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Many RNAs, proteins, and organelles are present in such low
numbers per cell that random segregation of individual copies
causes large “partitioning errors” at cell division. Even symmetri-
cally dividing cells can then by chance produce daughters with very
different composition. The size of the errors depends on the segre-
gation mechanism: Control systems can reduce low-abundance
errors, but the segregation process can also be subject to upstream
sources of randomness or spatial heterogeneities that create large
errors despite high abundances. Here we mathematically demon-
strate how partitioning errors arise for different types of segrega-
tion mechanisms and how errors can be greatly increased by
upstream heterogeneity but remarkably hard to avoid through con-
trolled partitioning. We also show that seemingly straightforward
experiments cannot be straightforwardly interpreted because very
different mechanisms produce identical fits and present an ap-
proach to deal with this problem by adding binomial counting noise
and testing for convexity or concavity in the partitioning error as
a function of the binomial thinning parameter. The results lay a con-
ceptual groundwork for more effective studies of heterogeneity
among growing and dividing cells, whether in microbes or in dif-
ferentiating tissues.

At balanced growth the abundances of cellular components
are on average doubled during each cell cycle and then

halved at cell division. But individual cells can deviate greatly
from the average. Stochastic chemical reactions create fluctua-
tions during the cell cycle and stochastic partitioning of com-
ponents creates further fluctuations at cell division (1–4). This
process perturbs concentrations and indirectly shapes molecular
mechanisms by placing evolutionary constraints on reaction rates
and network topologies.
The variation coming from stochastic production has been

closely studied in the last decade (5–13), emphasizing how it could
be much greater than expected from Poisson statistics due to
upstream sources of randomness (5–7), how it could be controlled
(8, 9) or exploited (10, 11) depending on selective pressures, and
how fluctuations can reveal properties of the underlying mecha-
nisms (12, 13). Partitioning errors can contribute just as much to
the overall heterogeneity and recent results suggest that much of
the noise attributed to, e.g., gene expression may in fact originate
in stochastic partitioning (14). But not even the basic guiding
principles of partitioning have been identified: how partitioning
errors depend on upstream spatial heterogeneity or self-control,
how they affect the observable cell heterogeneity, or what they can
teach us about mechanisms.
The goal of this study is to provide a mathematical un-

derstanding of these principles by quantitatively modeling the
heterogeneity introduced by various types of segregation mech-
anisms. We compare simple independent segregation where each
segregating unit has a constant and independent probability of
ending up in either daughter cell, to disordered segregation where
variation in the partitioning machinery or the intracellular milieu
further randomizes levels between daughters, or to various types
of ordered segregation where copies directly or indirectly interact
with each other to create a more even distribution between
daughters. We then consider how such partitioning errors can be
distinguished experimentally and discuss future directions.

Results
For dividing cells with x copies of a randomly segregating com-
ponent X, where L and R copies segregate to each daughter cell
after division, we can define a statistical partitioning error in
several equivalent ways (SI Text),

Q2
x ¼

D
ðL−RÞ2

E
hxi2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

statistical difference
between daughters

¼
D
σ2Ljx
E

hLi2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
variation in newborn cells
given x copies in mother

¼ CV2
L −CV2

x|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Population variation
added at division

;

[1]

where the brackets 〈. . .〉 denote averages over all dividing cells in
the population, regardless of the distribution of x values, and σ
and CV denote the standard deviation and the coefficient of
variation, respectively. These three perspectives on the same
statistical measure show how partitioning errors capture statisti-
cal differences between daughters, the perturbation in levels in-
troduced at cell division, and the contributions to population
heterogeneity introduced by cell division.
In the simplest example where molecules are statistically in-

dependent and each copy goes to either daughter with proba-
bility ½, the partitioning error over the whole population simply
decreases with the square root of the number of molecules,
Qx ¼ 1=

ffiffiffiffiffiffihxip
, regardless of fluctuations in x across cells. Because

cells are not homogenous well-stirred reactors, for example due
to active transport or molecular crowding (15–17), independent
segregation may seem unlikely. However, spatial distributions
can be uniform even in crowded environments, and even non-
uniform spatial distributions can create independent partitioning
statistics. Phenotypes consistent with independent segregation
have indeed been reported for several cellular components de-
spite complicated molecular mechanisms, e.g., endosomes and
lysosomes (18) and symbiotic Chlorella cells (19). For macro-
molecules, one Escherichia coli study (20) suggested independent
protein segregation, and another (6) showed that engineered mRNA
transcripts follow independent or weakly disordered segregation,
consistent with the observation that some transcripts clustered.
Many mathematical and computational models of stochastic

processes in cells have included independent segregation of
molecules (21–26), for example the pioneering gene expression
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analyses by Berg (22) and Rigney (23), but because independent
segregation directly implies binomial partitioning errors, such
models are not used to study partitioning itself but rather to
provide realistic contexts for studying other mechanisms. Here
we analyze stochastic processes that account for nontrivial

mechanisms as well as arbitrary intrinsic and extrinsic fluctua-
tions in x (Box 1). Many results are analytically exact (denoted
‘=’), and most approximations (denoted ‘≈’) are highly accurate
as shown by comparing with exact simulations.

Disordered Segregation Can Greatly Increase Partitioning Errors.
Partitioning errors can be substantial even for components
present in high numbers due to upstream sources of randomness.
For example, the cytoplasmic volume available to a component
can vary between the two daughters either because of errors in
the position of the septum or because large cytoplasm-excluding
structures such as vacuoles segregate randomly (Fig. 1A). The
individual copies then become statistically dependent even if
they never interact, increasing the partitioning error. Here we
make the single assumption that each molecule independently
occupies a cell half with a probability that is proportional to the
available volume in that half and that the molecules take up
negligible space. The exact partitioning error then follows:

Q2
x ¼

1−Q2
Vol

hxi þQ2
VolðCV2

x þ 1Þ; [2]

where QVol is the partitioning error of relative available volume.
The generality of this result allows us to evaluate phenotypic
data where mechanisms are unknown. Accounting for the un-
equal cell division measured for several microbes (27–29) shows
that this volume variation should have a minor impact on par-
titioning errors (Fig. 1A).
Many molecules also form complexes and clusters or segregate

in vesicles or organelles (Fig. 1B). The partitioning error then
depends both on the distribution of copies among groups and on
the segregation of the groups themselves. We assume that (i)
each molecule (x copies before division) segregates inde-
pendently into vesicles (v copies before division) and (ii) each
vesicle segregates independently to either daughter (SI Text).
The partitioning error then exactly follows:

Q2
x ¼

1
hxi−

1

hxi2
�
x
v

�
þ 1

hxi2
�
x2

v

�
: [3]

Inspecting Eq. 3 shows that the partitioning error further
depends on the correlations between x and v across mother cells.
We consider two cases to illustrate the effect. First, if x and v are
statistically independent, the partitioning error follows
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Fig. 1. Disordered segregation can increase
partitioning errors greatly. (A) Upper: Vari-
ation in division site or random segregation
of other large components causes fluctua-
tions in daughter size or in the volume ac-
cessible to the segregating component.
Lower: In simulations (symbols) x is picked
from Poisson distributions and volume vari-
ation is generated by assuming either
(truncated) Gaussian variation in the size
(circles) or random segregation of another
large component (triangle), where QVol is
determined numerically. The exact analytical
curve is dashed. The shaded area corre-
sponds to experimental results for many
microbes where 3% < QVol < 7% (27–29). (B)
Upper: Segregating molecules (dots) are
randomly grouped into vesicles (gray circles) and the vesicles are independently partitioned into daughter cells. Lower: Simulation results (symbols) and
analytical expressions that are approximate (solid lines) and exact (dashed line) for cases of Eqs. 4 and 5, respectively. For the case of Eq. 4, x and v are sampled
from Poisson distributions. For the case of Eq. 5, the value of v is first sampled from a Poisson distribution and x is then sampled from a Poisson distribution
with average sv for each given v, so that q = 1; hence the second term of Eq. 5 is zero in this example. Simulations using different average 〈x〉 produce
indistinguishable plots for virtually all values of 〈x〉 (SI Text).

Box 1.
To increase the applicability of the models, we specify the
probabilistic rules of partitioning as broadly as possible.
For example, in the trivial case of independent partition-
ing we assume only that each molecule has an independent
probability of being in either cell half. Such independence
can be physically realized in many different ways, for ex-
ample by having a well-mixed cytoplasm, by making im-
mobile molecules with independent probabilities in either
cell half, or by active segregation mechanisms that ran-
domly pick molecules and move them to either cell half.
However, the derivations of partitioning errors are often
more tractable by picking one specific dynamic model that
exactly instantiates the general assumptions. The detailed
Markov processes (SI Text) used here are thus merely
“mock processes” that provably generate the correct par-
titioning errors corresponding to the assumptions in the
main text. In a two-component model where one daughter
has L copies of the component of interest (total of x) and n
copies of some upstream factor (total of v), one such mock
process may include the jumps

L �����!fjumpðn;LÞ
Lþ 1

L ���������!fjumpðv− n; x−LÞ
L− 1

and n �����!gjumpðnÞ
nþ 1

n ������!gjumpðv− nÞ
n− 1;

[B1]

and the corresponding Markov process is then solved for
the distribution or variance across cells. For independent
partitioning we could use fjump = x − L, which gives the
expected Qx

2 = 1/〈x〉.
To further account for arbitrary heterogeneity in the

total numbers x and v between dividing cells, we apply the
law of total variance to separate the error given x and v
from the error in x and v themselves, i.e., σ2(L) = σ2(〈L | x,
v〉) + 〈σ2(L | x, v)〉 = σ2(x)/4 + 〈σ2(L | x, v)〉, where nor-
malizing by 〈L〉2 = 〈x〉2/4 gives Eq. 1 (SI Text).
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Q2
x ≈

1
hxi þ

�
1þ CV2

x

��
1þ CV2

v

�
hvi ; [4]

which is accurate for a wide range of parameters (Fig. 1B).
Second, if the average number of molecules for a given number
of vesicles is proportional to the number of vesicles, 〈x | v〉 = sv,
so that s corresponds to the average number of molecules per
vesicle, the partitioning error exactly follows

Q2
x ¼

1þ s
hxi þ s

hxi2ðq− 1Þ; [5]

where q = 〈σ2(x|v)/〈x|v〉〉, and the second term typically is neg-
ligible. In both cases, clustered segregation could increase seg-
regation errors greatly for small v or large s (Fig. 1B). The
seemingly structured nature of many cell types—with numerous
complexes, clusters, and organelles of varying sizes—can thus
have an enormous randomizing effect at cell division. In the
extreme where every molecule segregates to the same daughter,
Qx

2 = 1 + CVx
2 (SI Text).

There are virtually no quantitative studies of disordered seg-
regation (the conceptually similar “extrinsic noise” was only re-
cently (7, 30) quantified in genetic networks) but these results
suggest a substantial impact on heterogeneity. However, some
partitioning mechanisms may also be less disordered than they
appear. For example, the Min proteins that help control cell
division in E. coli oscillate spatially between cell poles (31),
suggesting that the majority of proteins would end up in the same
cell half after septation. But the system is also presumably under
selection to avoid large fluctuations that could interfere with
control, and recent experiments (32, 33) indeed show surpris-
ingly small partitioning errors.

Ordered Segregation Requires Extreme Parameters to Greatly
Suppress Partitioning Errors. For components present in low
numbers cells must either tolerate large partitioning errors or
use control mechanisms to reduce them. Because little is known
quantitatively about the mechanisms we consider three princi-
ples: size exclusion, binding to spindles or other cellular sites,
and pair formation.
Cells could reduce partitioning errors passively if the segre-

gating components occupy sufficiently large volume, which would
create more available space in the cell half with fewer copies
(Fig. 2A) (34). For very large components the error reduction
would depend on exact shapes, but because even organelles are
fairly small compared to the total cell volume, we assume (i)
each individual component occupies a cell half with a probability
that is proportional to the available volume, (ii) each molecule
takes up a fraction K of the total cell volume, and (iii) the two
cell halves have equal available volumes except for the location
of component X studied. Such mechanisms produce a parti-
tioning error

Q2
x ≈

1
hxi
�
1−K

	
x

�
CV2

x þ 1
��
; [6]

where Khxi is the average total fraction of cell volume occupied
by all segregating X units (SI Text). However, the effect is sig-
nificant only if the organelles take up a large total fraction (Fig.
2A) and, except for chromosomes in some organisms, Eq. 6
suggests that most cell components occupy too small total vol-
umes for self volume exclusion to substantially affect partitioning
errors (34). Eq. 6 also shows that partitioning errors decrease
with the variation in organelle numbers, because a larger fraction
of cells then have so many organelles that volume exclusion is
significant.

Even if organelles hitchhiked with chromosomal segregation
to reduce partitioning errors (Fig. 2B), for example by binding to
mitotic spindles or spindle poles (18, 35), accurate partitioning is
still hard to achieve. In cells that by chance have fewer binding
sites v than organelles x, the unbound organelles will segregate
randomly, and in cells with fewer organelles than binding sites,
more organelles could bind to sites on one side than the other
(1). To demonstrate the inaccuracy even in an idealized case we
assume that (i) free organelles segregate independently and (ii)
organelles always bind available sites, with no cells simulta-
neously having free organelles and free sites. The partitioning
error then follows

Q2
x ≈

1
hxi

 
1−

1
hxi
X∞
v¼0

"�
1
v
−Q2

v

�Xv
x¼0

x2Pðx; vÞ

þ�v− v2 Q2
v

� X∞
x¼vþ1

Pðx; vÞ
#!

;

[7]

where P(x, v) is the probability of x organelles and v binding sites
across dividing cells, and Qv is the partitioning error of the
binding sites for a fixed v. Analyzing this equation further (Fig.
2B) shows that errors can be reduced even when the numbers are
not perfectly matched—more organelles bound to sites in one
cell half means relatively more free sites in the other half—but
also that the effect is small. For example, even if the averages are
perfectly matched, 〈v〉 = 〈x〉 = 100, each daughter cell receives
exactly v/2 binding sites, and the only sources of noise in x and v
are independent low-abundance Poisson fluctuations, the error
Qx would be reduced less than threefold compared to un-
controlled, independent partitioning (Fig. 2B). Control works
much worse yet when the averages 〈x〉 and 〈v〉 are lower or un-
equal, the organelles bind weakly, or the independent fluctua-
tions are larger—with the slight twist that if the averages are
unequal, even uncorrelated fluctuations could slightly improve
control by making it more likely that the numbers are matched in
at least some fraction of the individual cells, i.e., ensuring that
sometimes x ≈ v even if 〈x〉 ≠ 〈v〉. With v instead as specific DNA
binding sites, so that v may be approximated as fixed and without
partitioning error, Eq. 7 simplifies greatly. If we further assume
that distribution P(x) is approximately symmetric, the partition-
ing error can be approximated (SI Text) by

Q2
x ≈

1
hxi
�hjx− hxiji

hxi −
CV2

x

2

�
;

where for all symmetric distributions CVx ≤ 1, since x ≥ 0. For
example, if both the CV and the normalized absolute deviation
are ∼10%, the binding sites can reduce errors only threefold and
the effect is smaller yet with increasing fluctuations in x.
The accuracy of chromosomal partitioning instead comes from

the fact that the individual molecules form pairs with each other,
using spindles to split each pair into separate daughter cells. The
underlying molecular mechanisms are highly complex for chro-
mosomes, but they are more tractable for, e.g., plasmid R1,
where actin-like ParM proteins are attached to a pair of R1
plasmids via the ParR protein and push each plasmid to the
opposite poles of E. coli (36, 37). Here we model the accuracy of
such systems in terms of the phenotypic pairing parameters (Fig.
2C). We assume that (i) molecules form pairs by some arbitrary
mechanism, with k as the average fraction of paired molecules
that may depend on x; (ii) the two units of each pair are sepa-
rated into different daughters with probability p and into the
same daughter with probability 1 – p; and (iii) unpaired mole-
cules (fraction 1 – k) segregate independently. For all such
mechanisms—regardless of pairing mechanism—the partitioning
error exactly follows
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Q2
x ¼

1− ð2p− 1Þk
hxi : [8]

As seen from Fig. 2C, substantially reducing the errors is again
highly nontrivial. For example, a fivefold reduction of the error
requires both pairing and splitting probabilities of at least 90–
95%. Chromosomes achieve extremely high k and p, using
elaborate control mechanisms, but for most other cellular com-
ponents such measures are perhaps not cost-effective.
Despite the challenges above, some studies suggest that seg-

regation indeed is moderately ordered for several organelles. For
example, during mitosis the chloroplasts in mesophyll proto-
plasts of Nicotiana tabacum reportedly use actin filaments to
segregate more accurately than expected from independent
segregation (38), and similar effects have been observed for
mitochondrial inheritance in scorpion spermatogenesis (39–41).
Studies of Golgi particles in mitotic HeLa cells in turn showed
twofold smaller Qx compared with independent segregation for
〈x〉 ≈ 130 (42), whereas chloroplasts in unicellular algae (43)
showed a threefold reduction of Qx given the measured 〈x〉 ≈ 20.
We know of no quantitative measurement showing ordered
partitioning of RNAs or proteins. Some RNAs bind to spindles
(44), but also seem to form clusters of random size, with un-
known net accuracy. The most precise non-DNA segregation
mechanism reported to our knowledge is for carboxysomes in
cyanobacteria (45), which achieve a fivefold reduction in Qx
compared with independent segregation, for x = 6.

To Suppress Partitioning Errors, Each Source of Randomness Needs
Separate Control. For disordered segregation the task of reducing
partitioning errors gets harder yet, not just because of the larger
errors but also because fluctuations are introduced at multiple
levels. For gene expression, multiple sources of noise can be
suppressed by a single feedback loop (46) because deviations in
abundances can trigger homeostatic responses regardless of what
caused the deviations. Disordered segregation, however, as when
proteins are sorted into clusters that then are sorted into the two
cell halves, is fundamentally different. Even if the first sorting
process is perfectly controlled by a homeostatic feedback system,
the randomness of cluster inheritance can still produce large
protein partitioning errors. The same is true if the second sorting
is perfect but the first is not.
For a quantitative example we assume cooperative control

over the sorting process of proteins into clusters and over the

sorting of vesicles into each daughter cell. Specifically we assume
that each molecule in a vesicle containing x1 copies migrates
randomly to any other vesicle with a probability proportional to
xh11 and that each vesicle migrates to the other cell half with
a probability proportional to xh22 . Further assuming 〈x | v〉= sv as
in Fig. 1B, the partitioning error approximately follows

Q2
x ≈

�
1
h1

þ s
h2

�
×

1
hxi; [9]

where s is the average number of proteins per cluster. Because
the two noise terms are inversely proportional to their respective
sorting efficiencies, and the partitioning error Qx is proportional
to the square root of their sum, both processes must thus be
separately and tightly controlled for accurate segregation. The
same is true for most combinations of disordered and ordered
segregation above: As opposed to negative feedback control of
production rates, control of segregation corrects only errors
produced by the process being controlled.

Does Segregation Control Serve to Reduce the Risk of Complete Loss?
The results above raise the question of why ordered segregation
would evolve if its effects on the heterogeneity are marginal
anyway. For the many stable components that serve as templates
either for their own production (e.g., mitochondria, chloroplasts,
and plasmids) or where de novo production is slow [e.g., perox-
isomes (47), centrioles (48), or bacterial flagella (49)], the
greatest risk may be that all copies segregate to the same
daughter. In fact, though ordered partitioning seems to have
a small effect on standard deviations—forcing cells to tolerate
some fluctuations—such mechanisms can still greatly reduce the
risk of complete loss (Fig. 3). Reducing losses at cell division may
then be the main selective driving force for ordered partitioning.

Segregation Mechanisms Are Hard to Infer Experimentally. Mea-
surement errors could make precise mechanisms appear impre-
cise, whereas ignoring legitimate outliers has the opposite effect.
In most organelle studies, where it is possible to count individual
components, another potential problem is the combination of
crowding and low-resolution microscopy, producing systematic
tendencies to undercount components in cells that by chance
have a high abundance and thereby making mechanisms appear
more precise than they actually are. One solution to this problem
is to use quantitative microscopy to determine total abundances
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Fig. 2. Ordered segregation requires extreme
parameters to substantially reduce partitioning
errors. (A) Upper: Segregating units with non-
negligible size (gray circles) exclude each other
and thereby promote more even segregation.
Lower: Simulation results (symbols) and analyt-
ical approximation (solid lines) plotted as
a function of the average total volume fraction
occupied by the segregating units, with x sam-
pled from Poisson distributions for each 〈x〉
(circles and triangles) or assuming that synthesis
occurs in a geometric burst with average burst
size of 10 (diamonds). All results are truncated
to ensure Kx < 1. The shaded area corresponds
to the physiological regime for most cellular
components (34) and shows that the effect should be minor. (B) Upper: Organelles (dots) compete for available binding sites (ends of astral, gray) and
unbound organelles are partitioned independently. Lower: Simulation results (symbols) and analytical approximations (solid lines) when binding sites are
distributed evenly between the two daughters. The circles and triangles correspond to v and x sampled from Poisson distributions, using 〈v〉 = 100, and
diamonds show x and v sampled from processes where synthesis occurs in a geometrically distributed burst, with average burst sizes of 20 and 10 for v and x,
respectively. The results show how modest the effects are when x and v are not exactly matched. (C) Upper: Among (x − δx,odd)/2 possible pairs in each cell,
a fraction r of molecules (dots) binomially forms pairs, where δx,odd = 1 if x is odd and zero otherwise. Paired molecules segregate separately with probability p
whereas unpaired molecules segregate independently. Under these assumptions, k = r(1 − Po /〈x〉), where Po is the probability that x is an odd number. Lower:
Simulations (symbols), exact analytical results (Eq. 8, dashed line), and analytical approximations (k = r in Eq. 8, solid line) when x is sampled from a Poisson
distribution of average 10. The results show that both r and p must approach 100% for efficient control. Derivations are given in SI Text.
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and then test how the partitioning errors scale with the abun-
dance in the mother cell. However, the error Qx is proportional
to the inverse square root of the average for several (but not all)
of the mechanisms above, where it is the proportionality constant
that represents the accuracy of segregation,

Q2
x ≈

A
hxi; where

8<
:

A < 1; ordered partitioning
A ¼ 1; independent partitioning
A > 1; disordered partitioning

[10]

as in Figs. 2 and 3. The problem is that if levels are reported in
arbitrary units of fluorescence rather than in integer numbers of
molecules, as in most fluorescent protein studies and several
measurements of macronuclear DNA in ciliates (50, 51), then
A and 〈x〉 are not known separately. Very different partitioning
mechanisms—from the very ordered to the very disordered—
can then display exactly the same scaling behavior and fit the
same experiments (Fig. 4A). For example, the only study to our
knowledge that quantified protein segregation statistics (20)
showed that the partitioning error for a CI-YFP fusion protein in
the λ-cascade of E. coli was inversely proportional to the abun-
dance in the mother cell and assumed independent segregation
(A = 1) to infer the average number of proteins. Assuming in-
dependent partitioning seems plausible: Most cytoplasmic pro-
teins in E. coli probably follow independent segregation, and even
if many CI-YFP molecules would be unspecifically bound to the
chromosomes, these copies may also effectively segregate in-
dependently. However, it is important to note that such experi-
ments assume rather than demonstrate independent segregation.
If proteins formed clusters or were subject to ordered segregation,
the fits could be equally good (Eq. 10) and the inferred averages
would be incorrect. Both counting and quantification strategies
may thus generate qualitatively misleading results, and segrega-
tion measurements demand the same attention as, e.g., gene
expression noise.
When the integer numbers of molecules cannot be directly

counted, the type of segregation mechanism can be alternatively
inferred by introducing an additional binomial source of noise
(Fig. 4B). For example, a protein could be translationally fused
to a photoconvertible fluorescent protein (PC-FP). If each PC-
FP has an independent probability 0 < u < 1 of photoconversion
for a certain amount of light (which should be demonstrated),
the partitioning error of the photoconverted proteins (l and r
copies in each daughter cell) follows (SI Text)

	ðl− rÞ2
 ¼ h	x
þ 
	ðL−RÞ2
− 	x
�uiu: [11]

The partitioning error of the fluorescence from the photo-
converted PC-FP, which is proportional to 〈(l − r)2〉, is thus

a parabolic function of u, controllable by light. For disordered
protein segregation the curve will be convex (〈(L − R)2〉 > 〈x〉),
for ordered segregation it will be concave (〈(L − R)2〉 < 〈x〉),
and for independent segregation it will be a straight line (〈(L −
R)2〉 = 〈x〉). It is not necessary to measure the conversion frac-
tion u: The shape of the curve is sufficient, as long as u is not
too small. If u is also measured, which is possible with PC-FP
but difficult with photoactivatable proteins, we can further fit
the curve to a parabola and calculate 〈(L − R)2〉/〈x〉 by umin,max =
(2 − 2〈(L − R)2〉/〈x〉)−1, which gives the value of A for the cases
in Eq. 10. The intuition behind this effect is that for ordered
partitioning, binomial sampling introduces significant noise rel-
ative to the original fluctuations when u is small so that 〈(l − r)2〉
overestimates the real partitioning error, but as u approaches 1
this additional noise is eliminated, and hence Eq. 11 becomes
concave. For disordered partitioning, the dominant binomial
sampling errors at low u instead hides a large natural error and
hence 〈(l − r)2〉 underestimates the actual partitioning error, an
effect that again disappears as u approaches 1. The curve of the
partitioning error as a function of u then becomes convex. In
practice, the highest value of u that can be achieved with many
current photoconvertible proteins may be in the range where
high-quality data are required to practically use this approach.
However, more such proteins are being engineered and higher u
can be achieved by photobleaching the FPs.
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Fig. 4. Segregation mechanisms are difficult to infer. (A) Examples of or-
dered, disordered, and independent segregation mechanisms were simu-
lated, and the conditional mean-squared error, given x copies in the mother
cell, was plotted as a function of x. This measure is closely related to the
partitioning error and was used to interpret experiments for protein seg-
regation in E. coli (20). To illustrate disordered segregation we used the
second case of Fig. 1B (Eq. 5) where the number v of vesicles is sampled from
a Poisson distribution with average of 25, and x is sampled from a Poisson
distribution with average 2v for each given v; hence 〈x | v〉 = 2v. To illustrate
ordered segregation we used the pairing mechanism of Fig. 2C, with r = 0.8
and p = 0.99. All three curves are nearly perfectly approximated by
〈(L − R)2 | x〉 = ax. Inset: When levels are measured in arbitrary units, and the
three mechanisms are assayed in separate experiments (different units), the
curves are indistinguishable and can be laid on top of each other. Each
mechanism thus fits the other datasets equally well. (B) Segregation mech-
anisms can be distinguished without counting the units by utilizing photo-
convertible proteins. As the fraction of conversion (u) increases, the
partitioning errors of the photoconverted molecules show convex, concave,
and straight curves for disordered, ordered, and independent partitioning,
respectively. All parameters are the same as in A with 〈x〉 = 50. Inset: The
same scaling as in the Inset of A is applied to make the fluorescent level
arbitrary, and the shapes of the curves allow us to distinguish the parti-
tioning mechanism.
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Fig. 3. Ordered segregation and increased averages can dramatically re-
duce the rate of complete loss. (A) Relative reduction of the probability Ploss
that all units segregate to the same daughter (solid line), as well as CV0

(dashed line), comparing ordered vs. independent segregation. We assume
that 90% of the units form pairs (r = 0.9 model in Fig. 2C), and x is sampled
from a Poisson distribution with mean 10. (B) Relative reduction of the loss
rate and CV0 with the average number of molecules, again calculated as-
suming a Poisson distribution for x. Insets: Absolute loss rates Ploss as func-
tions of p and 〈x〉, respectively. Derivations are given in SI Text.
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Outlook
Appropriate segregation of components at cell division is key to
cell proliferation. However, although the heterogeneity caused
by random births and deaths of molecules during the cell cycle
has received enormous attention in recent years, the heteroge-
neity caused by partitioning errors has been virtually ignored
in comparison. Many theoretical studies consider independent
segregation and binomial errors. But just as gene expression is
poorly approximated by a homogenous Poisson process due to
feedback control or upstream sources of heterogeneity, cells are
not bags of enzymes where all individual molecules segregate
independently, but rather contain complexes, vesicles, cytoske-
letons, and organelles. By considering these features we show
how surprisingly hard it is for cells to eliminate partitioning
errors through controlled segregation, how easily such errors are
amplified by upstream factors, and how difficult it is to interpret
seemingly direct partitioning measurements.
In addition to identifying these effects, we systematically in-

vestigate what patterns to expect from partitioning and how to
more effectively design experiments. So far, measurements have
been possible for only a handful of systems—often in obscure

and poorly characterized processes and often with too low ac-
curacy to discriminate among different types of segregation
mechanisms—whereas the partitioning errors of crucial proteins
and RNAs in model organisms have barely been measured at all.
Although these studies are very interesting in their own right, not
all components that have been counted thus necessarily count so
much toward our general understanding of segregation, whereas
the components that count cannot necessarily be counted (to
paraphrase an alleged Einstein quote). This problem is likely to
change in the near future. Several of the major experimental
challenges have recently been overcome (6, 12, 52) and much of
the necessary mathematical theory is now in place to address the
central questions—How random is segregation and how much
does it contribute to cellular heterogeneity?—quantifying one of
the most central aspects of life at the level of individual cells.
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