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From the perspective of neural coding, the considerable trial-to-
trial variability in the responses of neurons to sensory stimuli is
puzzling. Trial-to-trial response variability is typically interpreted
in terms of “noise” (i.e., it represents either intrinsic noise of the
system or information unrelated to the stimuli). However, trial-to-
trial response variability can be considerably different across stim-
uli, suggesting that it could also provide an important contribution
to the information conveyed by the neural responses about the
stimuli. To test this hypothesis, we addressed the problem of dis-
criminating stimulus location from the spike-count responses of
neurons recorded in the ventro-postero-medial (VPM) nucleus of
the thalamus in anesthetized rats. Using a recently developed in-
formation theory approach, we verified that differences between
stimuli in the trial-to-trial spike-count variability of the responses
provided an important contribution to the overall information car-
ried by the neurons. In addition, we found that the relatively re-
liable (sub-Poisson) firing regime of our VPM neurons was not only
more informative, but also more redundant between neurons
compared with a more variable (Poisson) firing regime with the
same total number of spikes. The typical increase in trial-to-trial
response variability from the periphery to the cortex could there-
fore serve as a strategy to reduce redundancy between neurons
and promote efficient sparse coding distributed in large popula-
tions of neurons. Overall, our data suggest that the trial-to-trial
response variability plays a critical role in establishing the trade-
off between total information and redundancy between neurons
in population codes.

Amajor challenge for system neuroscience is to understand the
basic elements of the neural code. Because single neurons

typically respond to different stimuli with different average firing
rates, possibly the simplest hypothesis is that neurons use a rate-
coding scheme to represent sensory information (1, 2). However,
average firing rates do not necessarily represent a complete de-
scription of the neural responses, partly because neurons can
respond with a high degree of variability to different repetitions
of the same stimulus (3). Trial-to-trial variability in the neural
responses can be due to synaptic noise (4, 5) or can represent
information that is not directly related to the stimulus, e.g., in-
formation about the state of the system (6–8). However, the
relation between trial-to-trial variability in the responses of
neurons and the information conveyed by those neurons remains
unclear (9).
The rate-coding hypothesis was originally formulated on the

basis of classic works in peripheral nerves (10, 11). Indeed, at the
first stages of sensory processing, the trial-to-trial variability can
be so low that neural responses can be almost deterministic (12–
14), i.e., neurons respond with virtually the same number of
spikes to different repetitions of the same stimulus. In the ideal
deterministic regime, single-trial responses are completely de-
scribed by average responses (because each single trial is iden-
tical to the average). Ascending through sensory systems, neural
responses to the same stimuli can become progressively more
variable and stochastic (13, 15, 16). When the trial-to-trial vari-

ability is such that all spikes emitted by a single neuron are
completely independent from each other, that neuron behaves as
a Poisson process. In the Poisson regime, distributions of single-
trial responses are again fully described by the average firing
rates, because a Poisson distribution is completely defined by its
mean. Indeed, Poisson distributions have often been used to
model neuronal responses (17–19). However, in subcortical
structures—and even in cortex—the trial-to-trial variability of
the neural responses can be very low, i.e., highly sub-Poisson (13,
20–24). The sub-Poisson regime lies in between the deterministic
regime and the Poisson regime, and in general it is not fully
described by average firing rates: The trial-to-trial variability of
the neural responses needs to be taken into account.
Here we hypothesized that trial-to-trial response variability

could provide an important contribution to the information
conveyed by the neural responses about the stimuli. This hy-
pothesis is suggested by the fact that trial-to-trial variability can
be considerably different across stimuli and could therefore
contribute to the discrimination between stimuli. To address the
possible contribution of variability to neural coding, we used our
recently developed information theory approach—the general
Poisson exact breakdown of the mutual information (25)—to
quantify the specific contribution of trial-to-trial response vari-
ability to the information about stimulus location conveyed by
single neurons and pairs of neurons in the ventro-postero-medial
(VPM) nucleus of the thalamus of urethane-anesthetized rats.

Results
Variability in the Responses of Single VPM Neurons to Different
Stimulus Locations. We recorded the activity of 40 single VPM
neurons responding to electrical stimuli delivered to two locations
via whisker pad stimulators (26) separately implanted on the
mystacial pad in urethane-anesthetized rats. To be able to robustly
quantify the contribution of variability with rigorous information
theory measures, we delivered a high number of stimuli per loca-
tion (800) and we used relatively low stimulus intensities (0.2–1
mA), so thatmost neurons did not consistently respond to all trials.
Theaveragefiring rates for each cell in response to the stimuli were
measured by the responsemagnitude (spikes per stimulus) and the
spike-count variability was measured by the Fano factor, which is
the ratio of the variance to the mean (a Poisson process has
a theoretical Fano factor = 1). The basic neurophysiological
properties of the observed single-neuron responses, summarized
in Table S1, are comparable to the responses of VPM neurons to
tactile whisker stimulation (27).
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Fig. 1 shows a representative example of two simultaneously
recorded cells. The first neuron consistently responded to the
stimuli delivered to the first location with a relatively high average
firing rate (response magnitude = 0.94 spikes per stimulus) and
very low variability (Fano factor = 0.08). The same neuron
responded to the stimuli delivered to the second location with
lower average firing rate (response magnitude = 0.68 spikes per
stimulus) and greater variability (Fano factor = 0.33). Similarly,
for the second neuron the larger average firing rate was associated
with less variability. This result held for the population as a whole
(Table S1): The stimulus location that elicited the larger response
magnitude was associated with a smaller Fano factor (paired t test,
P < 0.0001). In fact, response magnitudes and Fano factor were
negatively correlated (r = −0.65, P < 0.0001; Fig. 2A), consistent
with earlier observations in the visual system (13, 23, 28, 29).
Importantly, in the plane defined by response magnitude

(RM) and Fano factor (FF), no neuron fell below the FF = 1 −
RM line (Fig. 2A). This line is in fact a theoretical limit, as it
represents neurons that fire at most one spike in response to any
stimulus, which is a particular case of the sub-Poisson regime: the
Bernoulli regime. Many of our VPM neurons were thus oper-
ating in a sub-Poisson regime relatively close to Bernoulli. Ber-
noulli spiking (or binary spiking) has been previously inves-
tigated in the auditory cortex (22). On the basis of previous
theoretical works (30, 31), DeWeese and colleagues suggested
that binary spiking could subserve the stable propagation of
packets of spikes from a population of neurons to a downstream
population of neurons (22).
Sub-Poisson firing represents a response variability charac-

terized by autocorrelation in the spike count (18): If a spike
occurs, the probability of observing a second spike decreases (or
increases). Conversely, Poisson firing represents a response
variability characterized by absence of autocorrelation in the
spike count: If a spike occurs, the probability of observing a
second spike is the same as for the first spike, because all spikes

are completely independent. To gain insight into the role of
variability in neural coding, in the next sections we use our
general Poisson exact breakdown of the mutual information (25)
to assess the possible informational advantages or disadvantages
of sub-Poisson firing compared with Poisson firing for discrimi-
nating stimulus location in our VPM neurons.

Trial-to-Trial Response Variability Contributes to the Information
Conveyed by Single Neurons. To quantify how much information
could be extracted about the discrimination of two stimulus
locations from the spike counts in the single-trial responses of
VPM neurons, we used Shannon’s mutual information between
the responses and the stimuli (32). To discriminate two stimulus
locations is a binary problem, so the maximum information, i.e.,
the entropy of the stimuli, is 1 bit. To say that a neuron conveys 1
bit of information means that from any single-trial response we
can infer with full certainty which of the two stimuli generated
that response.
To estimate the information that is carried by the variability or

autocorrelations (Îcor-auto) we first calculated the information
that a neuron would convey if it fired according to Poisson dis-
tributions (Îlin) with the experimentally measured average firing
rates in response to the stimuli. In the notation, the “hat” (^)
indicates that the corresponding term uses, at least in part,
Poisson equivalent distributions (SI Materials and Methods). We
then calculated the information carried by the observed
responses of the neurons (I). The difference between the two
(Îcor-auto = I − Îlin) defines the information due to count auto-
correlations in single neurons and represents the potential in-
formational advantage of the sub-Poisson regime compared with
the Poisson regime (25).
In the intuitive case of two stimuli evoking the same response

magnitude, all of the information would be due to differences in
variability and it would bemeasured by the count autocorrelations
information term (i.e., if Îlin = 0, then Îcor-auto = I). As a simple

Fig. 1. Discrimination of stimulus location by pairs of VPM
neurons. (A) Representative raw single-trial responses (25
ms poststimulus) of a pair of VPM neurons (neuron 1 and
neuron 2) to stimulation of two different locations on the
whisker pad (stimulus 1 and stimulus 2). (B) Raster plots
showing the single-trial responses of the same pair of
neurons for all 800 trials per stimulus location. (C) Peri-
stimulus time histograms (PSTH) showing the average
responses to the stimuli of the same pair of neurons. The
response magnitude (RM, average spikes per stimulus) is
reported for every PSTH. The x axis (time) is the same for all
plots in A–C, with 0 being stimulus onset. (D) Spike-count
distributions (probability of occurrence of a particular
number of spikes per stimulus in any given trial), corre-
sponding to the responses in A–C. The Fano factor (FF) is
reported for every spike-count distribution.
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example, let us consider a neuron that always fires two spikes in
response to a stimulus s1 and either one spike (50%of the trials) or
three spikes in response to a second stimulus s2 (Fig. 2B). The
neural responses perfectly discriminate the two stimuli, but the
response magnitude is the same for both stimuli (RM = 2 spikes
per stimulus). All of the information is therefore conveyed by
count autocorrelations (i.e., Îlin = 0 and Îcor-auto = I = 1 bit).
In our experimental data, single VPM neurons (n = 40)

conveyed 0.20 ± 0.22 bits of information about stimulus location
(I), ranging from <0.01 bits to as high as 0.71 bits. The in-
formation contributed from count autocorrelations (Îcor-auto)
accounted for 28.3 ± 25.4% of the total spike-count information
carried about stimulus location (Fig. 2C). The relationship be-
tween total information and count autocorrelations fell into two
informational modes (Fig. 2D). The first mode included neurons
that carried a small amount of information (0.03 ± 0.03 bits, n =
8) mostly due to count autocorrelations (70 ± 10%), whereas the
second mode included neurons that carried much more in-
formation (0.24 ± 0.23 bits, n = 32) with a smaller contribution
of count autocorrelations (17 ± 14%). In both modes the per-
centage of information due to count autocorrelations was higher
for neurons conveying more information (r = 0.76, P = 0.0274,
n = 8; r = 0.73, P < 0.0001, n = 32; Fig. 2D). The first mode
corresponded to neurons that responded to the two locations
with similar response magnitudes (<30% difference) and the
second mode corresponded to neurons that responded to the two
locations with a larger response magnitude difference.
Importantly, in both modes the percentage of information due

to count autocorrelations was significantly correlated to the
difference in Fano factor between the two stimuli (r = 0.88, P =
0.0035, n = 8; r = 0.82, P < 0.0001, n = 29; three outliers with
difference in Fano factor >1 were excluded; Fig. 2E). These

results suggest (a) that the relatively reliable (sub-Poisson) firing
regime of our VPM neurons is considerably more informative
than a more variable (Poisson) regime with the same total
number of spikes and (b) that differences in response variability
between stimuli contribute to the information about stimulus
location conveyed by single VPM neurons.

Trial-to-Trial Response Variability Contributes to the Redundancy
Between Neurons. If variability differences between stimuli con-
tribute to the information carried by single neurons, they could
also contribute to the synergy or redundancy between neurons.
The first step to address this issue was to establish how much of
the information carried by VPM neurons is redundant between
neurons (33). We used the fact that we simultaneously recorded
from pairs of neurons (n = 40 pairs) and decomposed the total
information carried by the pairs into the information carried
independently by the individual neurons (Ilin) plus the in-
formation gained (synergy) or lost (redundancy) in their joint
responses (ΔIsyn). Note that for single neurons I = Ilin, so for
pairs of neurons, Ilin is the sum of I (or Ilin) of the individual
neurons. As expected, the information about stimulus location
was redundant between neurons. The redundancy was 12.5 ±
21.2% of the total spike-count information (Fig. 3A).
Redundancy between neurons can arise from “signal similar-

ity” (Isig-sim), i.e., similarity between neurons in their responses to
the stimuli, and/or from “noise correlations” (Icor), i.e., trial-to-
trial correlations between neurons in the variability of their
responses (34–37). In our pairs, virtually the entire redundancy
between neurons was due to signal similarity (Isig-sim: 12.4 ±
21.2% of the total spike-count information). Noise correlations
had a negligible synergic contribution to the total information
(Icor: 0.6 ± 3.2% of the total spike-count information). Even
though we cannot exclude these small contributions from noise
correlations to become relevant in large populations of neurons
(38), they did not play a role for the discrimination of stimulus
location in our pairs (Fig. 3B).
To determine the contribution of the response variability

within neurons to the redundancy between neurons, using the
general Poisson exact breakdown of the mutual information we
first calculated the redundancy that the neurons would have if
they fired in a Poisson regime (Îsig-sim), again maintaining the
experimentally measured response magnitudes. We then calcu-
lated the redundancy between neurons in the observed responses
(Isig-sim). The difference between the two is the redundancy due
to count autocorrelations (Îsig-sim-auto = Isig-sim − Îsig-sim), which
represents the additional redundancy between neurons in the
sub-Poisson regime compared with the Poisson regime. For pairs
of neurons, the overall information due to count autocorrela-
tions (Îcor-auto) is the sum of the count autocorrelation in-
formation conveyed by the individual neurons (Îlin-auto) corrected
for the redundancy due to count autocorrelations (i.e., Îcor-auto =
Îlin-auto + Îsig-sim-auto).
In the intuitive case of two stimuli evoking the same response

magnitude in both neurons, the redundancy obviously cannot be
due to similarity between neurons in their average firing rates,
but is instead due to similarity in their variability across stimuli,
as measured by the count autocorrelations signal-similarity term
(if Îsig-sim = 0, then Îsig-sim-auto = Isig-sim). Let us reconsider the
simple example of a neuron that always fires two spikes in re-
sponse to a stimulus and either one spike (50% of the trials) or
three spikes in response to a second stimulus, and let us dupli-
cate this neuron so that we have a pair of identical neurons firing
independently (Fig. 3C). The response magnitudes are again the
same for both stimuli, so any information and redundancy values
are necessarily due to count autocorrelations (Îlin = 0, Îsig-sim =
0). The responses of each neuron perfectly discriminate between
the two stimuli (Îlin-auto = 2 bits), so there is maximal redundancy
between neurons (Îsig-sim-auto = −1 bit), with count autocorrela-
tions conveying all of the information (Îcor-auto = I = 1 bit).
In our recorded pairs, the redundancy due to count auto-

correlations (Îsig-sim-auto) was about half (50.7 ± 96.7%) of the

A B

C D E

Fig. 2. Trial-to-trial response variability contributes to the information con-
veyed by single neurons. (A) Scatter plot of the response magnitude (x axis,
average spikes per stimulus) versus the Fano factor (y axis) for all neurons (40)
and all stimuli (2). (B) Simple example of a neuron carrying information about
two stimuli only by count autocorrelations. The neuron fires always with two
spikes in response to the first stimulus and either one spike or three spikes
(50%of the trials) in response to the second stimulus. Shown is the conditional
probability p(r j s) of the responses to the stimuli and the corresponding in-
formation values, assuming that p(s1) = p(s2) = 0.5. (C) Total information (Itot,
black line) carried by single neurons about stimulus location and contribution
of trial-to-trial response variability, i.e., information due to count autocorre-
lations (Îcor-auto, gray line). The x axis represents poststimulus time, and in-
formation values are calculated for increasing time windows [(0–1 ms), (0–2
ms), . , (0–20 ms)]. The y axis represents information in bits. Solid lines are
averages across neurons; dashed lines are 95% confidence intervals. (D)
Scatter plot of the information due to count autocorrelations (Îcor-auto, y axis,
expressed as percentage of the total information) versus the total information
(I, x axis, in bits) considering the entire (0–20 ms) poststimulus window. (E)
Scatter plot of the information due to count autocorrelations (Îcor-auto, y axis,
expressed as percentage of the total information) versus the difference in
Fano factor between stimuli (x axis).
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total redundancy between neurons (Isig-sim) (Fig. 3D), with count
autocorrelations (Îcor-auto) still accounting for 28.8 ± 27.8% of
the total information (I) (Fig. 3E). Therefore, even though the
more reliable sub-Poisson regime was more informative compa-
red with the more variable Poisson regime, it was also more
redundant.
Finally, for the pairs of neurons the percentage of information

carried by count autocorrelations (i.e., the additional infor-
mation of the sub-Poisson regime compared with the Poisson
regime) was significantly correlated to the difference in the
population Fano factor between the two stimuli (Pearson’s r =
0.48, P = 0.0032; Fig. 3F; pairs with the three outliers were ex-
cluded). This result is consistent with what we observed for the
single neurons and confirms that this additional information was
related to differences between stimuli in the trial-to-trial vari-
ability of the responses.

Discussion
Considering the problem of discriminating stimulus location from
the spike-count responses of pairs of VPM neurons in anes-
thetized rats, we obtained the following main results: (i) differ-
ences between stimuli in the trial-to-trial spike-count variability of
the responses provided an important contribution to the overall
information carried by VPM neurons and (ii) the relatively reli-
able (sub-Poisson) regime of VPM neurons was indeed more
informative, but also more redundant between neurons compared
with a more variable (Poisson) regime with the same total number
of spikes. Response variability, therefore, contributes to the in-
formation carried by both single cells and populations of neurons
in addition to that carried by average firing rates.

Methodological Considerations. We previously showed that tem-
poral information conveyed by spike timing can be more than
spike-count information in the entire ventrobasal complex of the
thalamus (32). Because temporal codes and rate codes are by no
means mutually exclusive (see, e.g., refs. 39 and 40), in the
present work we focused on spike count. To investigate the role
of trial-to-trial spike-count variability for neural coding, we used
both classical neurophysiological measures such as the Fano
factor (13, 16) and a rigorous information theory approach re-
cently developed by us: the general Poisson exact breakdown of
mutual information (25). This information theory approach
represents an integrative generalization of several previous in-
formation theory measures, including series expansion (34), ex-

act breakdown (41), synergy/redundancy between neurons (36),
and information lost by an optimal decoder that assumes absence
of correlations between neurons (35, 41). However, our general
Poisson exact breakdown includes two unique measures that are
crucial for the present work: (i) the exact contribution of count
autocorrelations to the information carried by neurons (Îcor-auto,
the series expansion can provide an approximation of this mea-
sure) and (ii) the contribution of count autocorrelations to the
redundancy between neurons (Îsig-sim-auto). Because count auto-
correlations are nothing but deviations from Poisson dis-
tributions, the above measures allowed us to quantify, from
a rigorous information theory perspective, the advantages and
disadvantages of sub-Poisson firing compared with Poisson firing
in our VPM neurons. From a more physiological perspective,
Îcor-auto depends on the response properties of individual neu-
rons and thus on their “unique biophysical fingerprint” (42).
Conversely, Îsig-sim-auto depends on the heterogeneity between
neurons (e.g., in the intuitive case of two stimuli evoking the
same response magnitude in both neurons, the more the differ-
ences in autocorrelations between stimuli are similar for the two
neurons, the more the two neurons will be redundant).
An important potential problem with all information theory

measures is the bias introduced by limited sampling of the ob-
served neural responses (43). Because the number of different
observed responses increases exponentially with the number of
neurons and linearly with the number of stimuli, with a high
number of neurons and/or stimuli information theory measures
rapidly become experimentally unviable. To minimize sampling
bias, we adopted several strategies. First, we considered the
minimal problem of discriminating between two stimulus loca-
tions. Second, we recorded pairs of neurons, which admittedly
did not allow us to investigate the possible role of higher-order
correlations between more than two neurons (38, 44). Third, we
used a number of trials that is one order of magnitude greater
compared with previous studies under similar experimental
conditions (800 compared with 50–100 trials per stimulus; e.g.,
refs. 32, 45, and 46). Fourth, we applied proper bias correction
procedures (SI Materials and Methods) (47). We can therefore
confidently assert that the remarkable contributions of trial-to-
trial spike-count variability to the information conveyed by VPM
neurons (w30% of the total information) and to the redundancy
between neurons (w50% of the total redundancy), described
here, are not an artifactual consequence of sampling bias in our
information measures.

A B C

D E F

Fig. 3. Trial-to-trial response variability
contributes to the redundancy between
neurons. (A) Information carried in-
dependently by the individual neurons
in each pair (linear term Ilin, black line),
and information gained (synergy) or lost
(redundancy) in their joint responses
(synergy/redundancy term Δsyn; gray
line). (B) Redundancy due to signal sim-
ilarity (Isig-sim, black line) and synergy/
redundancy due to noise correlations
(Icor, gray line). (C) Simple example of
a pair of neurons carrying redundant
information in count autocorrelations.
Both neurons independently fire always
with two spikes in response to the first
stimulus and either one spike or three
spikes in response to the second stimu-
lus. Shown is the joint conditional
probability p(r1, r2 j s) of the responses
of the neurons to the stimuli and the corresponding information values, assuming that p(s1) = p(s2) = 0.5. (D) Signal similarity due to count autocorrelations
(Îsig-sim-auto, gray line), compared with the total signal similarity (Isig-sim, black line, same as in B). (E) Total information (Itot, black line) carried by pairs of
neurons about stimulus location and information due to count autocorrelations (Îcor-auto, gray line). All x axes are as in Fig. 2C; solid lines are averages across
neurons; dashed lines are 95% confidence intervals. (F) Scatter plot of the information due to count autocorrelations (Îcor-auto, y axis, expressed as percentage
of the total information) versus the difference in Fano factor between stimuli (x axis) for pairs of neurons. The difference in Fano factor between stimuli for
pairs of neurons was defined as the Euclidean distance between the vectors of Fano factors corresponding to each stimulus location.

Scaglione et al. PNAS | September 6, 2011 | vol. 108 | no. 36 | 14959

N
EU

RO
SC

IE
N
CE

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1103168108/-/DCSupplemental/pnas.201103168SI.pdf?targetid=nameddest=STXT


It is important to remark that our experiments were per-
formed in urethane-anesthetized rats, as in our previous studies
on thalamic processing (27, 32). On the one hand, these anes-
thetized conditions are convenient to maintain the animal brain
in a reasonably stable state throughout long stimulation proto-
cols (48). On the other hand, however, thalamic responses are
highly dependent on the arousal and behavioral state of the
animal (48–51). Inferences about sensory processing based on
anesthetized data should therefore be cautious: Our experi-
mental conditions simply represent a model to gain general
insights about the possible computational roles of trial-to-trial
variability in neural responses from a rate-coding perspective.
Finally, variability of neural responses can depend not only on

the behavioral/attentive state of the animal (7) but also on the
type of stimuli used. Sub-Poisson variability has typically—but
not exclusively—been observed in response to punctate stimuli,
in different structures and sensory systems (13, 20–24). On the
one hand, our results are thus likely to extend beyond the VPM
thalamus and beyond the somatosensory system; on the other
hand, they prompt for a careful investigation of the relationships
between the deterministic/stochastic dynamics of sensory stimuli
and the variability of the corresponding neural responses.

Variability in the Responses of Single VPM Neurons to Different
Stimulus Locations. The main neurophysiological substrate for our
information theory results is that the trial-to-trial spike-count
variability in the neural responses, measured by the classical
Fano factor, was smaller for stimuli that elicited responses with
a larger average firing rate. This negative correlation between
average firing rate and count variability generalizes earlier results
obtained in the visual system (12, 13, 23, 28, 29) to the so-
matosensory system. From a mechanistic perspective, the nega-
tive correlation between average firing rate and count variability
has been shown to depend on the neurons’ refractory period (12,
13). However, many of our VPM neurons fired in a sub-Poisson
regime relatively close to a Bernoulli regime, which is when
neurons display binary spiking (i.e., they fire at most one spike
per trial). In the Bernoulli regime, which was previously in-
vestigated in the rat auditory cortex (22), the negative correlation
between average firing rate and count variability is a direct
consequence of the relationship between the variance and mean
of the Bernoulli distribution [variance = mean(1 − mean), and
therefore FF = 1 − mean]. Indeed, binary spiking cannot be due
solely to the refractory period (22), but other mechanisms—such
as inhibition and short-term synaptic depression (52, 53)—are
necessarily involved. Consequently, both intrinsic properties at
the cellular level and circuit properties at the network level are
likely to contribute to the negative correlation between average
firing rate and count variability observed in our VPM neurons.

Trial-to-Trial Response Variability Contributes to the Information
Conveyed by Single Neurons. We observed two informational
modes by which trial-to-trial variability in the spike counts of
single VPM neurons could convey information about stimulus
location, depending on how the neurons responded to the stim-
uli. The first mode was represented by neurons that responded to
the two locations with large differences in the average firing rate:
The larger the difference in average firing rate was, the larger the
difference in response variability and the larger the contribution
of variability to the overall information about stimulus location.
This behavior is therefore the direct informational consequence
of the negative correlation between firing rate and variability
discussed in the previous section. Importantly, the negative
correlation between firing rate and variability might erroneously
lead one to think that the information conveyed by variability is
simply redundant to the information conveyed by average firing
rate. This consideration is certainly not the case. In fact, the
information conveyed by variability, reported here, is actually the
information conveyed by sub-Poisson variability in addition to
the information conveyed by the average firing rate alone in the
Poisson regime (18, 25). With the notable exceptions of a meth-

odological work applying the series expansion to data from the
macaque inferior temporal visual cortex (54) and our method-
ological work applying the general Poisson exact breakdown to
data from the rat whisker cortex (25), the considerable contri-
bution of trial-to-trial spike-count variability to rate coding has
been so far largely unexplored.
The secondmodeweobserved in our dataset was represented by

neurons that responded to the two stimulus locations with similar
average firing rates. In these neurons, even though the overall
information was rather small, it was mostly due to differences in
response variability between stimuli. Under these conditions, the
information conveyed by trial-to-trial spike-count variability par-
allels the information conveyed by trial-to-trial spike jitters (i.e.,
latency variability) when the average latencies are similar (32).
More generally, if the first moments of spike measures (e.g., av-
erage firing rates, average latencies, .) are similar between
stimuli, then the additional information due to second or higher
moments (e.g., count variability, jitters, .) can fully emerge.

Trial-to-Trial Response Variability Contributes to the Redundancy
Between Neurons. Trial-to-trial variability in the sub-Poisson re-
gime of our VPM neurons was not only more informative com-
pared with the Poisson regime, but also more redundant between
neurons. This finding has a general validity: On the one hand
a sub-Poisson regime is more informative than a Poisson regime
with the same total number of spikes because sub-Poisson dis-
tributions are less overlapping than Poisson distributions; on the
other hand, a sub-Poisson regime is also more redundant than
a Poisson regime with the same total number of spikes because
smaller variability within neurons implies higher similarity
between neurons.
One might wonder whether the additional information con-

tained in trial-to-trial variability is useful or physiologically rele-
vant. At the very least this information is useful to our
understanding of the neural responses even if not used by the
brain itself. It is also possible that this information might be more
useful for repeated-trials learning than for single-trial encoding.
Nonetheless, we speculate that the information contained in the
trial-to-trial variability could indeed be decoded by a downstream
observer working on a single-trial basis at the population level: If
neurons in a population have the same response properties (in
absence of noise correlations), then the variability within neurons
across trials is the same as the variability across neurons on
a single trial. Single-trial variability across similarly tuned neurons
(e.g., within the same barreloid in the thalamus) could therefore
be used as a population code and be decoded by a downstream
observer (e.g., a cortical barrel). From this downstream cortical
perspective, excessive redundancy might become a computational
disadvantage (55). In fact, at the cortical level, variability seems
to have a negligible contribution to the redundancy between
neurons (25). The increased trial-to-trial count variability in the
neural responses at the cortical level compared with the thalamic
level could therefore serve as a strategy to reduce redundancy
between neurons and promote efficient sparse coding distributed
in large populations of neurons (56–58).
Overall, our data suggest that the trial-to-trial variability of the

neural responses plays a critical role in establishing the trade-off
between total information and redundancy between neurons in
population codes.

Materials and Methods
All experiments were performed following the rules of the International
Council for Laboratory Animal Science, European Union regulation 86/609/
EEC, and were approved by the Ethical Committee for Animal Research of the
Hospital Nacional de Parapléjicos. Data were collected from six male adult
Wistar rats (250–350 g) anesthetized with i.p. urethane (1.5 g/kg) at stage III-
3/4 (49). Pairs of VPM neurons were recorded simultaneously (band-pass 200
Hz to 7 kHz, sampling rate 20 kHz) by using two high-impedance tungsten
electrodes (2–4 MOhm at 1 kHz). Stimuli (50 μs, 0.2–1 mA pulses, interpulse
interval >2 s, 800 pulses per location) were delivered through whisker-pad
stimulators (26). Trial-to-trial spike-count variability was measured by the
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Fano factor. The contribution of trial-to-trial spike-count variability to the
information conveyed about stimulus location by the responses of single
neurons and of pairs of neurons was assessed using the general Poisson
exact breakdown of the mutual information (25). Further details can be
found in SI Materials and Methods.
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