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In species with alternative reproductive tactics,
males that sneak copulations often have larger,
higher quality ejaculates relative to males that
defend females or nest sites. Ejaculate traits can,
however, exhibit substantial phenotypic plasticity
depending on a male’s mating role in sperm com-
petition, which may depend on the tactic of his
competitor. We tested whether exposure to males
of different tactics affected sperm number and
quality in the swordtail Xipophorus nigrensis, a
species with small males that sneak copulations
and large males that court females. Sperm swim-
ming speed was higher when the perceived
competitor was small than when the competitor
was large. Plasticity, however, was only exhibited
by small males. Sperm number and viability were
invariant between social environments. Our results
suggest sperm quality is role-dependent and that
plastic responses to the social environment can
differ between male reproductive tactics.
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1. INTRODUCTION
Parker [1] predicted that, given a trade-off between
investment in the ejaculate and other expenditures
important in obtaining mates, ‘parasitic’ males that
sneak fertilizations should exhibit greater ejaculate
investment relative to ‘bourgeois’ males that guard
females. As predicted, parasitic males often do have
larger testes, ejaculate more sperm of higher quality,
and have higher success in sperm competition [2].
Few studies, however, have examined the extent to
which ejaculate traits are phenotypically plastic in
response to the phenotype of a male’s competitor
[3,4]. Ecological and demographic factors are known
to lead to temporal and spatial fluctuations in the fre-
quency of male reproductive tactics in the wild [5].
Consequently, plasticity in ejaculate traits may be
favoured if changes in the phenotype of a male’s com-
petitor(s) affects the optimal ejaculate allocation
strategy.

Males are predicted to alter ejaculate investment if
they consistently experience an advantage (or disadvan-
tage) in sperm competition [6]. Dominant males, for
example, are often in the favoured mating ‘role’ in
sperm competition because they can exclude subordi-
nates from the best physical and temporal mating
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positions [7]. Females can also influence mating roles
by lengthening or shortening copulation [8], ejecting
sperm [9] or biasing sperm use inseminated by pre-
ferred males [10], which is typically the bourgeois
phenotype in species with alternative tactics [2].
Theory predicts males should increase ejaculate invest-
ment when they consistently occupy the disfavoured
role and decrease it when in the favoured role [6].
Experimental manipulations of social status in birds
and fishes have shown some support for the theory,
with sperm quantity and quality quickly declining
when males become dominant (the favoured role) [3,4].

We examined whether phenotypic plasticity in
ejaculate traits were manifest in the swordtail
Xiphophorus nigrensis, an internally fertilized fish with
size-dependent alternative male reproductive tactics.
Male body size depends on a Y-linked polymorphism
that induces sexual maturation and dramatically
slows growth [11]. Males that mature at a small size
obtain fertilizations by coercively sneaking copulations
while males of large and intermediate size court
females but rarely sneak [12]. Sperm competition has
also played a role in the evolution of the tactics;
small males produce more viable sperm and sperm
that is longer lived [13]. Large males, however, are
superior in male–male competition [14] and preferred
by females [15]. Here, we manipulated the tactic of a
male’s perceived competitor and measured the
number and quality of sperm produced. We predicted
that small males would elevate ejaculate investment
when their competitor was large (sneaker males in
the disfavoured role), while large males would reduce
investment when their perceived competitor was
small (courting males in the favoured role).
2. MATERIAL AND METHODS
Xipophorus nigrensis were collected from the Nacimiento Rio Choy,
Mexico in May 2008 and housed with visual access to the other
sex for at least four weeks prior the study. On the first day of the
14 day trial, sperm were stripped from a large (35.1+1.73 mm stan-
dard length (SL), n ¼ 11) or small (25+0.83 mm SL, n ¼ 17) focal
male. The male was then placed in the centre of a 23 l aquarium
divided evenly into thirds with two translucent, water-permeable bar-
riers. A stimulus female (34.1+1.5 mm SL) was placed in one
compartment and either a large (35.4+1.8 mm SL) or small
(24.4+1.1 mm SL) stimulus male in the other. The barrier allowed
passage of visual and chemical stimuli but prevented physical con-
tact. On day 7, the focal male’s ejaculate was stripped for analysis.
A stimulus male of the opposite tactic was then swapped into the
aquarium after a complete water change while the same female
remained in her compartment. On day 14, the focal male’s ejaculate
was stripped again for the second assay.

Ejaculate traits were assessed as in Smith & Ryan [13]. Briefly,
the number of sperm stripped and swimming velocity were deter-
mined by activating 4 ml of ejaculate with 12 ml 150 mM KCl,
pipetting the solution in a Microcell (Conception Technologies,
San Diego, CA, USA) fixed depth (20 ml) slide and analysing the
first 2 s of video 1 min post-activation (178+70 sperm tracked,
range 44–341). Two subsamples of the stripped ejaculate were
measured for each male. Sperm viability was assessed by photo-
graphing sperm stained with the Molecular Probes LIVE/DEAD
fluorescence assay (3227+1600 sperm, range ¼ 1100–6750) and
calculating the proportion alive with IMAGEJ. An angular transform-
ation was used to normalize the proportions. Data were analysed
using repeated-measures ANOVA in SYSTAT v. 11. All statistical
tests were two-tailed.
3. RESULTS
The tactic of the stimulus male had no significant
effect on the number of sperm stripped (stimulus
male tactic: F1,26 ¼ 2.06, p ¼ 0.16; stimulus � focal
This journal is q 2011 The Royal Society
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Figure 1. Average path velocity of sperm from courting and
sneaking males when exposed to stimulus males of each
tactic. Depicted are the means +1 s.e. Filled circles, focal
sneakers; open circles, focal courters.
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male tactic: F1,26 ¼ 1.31, p ¼ 0.26) or sperm viability
(stimulus male tactic: F1,26 ¼ 0.96, p ¼ 0.34;
stimulus � focal male tactic: F1,26 ¼ 0.49, p ¼ 0.49)
of focal males. In contrast, sperm velocity was higher
overall in the presence of sneaker males compared
with courting males (stimulus male tactic: F1,26 ¼

4.53, p ¼ 0.043) but a male’s response did not
depend on his own tactic (stimulus � focal male
tactic: F1,26 ¼ 2.46, p ¼ 0.13; figure 1). Our power to
detect the interaction, however, was low (12b ¼
0.33), so we decomposed the interaction to increase
power. We detected a 13 per cent increase in sperm
swimming speed when sneakers were exposed to
other sneakers compared with when they were exposed
to courting males (paired t-test: t16 ¼ 3.04, p ¼ 0.008,
Bonferroni-corrected a ¼ 0.025, Cohen’s D ¼ 0.76;
figure 1). In contrast, the velocity of sperm produced
by courting males was not different when the tactic
of their competitor was altered (paired t-test: t10 ¼

0.34, p ¼ 0.74, Cohen’s D ¼ 0.12, figure 1). These
results suggest the significant overall increase in vel-
ocity in the ANOVA, which we had more power to
detect (12b ¼ 0.54), was driven by the response of
sneaker males to the treatments.
4. DISCUSSION
Several studies have demonstrated male ejaculate traits
are phenotypically plastic given variation in the
number of male rivals or female mating status [16].
Our study shows that changes in the phenotype of a
male’s perceived competitor results in rapid alterations
in sperm quality, but that plasticity can be tactic-depen-
dent. Only small sneaker males responded to variation in
the tactic of their competitor, producing faster swim-
ming sperm in the presence of other small males.
Sperm velocity increases sperm competitive ability
in swordtails [17] and other internal fertilizers [18],
thus plasticity in velocity may be have important
consequences for a male’s success in sperm competition.
Biol. Lett. (2011)
Temporal and spatial heterogeneity in the frequency
of alternative male tactics could lead to phenotypic
plasticity in ejaculate traits if such shifts also alter the
optimal ejaculate allocation strategy. The frequency of
sneaker males varies over space and time in swordtails
[19] and has well-documented effects on sperm compe-
tition risk in other species [20,21]. Mating roles may
also fluctuate with tactic frequency by altering male–
male dominance interactions and female preferences,
both of which can depend on the male phenotypes in
competition in the population [22,23].

Ejaculate traits in large male X. nigrensis, however,
did not depend on their competitor’s phenotype in
our study. One explanation is plasticity may not
confer a selective advantage for these males. Trade-
offs between the ejaculate and other activities that
increase reproductive success are at the heart of sperm
competition theory, and it is possible that bourgeois
males may gain higher fitness returns by allocating
energy to resource defence and attracting females
rather than investing in sperm competition [20]. Alter-
natively, competitor phenotype may simply not provide
information about the mating roles in X. nigrensis. This
is unlikely, however, as male mating tactics can have
large effects on mating success [8,15] and small males
responded to the treatments in our experiment.

Considering their disadvantaged mating role, we
expected small males to have higher ejaculate invest-
ment in the presence of large, not the small, male
competitors. Other studies have found sperm quality
is lower in subordinate males when dominance inter-
actions prevent access to females and the energetic
costs of aggression are steep, resulting in a ‘wait to
mate’ until higher social status can be obtained [24].
We think this explanation is unlikely here because
(i) males do not live in stable social groups where
females are well-defended, (ii) male growth declines
rapidly at sexual maturity preventing predictable tran-
sitions in social status with age, and (iii) aggressive
interactions between individuals that often mediate
these effects were precluded by a physical barrier
(although fish could see and smell each other).

Alternatively, small males might be responding
to variation in their perception of sperm competitive
ability rather than asymmetries in precopulatory
sexual selection. A previous study found sneaker
male X. nigrensis have more viable and longer lived
sperm than courting males [13], both of which are
known to contribute to sperm competitive ability in
internal fertilizers [25,26]. Differences in sperm
competitive ability might have stronger effects on
mating roles than male–male competition and female
preferences, all of which are known to influence repro-
ductive success in swordtails [15,17,27]. Disentangling
the relative importance of precopulatory and post-
copulatory interactions on reproductive success is a
major aim of research in sexual selection [28]. Our
study suggests these episodes of selection might
shape plasticity in ejaculate traits, and that the costs
and benefits of plasticity differ between male tactics.

We thank Hans Hofmann, Ed Theriot and Grace Lee for
assistance collecting the data. Three anonymous reviewers
provided helpful comments on the article. Permission to
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