso website (http://

www.aviso.oceanobs.com/). We used the Delayed-Time

MSLA updated dataset. Ocean productivity data were

obtained from Oregon State University; these values were

calculated using a conventional Vertically Generalized

Production Model (VGPM) [36]. For the VGPM, net

primary production is a function of chlorophyll, available

light, and the photosynthetic efficiency, and is measured as

milligrams of carbon fixed per square metre per day.

Seabird bycatch was recorded by the Hawaii Longline

Observer Programme, which is part of the US National

Marine Fisheries Service Observer Programme (described in

Cousins [27] and Kinan [29]). We used seabird bycatch data

from September 1997 to August 2000. The start date was

determined by the availability of Sea-viewing Wide Field-of-

view Sensor (SeaWiFS) remotely sensed ocean colour

information and the end date was set to predate the implemen-

tation of seabird bycatch mitigation measures that effectively

reduced seabird bycatch by the Hawaii-based fleet [29]. We

excluded records of fishing operations that took place to the

south of 158N parallel from our analyses, as neither bycatch

nor the typical distributional range of Laysan and black-

footed albatrosses extends further south [28,37].

(b) Modelling albatross oceanographic habitats

To model albatross oceanographic habitats during the post-

breeding period we used generalized additive models

(GAMs), which are commonly used to model and predict

habitat distributions [38]. Because the albatross tracking

data consisted of presence-only locations, we simulated

pseudo-absence positions so that a logistic GAM using a

binomial response variable could be applied [38,39]. This

analysis identified habitat characteristics where birds were

present relative to habitats they could have selected during

the same time frame.

(i) Simulation of pseudo-absence locations

We used correlated random walks (CRWs) to simulate pseudo-

absence positions that represented locations where birds could

have occurred [40]. Movement parameters to generate CRWs

http://www.aviso.oceanobs.com/
http://www.aviso.oceanobs.com/
http://www.aviso.oceanobs.com/
http://www.science.oregonstate.edu/ocean.productivity/
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for individual birds were estimated based on observed move-

ment characteristics of each tracked albatross. Parameters

included the number of steps corresponding to a number of

recorded albatross locations, mean, standard deviation, mini-

mum and maximum step length values (km), and mean and

standard deviation of turning angles. Each simulated location

had an identification (ID) corresponding to the bird ID and

a date of a paired actual track, and each simulated walk started

at Tern Island. We restricted simulated walks to not occur over

land, and to occur within the area defined by the minimum

convex polygon (MCP) that encompassed all observed alba-

tross track locations of both species. The MCP was increased

by a 202 km buffer to account for the average error of

temperature-based geolocator archival tags [31].

We tested the effects of different numbers of CRWs per

individual bird on performance of habitat models aiming to

determine an optimal number of simulated pseudo-absence

locations. We ran a set of models of the same structure, con-

sisting of all actual albatross tracks (separately for each

species) and varying numbers of simulated trajectories. For

each sample size (number of simulated tracks per bird), we

measured the change in x2-value of each parameter and

model performance measured as area under the receiver

operator curve (AUC). x2-values and AUC stabilized with

sample sizes of about 30–45 simulated tracks for each

observed albatross track (see the electronic supplementary

material, S2). On this basis, we set our sample size at 50

simulated tracks for each observed track.

We sampled oceanographic variables for each location of

the real and simulated albatross tracks for the corresponding

dates. To account for estimated error distribution of archival

tags [31], we used a spatial kernel sampling technique to cal-

culate a spatially weighted average of the oceanographic data

for each location using a bivariate Gaussian distribution with

s.e. 202 km (detailed description of this sampling technique

provided in Teo et al. [41]).

(ii) Habitat modelling

Before running the analyses, all records with incomplete

environmental information, e.g. where remotely sensed data

were not available owing to cloud cover, were removed

from the datasets. This resulted in the elimination of about

10 per cent of all records. Then, the predictor variables

(table 1) were checked for intercorrelation using Spearman’s

rank correlation matrix. Variables for which the correlation

coefficient exceeded 0.75 were not included in the same

group of candidate predictors. For example, the correlation

between distance to shelf break and SST variables was

0.85; therefore, these variables were not considered in the

same candidate model. To account for possible nonlinear

relationships between response and predictor variables, we

used a smoothed spline fit with all predictors in GAMs. We

used an information-theoretic approach for model selection,

applying Akaike’s Information Criteria (AIC) to rank models

according to their degree of parsimony [42].

(iii) Evaluation of habitat models

The receiver operating characteristic (ROC) curves were

used to evaluate the performance of the albatross habitat

models [43]. We used a cross-validation technique by ran-

domly splitting our datasets into two parts: ‘training’,

consisting of two-third of all records and ‘testing’, consisting

of one-third of all records. We used the training dataset to

develop the model, which was then evaluated using the
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testing dataset. The AUC was used to discriminate between

true and false positive rates of model predictions. Generally,

AUC values of 0.5–0.7 indicate low model accuracy, values

of 0.7–0.9 indicate reasonable model performance and

values greater than 0.9 indicate very good accuracy [43].

We used the cut-off point along the ROC curve to discrimi-

nate the prediction values into either ‘suitable habitat’ or

‘unsuitable habitat’. We used automatic selection of the

cut-off point by the software (ROCR package in R; [44]),

which identifies the point on the ROC curve that is closest

to the point of ideal classification, offering the highest poss-

ible sensitivity with the lowest proportion of false positives.

A time series of locations along the track of the same

individual can be serially correlated with respect to their

associated habitat characteristics, and therefore may affect

results of habitat modelling [45]. To test whether serial cor-

relation was an issue in our analysis, we ran models using

every fifth location in the observed and simulated albatross

tracks. Then, we compared parameter importance and

AUCs of these models with our standard models based on

all bird locations. Albatross habitat modelling and model

evaluation were conducted in software R v. 2.8.0 [46] and

using fit GAM, Plot ROC of the binary classification model,

and predict GAM from rasters tools available in the MGET

package for ARCGIS [35].

(c) Modelling albatross bycatch

In albatross bycatch models, the response variable was the

number of albatrosses caught per longline set, with separate

models for each species. We applied GAMs with a log link

and Tweedie distribution, which have been proved to outper-

form other distributions when modelling zero-inflated data in

similar fisheries catch and effort datasets [47,48]. To charac-

terize the oceanic environment where the longline sets

occurred, we used SST measured at the beginning of longline

sets and sampled other oceanographic variables (table 1)

from 20 randomly generated points along the length of

each deployed line (between start and end gear setting pos-

itions). We did not consider the haul locations and the area

fished during the longline soak time [49], as fatal seabird

interactions typically occur while longlines are being set

[50]. We used the function Sample Rasters Listed in Fields of

the MGET package for ARCGIS [35] to sample spatially

and temporally corresponding oceanographic data (table 1).

We averaged oceanographic parameter values of the 20

points generated along each longline set. Further, because

oceanographic features were correlated among longline sets

within a fishing trip, we averaged environmental values and

summed albatross bycatch across all longline sets within

each trip and ran bycatch models using trip as a sampling

unit and number of albatrosses caught as a response variable.

Fishing vessels usually deploy several longline sets (average

12, range 1–28) during each trip and therefore character-

istics of longline sets correlate within a trip owing to spatial

and temporal proximity [28].

Hawaii-based longline fisheries can be categorized by

target fish species, generally either swordfish or tunas. But

such a categorical variable would essentially be a proxy for

the different environmental characteristics associated with

targeting these different groups, which are fished for in lar-

gely different areas using different gear configurations

[25,27]. We did not include target species as a variable

since we were already evaluating environmental variables

directly, and because albatrosses are generally caught while
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Figure 1. Response curves of three most influential variables in Laysan albatross oceanographic habitat model (GAM).
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deploying gear, we assumed that technical characteristics of

different longline gear for different target species do not

affect albatross bycatch. This assumption was supported by

McCracken [28], who detected no effect of target fish

catches on albatross bycatch in the Hawaii-based longline

fisheries.

In addition to environmental data, we included as a

predictor variable the estimated albatross habitat occurrence

probability, which we calculated for each longline set

using sampled oceanographic variables and developed a

dynamic albatross habitat model. Before running the bycatch

models, the predictor variables were checked for inter-

correlation, and variables with Spearman’s rank correlation

exceeding 0.75 were not included in the same group of

candidate predictors. We used an information-theoretic

approach for model selection and ranking [42].
3. RESULTS
(a) Albatross oceanographic habitats

(i) Laysan albatrosses

The best-fitting model-predicting Laysan albatross

oceanographic habitat included depth, bottom slope,

productivity, SST, SST front and SSH. Based on com-

parison of x2-values, habitat occurrence probability

varied most strongly with changes in SST, followed by

variation in ocean depth and productivity (figure 1 and

electronic supplementary material, S3). According to

model response curves, Laysan albatross occurrence

probabilities increased at SSTs between 108C and

138C, either shallow or great water depths, medium

ocean productivity, steeper bottom slopes and negative

SSH values (figure 1 and the electronic supplementary

material, S3). SST fronts had the lowest explanatory

power among predictors and model response curve did

not show a clear relationship with the response variable

(see the electronic supplementary material, S3). Distance

to continental shelf break, which correlated highly with

SST and therefore was considered in a competing candi-

date variable group, was a substantially less important

predictor of bird habitat than SST (DAIC ¼ 6885 between

models of analogous structure with distance to continental

shelf break versus SST). Evaluation of the model perform-

ance using an ROC curve indicated very good model

accuracy with AUC ¼ 0.93 (see the electronic supplemen-

tary material, S4). The predictive habitat maps of post-

breeding Laysan albatrosses also showed very good fit

with telemetry locations of this species (figure 2).
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(ii) Black-footed albatrosses

The model predicting black-footed albatross oceano-

graphic habitats with the best fit included depth,

bottom slope, productivity, SST, SST front probability

and SSH (see the electronic supplementary material, S3).

Model response curves indicated that black-footed

albatrosses prefer habitats with SST between 148C and

238C, high productivity, either negative or positive SSH

values, gentle slopes, water depths of less than 4000 m,

and low SST frontal activity zones (figure 3, electronic

supplementary material, S3). Model performance accord-

ing to ROC curve was good with AUC ¼ 0.85 (see the

electronic supplementary material, S4) and predictive

habitat maps created using the optimal model matched

distribution of black-footed albatross telemetry locations

reasonably well throughout most of the Northern Pacific

Ocean (figure 3). However, predicted suitable habitat

probability maps also suggested that highly suitable habi-

tats occurred in areas where black-footed albatrosses

tagged during this study were not observed (e.g. the

Okhotsk Sea; figure 2) and where the species has not

been reported as regularly occurring in the recent past

[37,51].

Owing to high correlation between distance to conti-

nental shelf break and SST, these terms were both

tested in the model separately. As with Laysan albatrosses,

SST performed substantially better and the distance to

continental shelf break variable was excluded from the

best-fitting model (DAIC ¼ 3933 between models of ana-

logous structure with distance to continental shelf break

versus SST).

To test whether albatross habitat models were influ-

enced by serial correlation, we developed models on

sub-sampled datasets consisting of every fifth location

along observed and simulated albatross tracks. The

most plausible models of these sub-sampled datasets

appeared to be very similar to those developed from full

datasets for both albatross species in terms of which

variables were included in the best models and their

importance, model performance according to AUC,

and shape of response curves (electronic supplementary

material, S3). We therefore conclude that results of our

analyses were not affected by serial correlation.

(b) Modelling albatross bycatch

Only 10 of the 1471 longline sets (0.7%) occurred in

areas identified by our models as probable Laysan alba-

tross habitat, i.e. areas with habitat suitability likelihood
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in excess of the cut-off point of the ROC curve (electronic

supplementary material, S4). Longline fishing overlapped

more with areas identified as black-footed albatross

habitat (173 sets or 12%). Modelled probabilities of

black-footed albatrosses occurrence correlated highly
Proc. R. Soc. B (2011)
with SST and ocean productivity (r¼ 20.75 and r¼ 0.82,

respectively). Therefore, we ran competing bycatch models

with separate variable groups including either SST, ocean

productivity or modelled black-footed albatross occurrence.

Correlation between modelled Laysan albatross habitat
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occurrence and other predictors did not exceed 0.75,

therefore all predictors were considered together.

The most plausible bycatch model for Laysan albatross

included ocean productivity, bottom slope, SST fronts

and SSH. The Laysan albatross habitat probability vari-

able was not significant in bycatch models of Laysan

albatrosses, which is not surprising given that our

models did not predict high use probability by this species

in the area fished by the Hawaii-based longline fleet

(electronic supplementary material, S5). By contrast,

modelled black-footed albatross habitat probability was

one of the predictors (together with depth and SST

fronts) in the best bycatch model for black-footed alba-

tross (figure 4 and electronic supplementary material,

S5). The relationship between the response variable and

black-footed albatross habitat probability was positive,

indicating that black-footed albatross bycatch was more

likely to occur in areas where environmental conditions

suggested higher probability of preferred habitat occur-

rence (figure 4). Competing model sets with SST and

ocean productivity among predictor variables performed

less well than the model set with the black-footed alba-

tross habitat probability (DAIC ¼ 8.6 and DAIC ¼ 4.7,

respectively).
4. DISCUSSION
The dynamic nature of marine environments creates

selective pressure favouring vagility as an adaptive mech-

anism of large pelagic vertebrates. Characterizing habitat

associations between wide-ranging marine vertebrates

and the vast dynamic seascape over which they forage
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requires an appropriate analytical framework. Using

tracking data, we developed dynamic habitat models for

two highly mobile pelagic species—Laysan and black-

footed albatrosses. These birds roam extensively over

the North Pacific and encounter a wide range of habitat

conditions ranging from oligotrophic sub-tropical waters

to highly productive sub-polar and continental shelf

regions. Our habitat models showed distinct spatial segre-

gation between these two species, a finding supported by

previous research [8,18,21,52]. Dynamic habitat models

take species distribution beyond static range maps and

provide information on probabilities of habitat use given

environmental conditions at a particular place and time.

Our modelling approach demonstrates that preferred

habitats of both albatross species are distributed at high

latitudes and far away from the main breeding colonies

located in the Hawaii Islands during the post-breeding

period of these birds (July–November). Conversely,

during the early breeding season (December–February),

albatrosses find similar oceanographic conditions much

closer to their breeding grounds. The results of our habi-

tat-modelling exercise further support earlier work which

suggests that seabirds adapt their distribution during the

annual cycle to ocean resources [16,18,20]. Performance

of habitat models differed between the two albatross species

despite input data being of the same quality. Most likely,

there are important factors determining black-footed alba-

tross distribution that has not been covered by covariates

used in our models, whereas the same variables predicted

ocean habitats of Laysan albatrosses with higher precision.

For species occupying their full range in spatially–

temporally predictable environments, the emergent
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projections of a dynamic process may look similar to

those of static models. In less predictable situations, how-

ever, dynamic models can provide novel insights. Our

models predicted suitable habitats for Laysan albatrosses

along the California Current despite the fact that the

birds tracked in our study did not travel there. It is

known, however, that Laysan albatrosses occur in that

region: a small population breeds on Guadalupe Island,

Mexico, and these birds forage in rich waters of the Cali-

fornia Current (W. R. Henry 2003, unpublished data).

This exemplifies the usefulness of dynamic models in

cases where a sample of tracking data does not fully rep-

resent the population. A notable discrepancy between our

black-footed albatross habitat model and the known

distribution of this species was in the northwest Pacific

Ocean. Our model predicted suitable oceanic habitats for

black-footed albatrosses in the Sea of Okhotsk during the

post-breeding period (July–October; figure 2). While

literature sources and tracking data do not suggest the cur-

rent distribution range of this species extending into that

area [37,51,53], populations of albatrosses in the Northern

Pacific suffered severe exploitation (deliberate killing for

feathers) during the nineteenth and early twentieth centu-

ries [54] and therefore their current range may be smaller

than historic or possible range of this species. There is

ample archaeological evidence indicating that albatrosses

were widespread in the Northern Pacific, including along

the coasts of the Sea of Okhotsk and the Sea of Japan in

the pre-modern times [54,55]. Moreover, there is a small

(ca 2500 pairs [56]) population of black-footed albatrosses

that breeds in the Western Pacific (Torishima, Senkaku and

Bonin Islands, Japan) but limited data exist on the at-sea

distribution and movements of this population [53].

Whether our model has correctly identified potential or

recent black-footed albatross range is unknown; neverthe-

less, our model predictions underscore the potential for

dynamic models to provide new information on animal

distributions.

Although marine animal-tracking studies are numerous,

we believe that tracking data often remain underused

particularly in resource management. Whereas the

majority of authors restrict their analyses to a description

of habitat use and spatial patterns of tracked animals, rela-

tively few make predictions about the extent of habitat

suitability, particularly in dynamic environments [45,57]

and there are even fewer examples of dynamic habitat

models that are then used to answer an applied environ-

mental management question (but see [57,58]). For

seabirds, tracking data have primarily been used to indicate

general and qualitative spatial overlap between birds and

fisheries when analysing seabird bycatch (e.g. [8,10,13]).

A key concern here is that telemetry studies are typically

restricted to tracking relatively few individuals over short

time periods. For wide-ranging species, these sample indi-

viduals are unlikely to accurately characterize the species’

distribution or its temporal variation, especially in response

to periodic or anomalous events (e.g. El Niño cycles, prey

regime changes [59]). We also attempted to analyse our

albatross telemetry data using static plots of area use. How-

ever, these static maps yielded patchy and varying

distribution maps that could not be linked to fisheries

data (see the electronic supplementary material, S1).

Dynamic habitat modelling addresses this problem by

quantifying environmental relationships to allow
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predictions of animal and fisheries distributions (and

their probable overlap) beyond recorded observations.

This issue was evident in our own dataset; dynamic

models described Laysan albatross habitat in the California

Current where they are known to occur but where none of

our tracked albatrosses travelled. Thus, dynamic models

can provide a more realistic and mechanistic interpretation

of system dynamics than static approaches.

Fisheries bycatch is a major threat affecting albatross

populations [30,60] and one management approach to

limit albatross-fishing vessel interactions is to minimize

their overlap. In our study, modelled oceanic habitat

occurrence of Laysan albatrosses was not a significant

covariate in bycatch models of this species owing to lim-

ited overlap between Hawaii-based longline fisheries and

predicted habitats of Laysan albatrosses. This finding is

consistent with earlier studies reporting that Laysan alba-

trosses frequently travel far from breeding colonies in the

Hawaiian Islands and well beyond the operating range of

Hawaii-based longline fisheries during the breeding

season [18,21]. By contrast, explanatory bycatch models

clearly indicated that oceanic habitat occurrence of

black-footed albatrosses was among the most significant

covariates predicting bycatch of this species. Our model

predicted a higher probability of encounter between

Hawaii-based longline fleet with black-footed albatrosses

than with Laysan albatrosses. This pattern is borne out

in NOAA observer data, which indicate that Laysan

albatrosses, despite being 10 times as abundant as

black-footed albatrosses [37], were less frequently

caught by Hawaii-based longline fisheries [27,29].

With respect to data availability, the Hawaii longline

fishery served as an ideal case study in that necessary

datasets (observer, logbook, telemetry) are robust. How-

ever, this fishery has worked for years to reduce seabird

(and other protected species) bycatch through a range

of management strategies [61]. As such, the number of

bycatch encounters and the area of overlap are far lower

than would be observed in fleets that have not

implemented mitigation measures. This fleet also has a

far smaller range relative to both bird species. A full appli-

cation of this model for these species would require

similar datasets from other fishing fleets across the North-

ern and Central Pacific [8,62]. With information about

temporal and spatial extent of other fisheries and along

with fisheries observer data, it would be possible to con-

sider the full susceptibility of Laysan and black-footed

albatrosses to bycatch across their entire ranges.

We showed that the probability of bird occurrence can

be inferred from remotely sensed data in a dynamic way.

We also demonstrated that modelled spatial distribution

of birds can be a major factor explaining the risk of

fisheries bycatch. This approach can therefore lead to

adaptive fisheries management practices, thus serving

the cause of both sustainable fisheries and conservation

of highly mobile species of marine megafauna.
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