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Abstract
Existing speech enhancement algorithms can improve speech quality but not speech intelligibility,
and the reasons for that are unclear. In the present paper, we present a theoretical framework that
can be used to analyze potential factors that can influence the intelligibility of processed speech.
More specifically, this framework focuses on the fine-grain analysis of the distortions introduced
by speech enhancement algorithms. It is hypothesized that if these distortions are properly
controlled, then large gains in intelligibility can be achieved. To test this hypothesis, intelligibility
tests are conducted with human listeners in which we present processed speech with controlled
speech distortions. The aim of these tests is to assess the perceptual effect of the various
distortions that can be introduced by speech enhancement algorithms on speech intelligibility.
Results with three different enhancement algorithms indicated that certain distortions are more
detrimental to speech intelligibility degradation than others. When these distortions were properly
controlled, however, large gains in intelligibility were obtained by human listeners, even by
spectral-subtractive algorithms which are known to degrade speech quality and intelligibility.

Index Terms
speech intelligibility improvement; speech distortions; speech enhancement; ideal binary mask

I. Introduction
Much progress has been made in the development of speech enhancement algorithms
capable of improving speech quality [1,2]. In stark contrast, little progress has been made in
designing algorithms that can improve speech intelligibility. The first intelligibility study
done by Lim [3] in the late 1970s found no intelligibility improvement with the spectral
subtraction algorithm for speech corrupted in white noise at −5 to 5 dB SNR. In the
intelligibility study by Hu and Loizou [4], conducted 30 years later, none of the 8 different
algorithms examined were found to improve speech intelligibility relative to un-processed
(corrupted) speech. Noise reduction algorithms implemented in wearable hearing aids
revealed no significant intelligibility benefit, but improved ease of listening and listening
comfort [5] for hearing-impaired listeners. In brief, the ultimate goal of devising an
algorithm that would improve speech intelligibility for normal-hearing or hearing-impaired
listeners has been elusive for nearly three decades.

Little is known as to why speech enhancement algorithms, even the most sophisticated ones,
do not improve speech intelligibility. Clearly, one reason is the fact that we often do not
have a good estimate of the background noise spectrum, which is needed for the
implementation of most algorithms. For that, accurate voice-activity detection algorithms
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are required. Much progress has been made in the design of voice-activity detection
algorithms and noise-estimation algorithms (see review in [1, Ch. 9]), some of which (e.g.,
[6]) are capable of continuously tracking, at least, the mean of the noise spectrum. Noise-
estimation algorithms are known to perform well in stationary background noise (e.g., car)
environments. Evidence of this was provided by Hu and Loizou [4] wherein a small
improvement (<10 %) in intelligibility was observed with speech processed in car
environments, but not in other environments (e.g., babble). We believe that the small
improvement was attributed to the stationarity of the car noise, which allowed for accurate
noise estimation This suggests that accurate noise estimation can contribute to improvement
in intelligibility, but that alone cannot provide substantial improvements in intelligibility,
since in practice we will never be able to track accurately the spectrum of non-stationary
noise. For that reason, we believe that the absence of intelligibility improvement with
existing speech enhancement algorithms is not entirely due to the lack of accurate estimates
of the noise spectrum.

In the present paper, we discuss other factors that are responsible for the absence of
intelligibility improvement with existing algorithms. The majority of these factors center
around the fact that none of the existing algorithms are designed to improve speech
intelligibility, as they utilize a cost function that does not necessarily correlate with speech
intelligibility. The statistical-model based algorithms (e.g. MMSE, Wiener filter), for
instance, derive the magnitude spectra by minimizing the mean-squared error (MSE)
between the clean and estimated (magnitude or power) spectra (e.g., [7]). The MSE metric,
however, pays no attention to positive or negative differences between the clean and
estimated spectra. A positive difference between the clean and estimated spectra would
signify attenuation distortion, while a negative spectral difference would signify
amplification distortion. The perceptual effect of these two distortions on speech
intelligibility cannot be assumed to be equivalent. The subspace techniques (e.g., [8]) were
designed to minimize a mathematically-derived speech distortion measure, but make no
attempt to differentiate between the two aforementioned distortions. In this paper, we will
show analytically that if we can somehow manage or control these two types of distortions,
then we should expect to receive large gains in intelligibility. To further support our
hypothesis, intelligibility listening tests are conducted with normal-hearing listeners.

II. Imposing constraints on the estimated magnitude spectra
To gain a better understanding on the impact of the two distortions on speech intelligibility,
we use an objective function that has been found to correlate highly (r = 0.81) with speech
intelligibility [9]. This measure is the frequency-domain version of the well-known
segmental SNR measure. The time-domain segmental (and overall) SNR measure has been
used widely and frequently for evaluating speech quality in speech coding and enhancement
applications [10,11]. Results reported in the previous studies [9,12], however, demonstrated
that the time-domain SNR measure does not correlate highly with either quality or speech
intelligibility. In contrast, the frequency domain version of the segmental SNR measure [13]
has been shown to correlate highly with both speech quality and speech intelligibility. In the
present study, we refer to this measure as the signal-to-residual spectrum measure, SNRESI
(defined below). The correlation of the SNRESI measure with speech intelligibility was
found to be 0.81 [9] and the correlation with speech quality was found to be 0.85 [12]. The
two main advantages in computing the SNRESI measure in the frequency domain include:
(1) the use of critical-band frequency spacing for proper modeling of the frequency
selectivity of normal-hearing listeners, (2) the use of perceptually motivated weighting
functions which can be applied to individual bands [9]. The use of signal-dependent
weighting functions in the computation of the SNRESI measure was found to be particularly
necessary for predicting the intelligibility of speech corrupted by (fluctuating) non-
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stationary noise [9]. We thus believe that it is the combination of these two attractive
features in the computation of the SNRESI measure that contributes to its high correlation
with speech intelligibility.

Let SNRESI(k) denote the signal-to-residual spectrum ratio at frequency bin k:

(1)

where X(k) denotes the clean magnitude spectrum and X̂(k) denotes the magnitude spectrum
estimated by a speech-enhancement algorithm. Dividing both numerator and denominator by
D2(k), where D(k), denotes the noise magnitude spectrum, we get:

(2)

where SNR(k) ≜ X2(k)/D2(k) is the true a priori SNR at bin k, and SNRENH(k) ≜ X̂2(k)/D2(k)
is the enhanced SNR1. Figure 1 plots SNRESI(k) as a function of SNRENH(k), for fixed
values of SNR. The singularity in the function stems from the fact that when SNR(k) =
SNRENH(k), SNRESI(k) = ∞. Figure 1 provides important insights about the contributions of
the two distortions to SNRESI(k), and for convenience, we divide the figure into multiple
regions according to the distortions introduced:

Region I. In this region, X̂(k) ≤ X (k), suggesting only attenuation distortion.

Region II. In this region, X(k) < X̂(k) ≤ 2 · X (k) suggesting amplification distortion up
to 6.02 dB.

Region III. In this region, X̂(k) > 2 · X(k) suggesting amplification distortion of 6.02 dB
or greater.

From the above, we can deduce that in the union of Regions I and II, which we denote as
Region I+II, we have the following constraint:

(3)

The constraint in Region I stems from the fact that in this region, SNRENH ≤ SNR leading to
X̂(k) ≤ X (k). The constraint in Region II stems from the fact that in this region SNR ≤
SNRENH ≤ SNR + 6.02 dB. Finally, the condition in Region III stems from the fact that in
this region SNRENH ≥ SNR + 6.02 dB. It is clear from the above definitions of these three
regions that in order to maximize SNRESI (and consequently maximize speech
intelligibility), the estimated magnitude spectra X̂(k) need to be contained in regions I and II
(note that the trivial, but not useful, solution that maximizes SNRESI is X̂(k) = X (k)).
Intelligibility listening tests were conducted to test this hypothesis. If the hypothesis holds,
then we expect to see large improvements in intelligibility.

It is reasonable to ask how often the above distortions occur when corrupted speech is
processed by conventional speech-enhancement algorithms. To answer this question, we
tabulate in Table I the frequency of occurrences of the two distortions for speech processed

1Note that the defined enhanced SNRENH is not the same as the output SNR, since the background noise is not processed separately
by the enhancement algorithm.
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by three different (but commonly used) algorithms at two different SNR levels. Table I
provides the average percentage of frequency bins falling in each of the three regions. To
compute, for instance, the percentage of bins falling in Region I we counted the number of
bins satisfying the constraint in Region I, and divided that by the total number of frequency
bins, as determined by the size of the discrete Fourier transform (DFT). This was done at
each frame after processing corrupted speech with an enhancement algorithm, and averaging
the percentages over all frames in a sentence. As can be seen, nearly half of the bins fall in
Region I which is characterized by attenuation distortion, while the other half of the bins fall
in Region III, which is characterized by amplification distortion in excess of 6.02 dB. A
small percentage (12–18 %) of bins was found to fall in Region II which is characterized by
low amplification distortion, less than 6.02 dB. The perceptual consequences of the two
distortions on speech intelligibility are not clear. For one, it is not clear which of the two
distortions has the most detrimental effect on speech intelligibility. Listening tests are
conducted to provide answers to these questions, and these tests are described next.

III Intelligibility listening tests
A. Algorithms tested

The noise-corrupted sentences were processed by three different speech enhancement
algorithms that included the Wiener algorithm based on a priori SNR estimation [14] and
two spectral-subtractive algorithms based on reduced delay convolution [15]. The sentences
were segmented into overlapping segments of 160 samples (20 ms) with 50% overlap. Each
segment was Hann windowed and transformed using a 160-point Discrete Fourier
Transform (DFT). Let Y(k,t) denote the magnitude of the noisy spectrum at time frame t and
frequency bin k. Then, the estimate of the signal spectrum magnitude is obtained by
multiplying Y(k,t) with a gain function G(k,t) as follows:

(4)

Three different gain functions were considered in the present study. The Wiener gain
function is based on the a priori SNR and is given by:

(5)

where SNRprio is the a priori SNR estimated using the decision-directed approach as
follows:

(6)

where  is the estimate of the power spectral density of background noise and α is a
smoothing constant (typically set to α = 0.98). The spectral subtractive algorithms are based
on reduced delay convolution [15] and the gain functions for magnitude subtraction and
power subtraction are given respectively by:

(7)
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(8)

where  denotes the a posterior SNR and  denotes the estimate
of the noisy speech power spectral density computed using the periodogram method, and β
is the subtraction factor which was set to β = 0.7 as per [15]. We denote the magnitude
spectral-subtraction algorithm as RDC_mag and the power spectral-subtraction algorithm as
RDC_pow.

The three gain functions examined are plotted in Figure 2. As can be seen, the three
algorithms differ in the shape of their gain functions. The Wiener gain function is the least
aggressive, in terms of suppression, providing small attenuation even at extremely low SNR
levels, while the RDC_mag algorithm is the most aggressive eliminating spectral
components at extremely low SNR levels. The three gain functions span a wide range of
suppression options, which is one of the reasons for selecting them. We will thus be able to
test our hypotheses about the effect of the constraints on speech intelligibility with
algorithms encompassing a wide range of suppression varying from aggressive to least
aggressive. The RDC_mag algorithm, in particular, was chosen because it performed poorly
in terms of speech intelligibility [4]. The intelligibility of speech processed by the
RDC_mag algorithm was found in several noisy conditions to be significantly lower than
that obtained with unprocessed (noise corrupted) speech. We will thus examine whether it is
possible to obtain improvement in intelligibility with the proposed constraints, even in
scenarios where the enhancement algorithm (e.g., RDC_mag) is known to perform poorly
relative to unprocessed speech.

Oracle experiments were run in order to assess the full potential on speech intelligibility
when the proposed constraints are implemented. We thus assumed knowledge of the
magnitude spectrum of the clean speech signal. The various constraints were implemented
as follows. The noisy speech signal was first segmented into 20 ms frames (with 50%
overlap between frames), and then processed through one of the 3 enhancement algorithms,
producing at each frame the estimated magnitude spectrum X̂(k). The noise estimation
algorithm proposed by Rangachari and Loizou [16] was used for estimating the noise
spectrum in Eq. (6)–(8). The estimated magnitude spectrum X̂(k) was compared against the
true spectrum X(k), and spectrum components satisfying the constraint were retained, while
spectral components violating the constraints were zeroed-out. For the implementation of
the Region I constraint, for instance, the modified magnitude spectrum, XM(k), was
computed as follows:

(9)

An inverse discrete Fourier transform (IDFT) was finally taken of XM(k) (using the noisy
speech signal’s phase spectrum) to reconstruct the time-domain signal. The overlap-and-add
technique was subsequently used to synthesize the signal. As shown in Eq.(9), the
constraints are implemented by applying a binary mask to the estimated magnitude spectrum
(more on this later).

Figure 3 shows example spectrograms of signals synthesized using the Region I constraints
(panel d). The original signal was corrupted with babble at −5 dB SNR. The Wiener

Loizou and Kim Page 5

IEEE Trans Audio Speech Lang Processing. Author manuscript; available in PMC 2011 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



algorithm was used in this example, and speech processed with the Wiener algorithm is
shown in panel c. As can be seen in panel d, the signal processed using the Region I
constraints resembles the clean signal, with most of the residual noise removed and the
consonant onsets /offsets made clearer.

B. Methods and Procedure
Seven normal-hearing listeners participated in the listening experiments, and all listeners
were paid for their participation. The listeners participated in a total of 32 conditions (= 2
SNR levels (−5 dB, 0 dB) × 16 (=3×5+1) processing conditions). For each SNR level, the
processing conditions included speech processed using three different speech enhancement
(SE) algorithms with (1) no constraints imposed, (2) Region I constraints, (3) Region II
constraints, (4) Region I+II constraints, and (5) Region III constraints. For comparative
purposes, subjects were also presented with noise-corrupted (unprocessed) stimuli.

The listening experiment was performed in a sound-proof room (Acoustic Systems, Inc)
using a PC connected to a Tucker-Davis system 3. Stimuli were played to the listeners
monaurally through Sennheiser HD 250 Linear II circumaural headphones at a comfortable
listening level. Prior to the sentence test, each subject listened to a set of noise-corrupted
sentences to be familiarized with the testing procedure. During the test, subjects were asked
to write down the words they heard. Two lists of sentences (i.e., 20 sentences) were selected
from the IEEE database [17] and used for each condition, with none of the lists repeated
across conditions. The order of the conditions was randomized across subjects. The testing
session lasted for about 2 hrs. Five-minute breaks were given to the subjects every 30
minutes.

Sentences taken from the IEEE database [17] were used for test material2. The sentences in
the IEEE database are phonetically balanced with relatively low word-context predictability.
The sentences were originally recorded at a sampling rate of 25 kHz and downsampled to 8
kHz (the recordings are available from a CD accompanying the book in [1]). Noisy speech
was generated by adding babble noise at 0 dB and −5 dB SNR. The babble noise was
produced by 20 talkers with equal number of female and male talkers. To simulate the
receiving frequency characteristics of telephone handsets, the speech and noise signals were
filtered by the modified intermediate reference system (IRS) filters used in ITU-T P.862
[19]. Telephone speech was used as it is considered particularly challenging (in terms of
intelligibility) owing to its limited bandwidth (300–3200 Hz). Consequently, we did not
expect the performance to be limited by ceiling effects.

C. Results
Figure 4 shows the results of the listening tests expressed in terms of the percentage of
words identified correctly by normal-hearing listeners. The bars indicated as “UN” show the
scores obtained with noise-corrupted (un-processed) stimuli, while the bars indicated as
“SE” show the baseline scores obtained with the three enhancement algorithms (no
constraints imposed). As shown in Figure 4, performance improved dramatically when the
Region I constraints were imposed. Consistent improvement in intelligibility was obtained
with the Region I constraints for all three speech-enhancement algorithms examined.

2A sentence recognition test was chosen over a diagnostic rhyme test [18] for assessment of intelligibility for several reasons.
Sentence tests: (1) better reflect real-world communicative situations, (2) are open-set tests, and as such scores may vary from a low of
0% correct to 100% correct (in contrast, the DRT test is a closed-set test, has a chance score of 50% and needs to be corrected for
chance). The sentence materials (IEEE corpus) chosen contain contextual information, however, that information is controlled by
design. The IEEE corpus contains phonetically-balanced sentences and is organized into lists of 10 sentences each. All sentence lists
were designed to be equally intelligible, thereby allowing us to assess speech intelligibility in different conditions without being
concerned that a particular list is more intelligible than another.
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Performance at −5 dB SNR with the Wiener algorithm, for instance, improved from 10%
correct when no constraints were imposed, to 90% correct when Region I constraints were
imposed. Substantial improvements in intelligibility were also noted for the two spectral-
subtractive algorithms examined. Performance with Region II constraints seemed to be
dependent on the speech-enhancement algorithm used, with good performance obtained with
the Wiener algorithm, and poor performance obtained with the two spectral-subtractive
algorithms. Large improvements in intelligibility were obtained with Region I+II constraints
for all three algorithms tested and for both SNR levels. Finally, performance degraded to
near zero when Region III constraints were imposed for all three algorithms tested and for
both SNR levels.

Statistical tests, based on Fisher’s LSD test, were run to assess significant differences
between the scores obtained in the various constraint conditions. Performance of the Wiener
algorithm with Region I constraints did not differ statistically (p>0.05) from performance
obtained with the Region I+II constraints. Similarly, performance of the RDC_pow
algorithm with Region I constraints did not differ statistically (p>0.05) from performance
obtained with the Region I+II constraints. This was found to be true for both SNR levels and
for both Wiener and RDC_pow algorithms. In contrast, performance obtained with the
RDC_mag algorithm with Region I constraints was significantly higher (p<0.05) than
performance obtained with Region I+II constraints. Performance obtained with the Wiener
algorithm (with no constraints) did not differ significantly (p>0.05) from performance
obtained with unprocessed (noise corrupted) sentences for both SNR levels tested.
Performance obtained at −5 dB SNR with the two spectral-subtractive algorithms did not
differ significantly (p>0.05) from performance obtained with unprocessed (noise corrupted)
sentences, but was found to be significantly (p<0.05) lower than performance with
unprocessed sentences at 0 dB SNR. The latter outcome is consistent with the findings
reported by Hu and Loizou [4].

In summary, the above analysis indicates that the Region I and Region I+II constraints are
the most robust in terms of yielding consistently large benefits in intelligibility independent
of the speech-enhancement algorithm used. Substantial improvements in intelligibility (85
percentage points at −5 dB SNR and nearly 70 percentage points at 0 dB SNR) were
obtained even with the RDC_mag algorithm, which was found in our previous study [4], as
well as in the present study, to degrade speech intelligibility in some noisy conditions. Of
the three enhancement algorithms examined, the Wiener algorithm is recommended when
imposing Region I or Region I+II constraints, as this algorithm yielded the largest gains in
intelligibility for both SNR levels tested. Based on data from Table I, there does not seem to
be a correlation between the numbers of frequency bins falling in the three regions with
speech intelligibility gains. The RDC_pow algorithm, for instance, yielded roughly the same
number of frequency bins in Region I as the Wiener filtering algorithm, yet the latter
algorithm obtained larger improvements in intelligibility. We attribute the difference in
performance to the shape of the suppression function.

A difference in outcomes in Region II was observed between the Wiener and spectral
subtractive algorithms. Compared to the performance obtained by the subtractive algorithms
in Region II, the performance of the Wiener algorithm was substantially higher. To analyze
this, we examined the frequency dependence of the distortions in Region II. More precisely,
we examined whether distortions in region II (as introduced by the three different
algorithms) occurred more frequently within a specific frequency region. We first divided
the signal bandwidth into three frequency regions: low-frequency (0–1 kHz), mid-frequency
(1–2 kHz) and high frequency regions (2–4 kHz). We then computed the percentage of bins
falling in each of the three frequency regions for speech processed by the three algorithms
(only accounting for distortions in Region II). The results, averaged over 20 sentences, are
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shown in Figure 5. As can be seen from this Figure, a slightly higher percentage of bins
were observed in the lower frequency region (0–1 kHz) for the Wiener algorithm compared
to the spectral subtractive algorithms. The higher percentage in the lower frequency region
(0–1 kHz), where the first formant frequency resides, might partially explain the better
intelligibility scores. But, this difference was rather small and not enough to account for the
difference in intelligibility in Region II between the Wiener algorithm and the spectral
subtractive algorithms.

We continued the analysis of Region II, and considered computing the histograms of the
following estimation error: X̂dB − XdB, where the subscript indicates that the magnitudes are
expressed in dB. Note that this error is always positive and is upper bounded by 6.02 dB in
Region II. The resulting histograms are shown in Figure 6. As can be seen from this Figure,
magnitude errors smaller than 1 dB were made more frequently by the Wiener filtering
algorithm for both SNR conditions, compared to the uniformly-distributed errors (at least at
−5 dB SNR) made by the spectral-subtractive algorithms. This suggests that the Wiener
filtering algorithm correctly estimates the true magnitude spectra more often compared to
the subtractive algorithms, at least in Region II. We believe that this could be the reason that
the Wiener algorithm performed better than the subtractive algorithms in Region II.

Performance in Region III (Figure 4) was extremely low (near 0% correct) for all three
algorithms tested. We believe that this was due to the excess masking of the target signal in
this region. Amplification distortions in excess of 6.02 dB were introduced. In Region III,
the masker overpowered the target signal, rendering it unintelligible.

IV. Relationship between proposed residual constraints and the ideal
binary mask

As shown in Eq. (9), the modified spectrum (with the proposed constraints incorporated) can
be obtained by applying a binary mask to the enhanced spectrum. In computational auditory
scene analysis (CASA) applications, a binary mask is often applied to the noisy speech
spectrum to recover the target signal [20–23]. In this section, we show that there exists a
relationship between the proposed residual constraints (and associated binary mask) and the
ideal binary mask used in CASA and robust speech recognition applications (e.g., [21]). The
goal of CASA techniques is to segregate the target signal from the sound mixtures, and
several techniques have been proposed in the literature to achieve that [23]. These
techniques can be model-based [24,25] or based on auditory scene analysis principles [26].
Some of the latter techniques use the ideal time-frequency (T-F) binary mask [20,21,27].
The ideal binary “mask” (IdBM) takes values of zero or one, and is constructed by
comparing the local SNR in each T-F unit (or frequency bin) against a threshold (e.g., 0 dB).
It is commonly applied to the T-F representation of a mixture signal and eliminates portions
of a signal (those assigned to a “zero” value) while allowing others (those assigned to a
“one” value) to pass through intact. The ideal binary mask provides the only known criterion
(SNR ≥ δ dB, for a preset threshold δ) for improving speech intelligibility, and this was
confirmed by several intelligibility studies with normal-hearing [28,29] and hearing-
impaired listeners [30,31]. IdBM techniques often introduce musical noise, caused by errors
in the estimation of the time-frequency masks and manifested in isolated T-F units. A
number of techniques have been proposed to suppress musical noise distortions introduced
by IdBM techniques [32,33].While musical noise might be distracting to the listeners, it has
not been found to be detrimental in terms of speech intelligibility. This was confirmed in
two listening studies with IdBM-processed speech [28,29] and in one study with estimated
time-frequency masks [34]. Despite the presence of musical noise, normal-hearing listeners
were able to recognize estimated [34] and ideal binary-masked [28,29] speech with nearly
100% accuracy.
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The reasons for the improvement in intelligibility with IdBM are not very clear. Li and
Wang [35] argued that the IdBM maximizes the SNR as it minimizes the sum of missing
target energy that is discarded and the masker energy that is retained. More specifically, it
was proven that the IdBM criterion maximizes the SNRESI metric given in Eq. (1) [35]. The
IdBM was also shown to maximize the time-domain based segmental and overall SNR
measures, which are often used for assessment of speech quality. Neither of these measures,
however, correlates with speech intelligibility [9]. We provide proof in the Appendix that
the IdBM criterion maximizes the geometric average of the spectral SNRs, and subsequently
maximizes the articulation index (AI), a metric known to correlate highly with speech
intelligibility [36].

As it turns out, the ideal binary mask is not only related to the proposed residual constraints,
but is also a special case of the proposed residual constraint for regions I and II. Put
differently, the proposed binary mask (see example in Eq. (9)) is a generalized form of the
ideal binary mask used in CASA applications. As mentioned earlier, if the estimated
magnitude spectrum is restricted to fall within regions I and II, then the SNRESI metric will
always be greater than 0 dB. Hence, imposing constraints in region I+II ensures that SNRESI
is always positive and greater than 1 (i.e., > 0 dB). As demonstrated in Figure 4, the stimuli
constrained in region I+II consistently improved speech intelligibility for all three
enhancement algorithms tested. As mentioned earlier, the composite constraint required for
the estimated magnitude spectra to fall in region I+II is given by:

(10)

which after squaring both sides becomes:

(11)

If we now assume that X̂(k) = Y(k), i.e., that the noisy signal is not processed by an
enhancement algorithm, then X̂2(k) = Y2(k) = X2(k) + D2(k), and Eq. (11) reduces to:

(12)

In dB, the above Equation suggests that the SNR needs to be larger than a threshold of
−4.77 dB. Equation (12) is nothing but the criterion used in the construction of the ideal
binary mask. The only difference is that the threshold used is −4.77 dB, rather than 0 or −3
dB, which are most often used in applications of the IdBM [27]. In terms of obtaining
intelligibility improvement, however, either threshold is acceptable. The previous
intelligibility studies confirmed that there exists a plateau in performance when intelligibility
was measured as a function of the SNR threshold [28,29,37]. In the study conducted by Li
and Loizou [37], for instance, the plateau in performance (nearly 100% correct) ranged from
an SNR threshold of −20 dB to 0 dB.

As shown in Figure 4, the constraint stated in Eq. (10) guarantees substantial improvement
in intelligibility for all three algorithms tested. The ideal binary mask is a special case of this
constraint when no enhancement algorithm is used, i.e., when no processing is applied to the
noisy speech signal. Unlike the criterion used in the binary mask (Eq. (12)), the proposed
constraints (Eq. (10)) do not involve the noise spectrum, at least explicitly. In contrast, the
ideal binary mask criterion requires access to the true noise spectrum, which is extremely
challenging to obtain at very low SNR levels (e.g., SNR<0 dB). Attempts to estimate the
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binary mask using existing speech enhancement algorithms met with limited success (e.g.,
[38,39]), and performance, in terms of detection rates was found to be relatively poor. It
remains to be seen whether it is easier to estimate the proposed binary mask (e.g., Eq. (9)),
given that it does not require access to the true noise spectrum.

V. Discussion and conclusions
Current speech enhancement algorithms can improve speech quality but not speech
intelligibility [4]. Quality and intelligibility are two of the many attributes (or dimensions) of
speech and the two are not necessarily equivalent. Hu and Loizou [2,4] showed that
algorithms that improve speech quality do not improve speech intelligibility. The subspace
algorithm, for instance, was found to perform the worst in terms of overall quality [2], but
performed well in terms of preserving speech intelligibility [4]. In fact, in babble noise (0 dB
SNR), the subspace algorithm performed significantly better than the logMMSE algorithm
[40], which was found to be among the algorithms yielding the highest overall speech
quality [2].

The findings of the present study suggest two interrelated reasons for the absence of
intelligibility improvement with existing speech enhancement (SE) algorithms. First, and
foremost, SE algorithms do not pay attention to the two types of distortions introduced when
applying the suppression function to noisy speech spectra. Both distortions are treated
equally in most SE algorithms, since the MSE metric is used in the derivation of most
suppression functions (e.g., [7]). As demonstrated in Figure 4, however, the perceptual
effects of the two distortions on speech intelligibility are not equal. Of the two types of
distortion, the amplification distortion (in excess of 6.02 dB) was found to bear the most
detrimental effect on speech intelligibility (see Figure 4). Performance dropped near zero
when stimuli were constrained in region III. Theoretically, we believe that this is so because
this type of distortion (region III) leads to negative values of SNRESI (see Figure 1). In
contrast, the attenuation distortion (region I) was found to yield the least effect on
intelligibility. In fact, when the region I constraint was imposed, large gains in intelligibility
were realized. Performance at −5 dB SNR, improved from 5% correct with stimuli enhanced
with the Wiener algorithm to 90% correct when region I constraint was imposed.
Theoretically, we believe that the improvement in intelligibility is due to the fact that region
I always ensures that SNRESI ≥ 0 dB. Maximizing SNRESI ought to maximize intelligibility,
given the high correlation of a weighted-version of SNRESI (termed fwSNRseg [9,11]) with
speech intelligibility. Hence, by imposing the appropriate constraints (see Eq. (10)), we can
ensure that SNRESI ≥ 0 dB, and subsequently obtain large gains in intelligibility.

Second, none of the existing SE algorithms was designed to maximize a metric that
correlates highly with intelligibility. The only known metric, which is widely used in CASA,
is the ideal binary mask criterion. We provided a proof in the Appendix that this metric
maximizes the articulation index, an index that is known to correlate highly with speech
intelligibility [36]. Hence, it is not surprising that speech synthesized based on the IdBM
criterion improves intelligibility [28,29,37]. In fact, it restores speech intelligibility to the
level attained in quiet (near 100% correct) even for sentences corrupted by background noise
at SNR levels as low as −10 dB SNR [29]. As shown in previous Section, the IdBM
criterion is a special case of the proposed constraint in region I+II, when no suppression
function is applied to the noisy spectra, i.e., when X̂(k) = Y(k).

In summary, in order for SE algorithms to improve speech intelligibility they need to treat
the two types of distortions differently. More specifically, SE algorithms need to be
designed so as to minimize the amplification distortions. As the data in Figure 4
demonstrated, even spectral-subtractive algorithms can improve speech intelligibility if the
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amplification distortions are properly controlled. In practice, the proposed constraints can be
imposed and incorporated in the derivation of the noise suppression function. That is, rather
than focusing on minimizing a squared-error criterion (as done in the derivation of MMSE
algorithms), we can focus instead on minimizing a squared-error criterion subject to the
proposed constraints. The speech enhancement problem is thus converted to a constrained
minimization problem. Alternatively, and perhaps, equivalently, SE algorithms need to be
designed so as to maximize a metric (e.g., SNRESI, AI) that is known to correlate highly with
speech intelligibility (for a review of such metrics, see [9]). For instance, SE algorithms
need to be designed to maximize SNRESI rather than minimize an un-constrained (mean)
squared-error cost function, as done by most statistical-model based algorithms (e.g., [7]).
Algorithms that maximize the SNRESI metric are likely to provide substantial gains in
intelligibility.
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VI. Appendix
In this Appendix, we provide analytical proof that the IdBM criterion is optimal in that it
maximizes the geometric average of the spectral SNRs. We also show that maximizing the
geometric average of SNRs is equivalent to maximizing the articulation index (AI)3, an
objective measure used for predicting speech intelligibility [36,44].

Consider the following weighted (geometric) average of SNRs computed across N frequency
bins:

(A.1)

where SNR(j) = 10 log10(X2(j)/D2(j)) is the SNR in bin (or channel) j and Ij are the weights
(0 ≤ Ij ≤ 1) applied to each frequency bin. We consider the following question: How should
the weights Ij be chosen such that the overall SNR (i.e., F) given in Eq. (A.1) is maximized?
The rationale for wanting to maximize F, stems from the fact that F is similar to the
articulation index (more on this below). The optimal weights Ij that maximize F in Eq. 1 are
given by:

(A.2)

which is no other than the IdBM criterion. To see why the weights given in Eq. (A.2) are
optimal, we can consider two extreme cases in which either SNR(j) ≤ 0 or SNR(j) ≥ 0 in all

3The AI index has been shown to predict reliably speech intelligibility by normal-hearing [36] and hearing-impaired listeners [41] (the
refined AI index is known as the speech intelligibility index and is documented in [42]). The AI measure, however, has a few
limitations. First, the AI measure has been validated for the most part only for stationary masking noise since it is based on the long-
term average spectra, computed over 125-ms intervals, of the speech and masker signals [42]. As such, it cannot be applied to
situations in which speech is embedded in fluctuating maskers e.g., competing talkers. Several attempts have been made, however, to
extend the AI measure to assess speech intelligibility in fluctuating maskers (e.g., see [9,43]). Second, the AI measure cannot predict
synergistic effects as evident in the perception of disjoint frequency bands. This is so due to the assumption that individual frequency
bands contribute independently to AI.
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frequency bins. If SNR(j) ≤ 0 in all bins, then we have the following upper bound on the
value of F:

(A.3)

Similarly, if SNR(j) ≥ 0 in all bins, then we have the following upper bound:

(A.4)

Both upper bounds (maxima) in Eq. (A.3) and (A.4) are attained with the optimal weights
given in Eq. (A.2). That is, the maximum in Eq. (A.3) is attained with Ij = 0 (for all j), while
the maximum in Eq. (A.4) is attained with Ij = 1 (for all j).

It is important to note that the function F given in Eq. (A.1), is very similar to the
articulation index defined by [42,45,46]:

(A.5)

where Wj are the band-importance functions (0 ≤ Wj ≤ 1),  are the SNR values limited
to the range of [−15,15] dB, M is the number of critical-bands, and α, β are constants ((α =
1/ 3 0 β, = 0.5) used to ensure that the SNR is mapped within the range of [0,1].
Maximization of AI in Eq. (A.5) will yield a similar optimal solution for the weights Wj as
shown in Eq. (A.2), with the only difference being the SNR threshold (i.e., it will no longer
be 0 dB). The AI assumes a value of 0 when the speech is completely masked and a value
between 0 and 1 for SNRs ranging from −15 to 15 dB. In the original AI calculation [44] the
band-importance functions Wj, are fixed and their values depend on the type of speech
material used. In our case, the importance functions Wj are not fixed, but are chosen
dynamically according to Eq. (A.2) so as to maximize the geometric average of all SNRs
across the spectrum. Hence, the main motivation behind maximizing F in Eq. (A.1) is to
maximize the articulation index (Eq. (A.5)), and consequently maximize the amount of
retained information contributing to speech intelligibility. Hence, the weights Ij in Eq. (A.2)
used in the construction of the ideal binary mask can be viewed as the optimal band-
importance function Wj needed to maximize the simplified form of articulation index in Eq.
(A.1). It is for this reason that we believe that the use of the IdBM criterion (Eq. (A.2))
always improves speech intelligibility [29].
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Figure 1.
Plot showing the relationship between SNRESI and SNRENH for fixed values of SNR.
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Figure 2.
Suppression curves of the Wiener filtering algorithm (top panel) and two spectral-
subtractive algorithms (bottom panel).
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Figure 3.
Wide-band spectrograms of the clean signal (panel a), noisy signal in −5 dB SNR babble
(panel b), signal processed by the Wiener algorithm (panel c), and signal prcessed by the
Wiener algorithm after imposing the constraints in Region I (panel d).

Loizou and Kim Page 17

IEEE Trans Audio Speech Lang Processing. Author manuscript; available in PMC 2011 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Results, expressed in percentage of words identified correctly, from the intelligibility studies
with human listeners. The bars indicated as “UN” show the scores obtained with noise-
corrupted (un-processed) stimuli, while the bars indicated as “SE” show the baseline scores
obtained with the three enhancement algorithms (no constraints imposed). The intelligibility
scores obtained with speech processed by the three enhancement algorithms after imposing
four different constraints are labeled accordingly.

Loizou and Kim Page 18

IEEE Trans Audio Speech Lang Processing. Author manuscript; available in PMC 2011 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Percentage of bins falling in three different frequency regions (Region II constraints).
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Figure 6.
Normalized histograms (probability mass function) of the difference between the estimated
and clean speech magnitudes in Region II.
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Table 1

Percentage of frequency bins falling in the three Regions after processing noisy speech by the three
enhancement algorithms.

SNR Level Algorithm Region I Region II Region III

0 dB Wiener 45.33 % 14.64 % 40.03 %

−5 dB 37.71 % 12.71% 49.58 %

0 dB RDC_mag 46.86 % 15.45 % 37.69 %

−5 dB 35.88 % 14.49 % 49.63 %

0 dB RDC_power 36.81 % 18.14 % 45.05 %

−5 dB 28.08 % 14.88 % 57.04 %
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