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 Abstract 

 The role of local tissue renin-angiotensin system (tRAS) activation in the cardiorenal metabolic 

syndrome (CRS) and type 2 diabetes mellitus (T2DM) is not well understood. To this point, we 

posit that early redox stress-mediated injury to tissues and organs via accumulation of excessive 

reactive oxygen species (ROS) and associated wound healing responses might serve as a para-

digm to better understand how tRAS is involved. There are at least five common categories re-

sponsible for generating ROS that may result in a positive feedback ROS-tRAS axis. These mech-

anisms include metabolic substrate excess, hormonal excess, hypoxia-ischemia/reperfusion, 

trauma, and inflammation. Because ROS are toxic to proteins, lipids, and nucleic acids they may 

be the primary instigator, serving as the injury nidus to initiate the wound healing process. In-

sulin resistance is central to the development of the CRS and T2DM, and there are now thought 

to be four major organ systems important in their development. In states of overnutrition and 

tRAS activation, adipose tissue, skeletal muscle (SkM), islet tissues, and liver (the quadrumvirate) 

are individually and synergistically related to the development of insulin resistance, CRS, and 
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T2DM. The obesity epidemic is thought to be the driving force behind the CRS and T2DM, which 

results in the impairment of multiple end-organs, including the cardiovascular system, pancre-

as, kidney, retina, liver, adipose tissue, SkM, and nervous system. A better understanding of the 

complex mechanisms leading to local tRAS activation and increases in tissue ROS may lead to 

new therapies emphasizing global risk reduction of ROS resulting in decreased morbidity and 

mortality.  Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 The renin-angiotensin-aldosterone system (RAS) has captivated clinicians and research-
ers alike since Tigerstedt and Bergman recognized in 1898 that there were pressor effects of 
a rabbit renal extract they termed renin  [1] . A constitutive RAS is present, and the human 
body maintains an ample supply of renin (the rate-limiting enzyme of the RAS) stored as 
renin-secretory granules (RSG) within the renal juxtaglomerular apparatus ( fig. 1 ). Impor-
tantly, the renal myoendocrine vascular smooth muscle cells of the afferent arteriole or jux-
taglomerular cell must be activated for secretion of renin from the RSG. A recent pertinent 
review discusses the importance of a local RAS (local angiotensin-converting enzyme, ACE, 
in endothelium and muscle)  [2] . Currently, two distinct angiotensin (Ang) II-generating sys-
tems are recognized in animal models and humans: (1) the constitutive, circulating, and 
endocrine-hormonal RAS (cRAS) that systemically acts as a regulatory and survival system 
promoting cardiovascular homeostasis, and (2) a local tissue autocrine/paracrine AngII-
generating system (tRAS).

  The specific human substrate precursor protein for this complex enzymatic-hormonal 
system (cRAS), angiotensinogen, is a 60-kDa  �  2 -globulin glycoprotein with 452 amino acids 
produced primarily in the liver  [3] . The human rate-limiting mature 340-amino-acid 37-kDa 
primarily renal-derived renin enzyme  [4]  then cleaves angiotensinogen to the physiologi-
cally inactive decapeptide AngI. This decapeptide is then hydrolyzed to the physiologically 
active effector octapeptide AngII by the 1,306-amino-acid 140-kDa zinc-containing metal-
lopeptidase ACE  [5] . Subsequently, this effector peptide (AngII) binds to its membranous 
angiotensin receptors, resulting in its physiological effects, e.g. in the adrenal gland where 
AngII activates the increased synthesis of aldosterone ( fig. 2 ). The systemic RAS is important 
in the regulation of blood pressure, and electrolyte and volume homeostasis. It is normally 
activated by sodium and/or volume depletion as occurs with dehydration, trauma, and shock 
(survival mechanisms). These mechanisms involve reduced renal perfusion pressure, re-
duced salt transport to the distal tubule, or increased renal sympathetic tone at the level of 
the juxtaglomerular apparatus, which activate renin secretion. Ideally, these mechanisms 
should be rapidly activated and short lived once vascular homeostatic balance is achieved  [6] .

  In contrast, tRAS is especially important in pathophysiological states, and this auto-
crine/paracrine system is activated by local tissue injury. These injuries are frequently a re-
sult of increased tissue inflammation, injury including trauma, hypoxia-ischemia/ischemia-
reperfusion, hormonal excess (insulin, proinsulin, and amylin), and hyperglycemia, hyper-
lipidemia, hyperhomocysteinemia, and hyperuricemia ( fig.  3 ). Collectively, these tissue-
injury factors are associated with the generation of reactive oxygen and subsequent reactive 
nitrogen species referred to as reactive oxygen species (ROS). Importantly, these ROS are 
generated by membranous and cytosolic nicotine adenine dinucleotide (phosphate) reduced 
[NAD(P)H] oxidase, mitochondrial leakage, xanthine oxidase enzyme, tetrahydrobiopterin 
coenzyme oxidation, and resulting endothelial nitric oxide (NO) synthetase (eNOS) uncou-
pling.
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  Pathophysiological states including hypertension, vascular injury, cardiorenal metabol-
ic syndrome (CRS), type 2 diabetes mellitus (T2DM), and cancer are all associated with tRAS 
activation  [6–30] . In contrast to the more rapid acting cRAS providing cardiovascular ho-
meostasis, tRAS is more of a subacute-maintenance/remodeling compartmental system 
which promotes tissue remodeling (proliferation, hypertrophy, and differentiation) and ex-
tracellular matrix (ECM) remodeling repair and/or fibrosis. The sustained activation of 
tRAS in chronic diseases with persistent local tissue injury may also result in parenchymal 
loss (via apoptosis/necrosis and autophagy) and chronic remodeling and fibrosis with even-
tual end-organ dysfunction.

  While the multiple pathophysiological states previously iterated are associated with 
tRAS activation, we will focus on CRS and T2DM, since they are associated with multiple 
end-organ remodeling and the multiple diseases or diabetic ‘opathies’ (cardiomyopathy, in-
timopathy, isletopathy, hepatopathy, glomerulo-tubulopathy, neuropathy, and retinopathy). 
Because the mechanisms of tRAS activation are not well understood or elucidated in the lit-
erature, we hypothesize that injury to tissues and organs via ROS/redox stress and tissue 
wounding injury and the subsequent obligatory innate wound healing response might serve 
as a tRAS activation paradigm ( fig. 3 ,  4 ).

EBM

×800

  Fig. 1.  Juxtaglomerular apparatus depicting RSG. This transmission electron micrograph from a young 
transgenic Ren2 rat model of hypertension and insulin resistance demonstrates the renal glomerulus 
separated by Bowman’s glomerular capsule (GC; dotted line) from the adjacent juxtaglomerular appara-
tus, which includes the afferent arteriole, the distal tubule (DT), which bisects the afferent and efferent 
arterioles in each nephron containing the macula densa (MD) cell(s). The afferent arteriole demonstrates 
the granular juxtaglomerular cells (GJG) containing RSG (X) and agranular or depleted juxtaglomerular 
(AJG) cells. Inset depicts RSG at higher magnification (open arrow;  ! 8,000; bar = 200 nm). Note the vis-
ceral epithelial cell(s) termed podocyte(s) (Pod) with their cytoplasmic processes and parietal epithelial 
cells (PEC) at the periphery of the glomerulus and the podocyte foot processes adhering to the endothe-
lial basement membrane (EBM; closed arrows) within the glomerulus. The interstitial capillary lumen 
(iCL) in the lower right-hand side of the image is thought to be the major site of renin absorption and sub-
sequent delivery to the systemic circulation.  
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  The Existence of a Local tRAS in Various Organ Systems 

 The importance of tRAS has been increasingly recognized since renin was initially 
found to be present in the dog brain  [31] . This local AngII-generating system has been iden-
tified in various targeted end-organs, such as the heart, kidney, vasculature, skeletal muscles 
(SkM), liver, pancreas, retina, and adipose, neuronal, and reproductive tissues  [6–30] . In ad-
dition to local hemodynamic effects, tRAS and its effector peptide AngII contribute to the 
regulation of cell growth, proliferation, apoptosis, differentiation, tissue inflammation, hor-
monal secretion, and fibrosis in concert with (and/or independent of) cRAS. Importantly, 
tRAS also contributes to further generation of ROS via the effects of AngII on the angioten-
sin type 1 receptor (AT 1 R) activating a membranous non-phagocytic NADPH oxidase en-
zyme. This additional AT 1 R activation results in a vicious cycle of ROS production within 
the wounded organs, i.e. RAS begets ROS.

  Importantly, there may be a sequential activation of the renal ROS-tRAS axis in CRS, 
T2DM, and diabetic nephropathy, in that the Zucker diabetic fatty rat developed hypergly-
cemia/diabetes at 12 weeks of age. This was followed by increased 8-isoprostane levels at 15 
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  Fig. 2.  Schematic of the enzymatic-hormonal RAS. The RAS is an exciting enzymatic cascade responsible 
for physiologic and pathophysiological effects. Angiotensinogen is the only known substrate for the rate-
limiting enzyme renin to produce the physiologic inactive decapeptide AngI. This decapeptide is cleaved 
by ACE to generate the physiologically effector octapeptide AngII, which has its primary physiologic/
pathophysiological actions via AT 1 R. RAS blockade with the pharmacologic renin inhibitor aliskiren, 
ACE inhibitors (multiple), and AT 1 R antagonist blockers (multiple) has provided clinicians a means of 
blocking these deleterious effects of the enzymatic-hormonal system when it is chronically activated (sys-
temically or at the local tissue level) resulting in hypertension and end-organ tissue damage. These anti-
hypertensive, anti-inflammatory, antioxidant, and antifibrotic medications provide protection to the in-
volved end-organs and result in decreased morbidity and mortality. MR = Mineralocorticoid receptor. 



197

Cardiorenal Med 2011;1:193–210 

 DOI: 10.1159/000329926 

 Hayden et al.: Mechanisms of Local tRAS Activation 

www.karger.com/crm
© 2011 S. Karger AG, Basel

 Published online: July 30, 2011   

weeks (reflecting increased ROS/oxidative stress), increased cortical angiotensinogen levels 
at 18 weeks, and increased levels of AngII (glomerular and tubular) and glomerular desmin/
Masson’s trichrome staining indicating fibrosis in the tubular interstitium at 21 weeks  [32] . 
These findings support a role for sequential activation of the ROS-tRAS axis in a CRS animal 
model and further implicate the important role of ROS as possibly being the initiating in-
jury triggering tRAS activation and the innate wound healing response to injury ( fig. 4 ).

  The Innate Wound Healing Response to Injury 

 Systemic blood elements (inflammatory cells and platelets), soluble mediators (growth 
factors and cytokines), ECM, and native tissue parenchymal and interstitial cells interact in 
a dynamic fashion to result in the normal repair and healing of injured tissue   ( fig. 4 ). These 
dynamic innate and obligatory wound repair/healing processes can be grouped into tempo-
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  Fig. 3.  Unifying theme for local tRAS activation in CRS and T2DM. ROS are responsible for injury to 
proteins, lipids, and nucleic acids. There are at least five major categorical mechanisms that are respon-
sible for the generation of the injurious ROS in animal models and humans with subsequent tRAS activa-
tion in the CRS and T2DM. While acute trauma is thought to be primarily involved in the cRAS, chron-
ic/recurrent trauma/injury is felt to be linked to local tRAS activation and may be a contributing mecha-
nism to the development of recurrent ROS and tissue injury. Chemical trauma would include such 
chemicals as carbon tetrachloride-dioxin-alloxan-streptozotocin and radiant energy would include ultra-
violet sun damage and radiotherapy. In addition to CRS and T2DM, there are cardiovascular diseases 
including hypertension, atherosclerosis, vascular injury, and congestive heart failure, chronic kidney dis-
ease, neurological diseases, obesity, and cancer, which are associated with tRAS activation. As a result of 
these multiple injurious mechanisms resulting in excess generation of ROS and the subsequent activation 
of a tRAS, we feel there develops a ROS-tRAS axis. 



198

Cardiorenal Med 2011;1:193–210

 DOI: 10.1159/000329926 

 Hayden et al.: Mechanisms of Local tRAS Activation 

www.karger.com/crm
© 2011 S. Karger AG, Basel

 Published online: July 30, 2011   

ral overlapping phases including injury, inflammation, granulation (proliferative phase in-
cluding angiogenesis and fibroblast-myofibroblast, stellate cell, or pericyte infiltration), and 
ECM remodeling, repair, restructuring, and resolution  [33, 34] . If the local tissue injury is 
persistent or recurrent then ECM fibrosis may occur with ensuing parenchymal loss (necro-
sis/apoptosis), adipose tissue deposition, and eventual organ failure due to fibrosis and scar-

Injury
Inflammatory

phase

tRAS axis

activation

Granulation

phase
AngiogenesisLocal

tissue

tRAS

Apoptosis

When injury is chronic,
fibrosis ensues with
end-organ failure.

Matrix remodeling
Fibrosis phase

Continued injury/no resolution

Early
neutrophilic
iNOS burst

ROS

AngII

Aldo

ET-1

TGF-�
TGF-�

Perpetual activation

with chronic injury
Fibrinogen r fibrin
Fibrin – platelet plug
Fibronectin
Collagens
(I, III, IV)

Fibrosis

Local tissue –

end-organ failure

Later

monocytic

macrophagePDGF Maturation phaseProliferative

PMN

MC
MΦ

Renin

Chymase

Full RAS
Complement and
cytokines

(RAS complement)
Pc-myoFb

Stellate cell
(profibrogenic)

VSMC

Maladaptive

Parenchymal loss
Organ failure

0.1 0.3 1 3 10 30 100

Time (days)

ROS r tRAS activation

Removal of injurious stimuli or RAAS blockade to prevent end-organ tissue fibrosis, damage and failure

FibrosisP
e
rc
e
n
t 
o
f 
m
a
xi
m

u
m

 r
e
sp
o
n
se

  Fig. 4.  The innate local tissue wound healing response to injury. There is a commonality of organ-tissue in-
jury to cutaneous wound repair  [33] . The intended goal of the innate local tissue wound repair and healing 
response to injury is the return to wholeness or recovery – ‘restitutio ad integrum’. The generation of ROS 
as a result of metabolic, hormonal, and inflammatory injury, hypoxia, and recurrent trauma mechanisms 
in the CRS and T2DM is the injury responsible for the activation of the local tissue wound healing response. 
The injurious process is chronic as it is in the CRS and T2DM; however, the wound healing process does not 
result in recovery or a return to wholeness. Instead, it results in excessive ECM accumulation with fibrosis 
and scarring. The sequential and overlapping processes of hemostasis (platelets: platelet-derived growth fac-
tor, PDGF, and innate clotting factors), inflammation (acute and chronic, including activation and degran-
ulation of resident MC), proliferation/granulation phase, ECM maturation/remodeling maturation and res-
olution/recovery are lost if the wound healing response is chronic and ongoing due to continued injury by 
ROS and strongly implicates a ROS-tRAS axis. Currently, the authors feel that the tRAS axis is activated in 
and around the inflammatory phase/granulation-proliferative and maturation phase nexus. Activated resi-
dent MC, chronic inflammatory cells, and fibrogenic cells along with tRAS activation, AngII generation 
along with aldosterone (Aldo) and ET-1, and TGF- �  result in excessive ECM accumulation and fibrosis if 
tRAS is chronically activated. Importantly, MC are known to contribute renin and chymase from their se-
cretory granules, the macrophage contains a full RAS complement, and the profibrotic myofibroblasts/peri-
cytes or stellate cells contain a full RAS complement contributing to the maladaptive ECM remodeling fi-
brosis resulting in organ dysfunction and failure. Insets depict platelets, polymorphonuclear neutrophils 
(PMN), acute inflammatory cells (MC), chronic inflammatory cells [macrophages (M � )], and maladaptive 
ECM accumulation of collagen with end-organ fibrosis, dysfunction, and eventual failure. 
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ring. Because ROS seem to be the instigator of most chronic disease injuries in CRS and 
T2DM, we have chosen to utilize the generation of excess ROS as a critical juncture in local 
tissue wound healing responses to injury ( fig. 4 ). Regardless of the etiological agent(s), ECM 
remodeling fibrosis of most chronic diseases represents a final common pathway leading to 
the destruction of tissue architecture and function, and subsequent organ failure  [35] .

  Vascular Endothelial Dysfunction as a Critical Abnormality in CRS and T2DM  

 NO exerts a plethora of beneficial vascular effects, including its local immediate chain-
breaking antioxidant (ROS-scavenging effects), anti-inflammatory, antithrombotic, antifi-
brotic, anti-atherosclerotic, cytoprotective, and vasodilatatory effects. Reduced bioavailable 
NO and associated endothelial dysfunction are early and central findings in the capillary bed 
in both CRS and T2DM  [36] . There are multiple end-organs that are contemporaneously be-
ing injured in CRS and T2DM, and this can be partially explained by the fact that many tis-
sues contain microvasculature subject to the injuries associated with endothelial dysfunc-
tion. In health, the endothelium is a net producer of NO; however, once the eNOS enzyme 
uncouples it becomes a net producer of ROS, which would promote a positive feedback ROS-
tRAS axis activation. Importantly, eNOS uncoupling occurs early in the progression of CRS 
and T2DM  [36] .

  Local generation of ROS (vascular injury) could be one of the triggers/instigators or act 
as a central mechanism of ROS-tRAS axis activation in most organs since the vascular cap-
illary bed is ubiquitous. Further, this mechanism may be responsible for the early findings 
of pericapillary and perivascular fibrosis in the Ren2 model of hypertension and insulin re-
sistance, which manifests tissue overexpression of the mouse renin gene  [37–40] .

  Positive Effects of NO on Tissue Remodeling 

 Endothelial-derived NO may be considered the quintessential regulator of vascular ho-
meostasis promoting vasodilation of vascular smooth muscle cell(s) (VSMC), counteracting 
VSMC proliferation and migration, decreasing adhesiveness of the monocytic white blood 
cells and platelets to the endothelial monolayer, antioxidant effects (via scavenging ROS lo-
cally acting as a chain-breaking antioxidant to scavenge ROS) and antifibrotic effects (de-
creasing the activation of matrix metalloproteinases, which are redox sensitive). Any clinical 
therapeutic agent that aids in the restoration of vascular eNOS activation and decreases the 
generation of ROS will assist in the reduction of maladaptive end-organ remodeling and dys-
function, and complications associated with the CRS and T2DM  [36] .

  ROS as a Central Initiator of tRAS Activation: The ROS-tRAS Axis 

 There are at least five common mechanisms responsible for generating ROS that
may result in the activation of a ROS-tRAS axis: metabolic substrate excess, hormonal excess, 
hypoxia, injury/trauma, and inflammation may be associated with ROS production ( fig. 3 ).

  Metabolic Substrate Excess 
 Hyperglycemia-glucotoxicity is a commonly known environment responsible for the 

production of ROS and activation of the ROS-tRAS axis  [30, 36–46] . This environment gen-
erates ROS largely by glucose autoxidation and the generation of glycated proteins, including 
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advanced glycation end-products (AGE) and RAGE  (their receptor), which increase ROS and 
inactivate and/or deplete essential antioxidant enzymes such as superoxide dismutase, cata-
lase, and uncoupling of the eNOS enzyme  [30, 37, 41] . Hyperhomocysteinemia via autoxida-
tion is also capable of generating ROS resulting in ROS-tRAS axis activation  [42] . Addition-
ally, xanthine oxidase activation and resulting hyperuricemia may result in the generation 
of ROS  [43]  ( fig. 3 ).

  Hormonal Excess 
 In the CRS, prediabetes and T2DM insulin resistance drive compensatory pancreatic  � -

cell-mediated hyperinsulinemia, hyperproinsulinemia, and hyperamylinemia, which act 
synergistically to activation of a cRAS-tRAS-ROS axis  [44–46]  ( fig. 3 ).

  Hypoxia-Ischemia/Ischemia Reperfusion  
 Hypoxia-ischemia/ischemia reperfusion in the pancreas, kidney, heart, and liver are as-

sociated with an increase in ROS and activation of the ROS-tRAS axis  [47–50]  ( fig. 3 ). This 
excess production of ROS will initiate the abnormalities described previously. 

  Injury and Trauma 
 Injury and trauma, e.g. due to physical, surgical, chemical, and radiation injury, result 

in tRAS activation and ROS generation, which, in turn, activate the innate wound healing 
mechanism previously described involving all involved organ systems  [51–60]  ( fig. 3 ).

  Inflammation 
 Inflammation and ROS are tightly associated with tissue injury/wounding and there is 

bidirectional linkage between inflammation and ROS ( fig. 3 ). Bacterial, viral, and parasitic 
diseases (infectious inflammation) are known to generate large amounts of ROS, which are 
usually generated via acute inflammatory neutrophilic/oxidative-respiratory bursts. These 
bursts primarily involve the phagocytic inducible NO synthase enzyme, which produces ro-
bust amounts of NO and injurious peroxynitrite (ONOO  –  ). This process also involves 
NAD(P)H oxidase enzyme activation producing superoxide anion (O 2  –  – spontaneously dis-
mutated to H 2 O 2 ) and myeloperoxidase enzyme producing hypochlorous acid (HCLO – ) to 
rid the host of offensive invaders. Infectious disease injury then utilizes the innate local tis-
sue wound healing mechanisms for tissue repair, resolution, and recovery ( fig. 4 ). In contrast, 
the non-infectious immunologic diseases involving antigen-antibody reactions are associ-
ated with chronic inflammation involving mononuclear cells: lymphocytes and the mono-
cyte-derived macrophage. Both of these chronic inflammatory cells are known to induce the 
nuclear transcription factor nuclear factor  � B (NF � B), which induces the major downstream 
cytokines tumor necrosis factor-  �  (TNF- � ) and interleukin-1  �  (IL-1 � ) plus a host of cyto-
kines, chemokines, cellular adhesion molecules, and monocyte chemoattractant proteins 
 [61] . Likewise, the cytokines TNF- �  and IL-1 �  can activate NF � B via redox-sensitive mech-
anisms. Each of these five mechanisms plays an important role in the activation of the ROS-
tRAS axis in local tissues and organ systems ( fig. 3 ).

  Involvement of tRAS in Organs Involved in CRS and T2DM Development  

 SkM Tissue and Insulin Resistance 
 SkM accounts for 80–90% of insulin-stimulated glucose disposal and is the primary tis-

sue responsible for peripheral insulin sensitivity and glucose homeostasis  [62] . Remodeling 
of SkM (including capillary rarefaction, mitochondrial loss, and intermyofibrillar lipid de-
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position) is involved early in the development of the CRS and T2DM  [63] . Additionally, it is 
known that CRS and T2DM are associated with polygenic and environmental etiologies (in-
cluding excess compact calories, physical inactivity, and obesity). Further, SkM insulin re-
sistance is a prelude and fundamental to the development of CRS and T2DM  [64, 65] . Im-
portantly, tRAS is activated in SkM of patients with the CRS and T2DM  [62–66] .

  Adipose Tissue and Insulin Resistance 
 The obesity epidemic is the driving force behind the development of insulin resistance 

and the components of the CRS. Obesity develops due to an interaction between polygenic 
and environmental excess such as overnutrition and sedentary lifestyles. It arises from in-
creased size (lipid-loading hypertrophy) and increased numbers of adipocytes (hyperplasia) 
from the differentiation of adipose precursor cells (preadipocytes) to mature adipocytes uti-
lizing the appropriate nutritional and hormonal signals  [67–69] .

  A local tRAS exists in adipose tissue  [15, 70] , and its components have increased expres-
sion in obese adipose tissue in humans. AngII markedly inhibits adipogenic differentiation 
of human adipocytes via AT 1 R, and this differentiation is inversely correlated with insulin 
sensitivity  [71] . RAS blockade may even delay the onset of T2DM by promoting the differen-
tiation of adipocytes into mature adipocytes and thus decrease the deposition of toxic ectopic 
lipids in non-adipose tissues such as SkM, liver, and even the pancreatic islets, resulting in 
improved  � -cell function  [71] .

  Histological studies of adipose tissue in obesity states indicate the presence of inflamma-
tory cells consisting primarily of macrophages; however, mast cells (MC; containing both re-
nin and chymase) may also be found in this adipose tissue ( fig. 5 ). These cells may contribute 
to the increased systemic inflammation that has been proposed to participate in the develop-
ment of insulin resistance, CRS, T2DM, and the affected end-organs  [72] . Recent investiga-
tions have led to a new paradigm, which recognizes that obesity may be considered a low-
grade inflammatory disease. In this context, obesity without inflammation may not result in 
insulin resistance  [73] . With the findings of increased tRAS and inflammation in adipose tis-
sue, it is not surprising that fibrosis of the interstitial vascular stromal-supporting ECM has 
been demonstrated in humans and animal models such as the Zucker obese  (fa/fa)  and Zuck-
er diabetic fatty rat models  [73] . Further, fibrosis in adipose tissue of obese patients with cal-
cific uremic arteriolopathy-calciphylaxis (an increasingly reported condition found primar-
ily in patients with end-stage renal disease on dialysis) may contribute to the increased sub-
dermal adipose tissue necrosis and non-healing skin ulcerations  [74, 75] . Replacement fibrosis 
is less compliant and associated with increased stiffness of collagen and the stromal vascular 
matrix, which may decrease the capability of the microcirculation to properly dilate when ap-
propriately signaled  [74] . Importantly, adipose tissue fibrosis may be more than a reparative 
response to local tissue injury as it may contribute to the resistance of weight loss if the obe-
sity has been present for prolonged periods. This fibrosis could result in loss of cell-cell and 
cell-matrix communication connections in adipose tissue, which could interfere with cellular 
signaling processes regulating adipogenesis and metabolic functions  [70–75] .

  Hepatic Tissue and Insulin Resistance – Metabolic Hepatopathy  
 Insulin is known to have suppressive effects on glucose production by its direct effects 

on hepatocytes and indirect effects involving suppression of adipose tissue lipolysis with re-
ductions in free fatty acids (FFA)  [64, 76] . Thus, insulin resistance results in increased glu-
coneogenesis and increased lipolysis resulting in increased glucose and FFA. Hepatic tissue 
insulin resistance plays an important role early on in the development of CRS and T2DM. 
Similar to the other organ tissues discussed in this section, the liver may also be abnormally 
affected by CRS and T2DM due to the multiple metabolic toxicities with the development of 
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non-alcoholic fatty liver disease or non-alcoholic steatohepatitis. Non-alcoholic fatty liver 
disease represents a spectrum of fatty liver disorders with evolving remodeling changes 
ranging from hepatic steatosis to non-alcoholic steatohepatitis, fibrosis, cryptogenic cirrho-
sis, and end-stage liver disease  [76–80] .

  The initial cellular remodeling consists of the intracellular hepatocyte accumulation of 
fat due to increased lipolysis and excessive generation of triglycerides and FFA. This intracel-
lular accumulation of fat is associated with enhanced oxidative stress and ROS generation 
within the hepatocytes, while setting in motion a panoply of metabolic and intra-/extracel-
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  Fig. 5.  MC activation and degranulation with associated inflammation and fibrosis in adipose tissue of 
Zucker obese (fa/fa) rats at 9 weeks of age. The presence of MC in the interstitium of the obese subcutaneous 
and visceral adipose tissue in the young Zucker  (fa/fa)  model of obesity and insulin resistance with CRS and 
impaired glucose tolerance at 9 weeks of age ( a   !  300; bar = 5  � m) with associated inflammation and fi-
brosis. None of these observations was noted in the Zucker lean littermates.  b  MC activation and degranu-
lation. Note the numerous liberated highly-electron-dense free MC secretory granules in the interstitium 
(arrows).  ! 1,000; bar = 1  � m.  c  The ensuing chronic inflammation with numerous lipid-laden macrophages 
(M � ) in the interstitium of the omental adipose tissue.  !  500; bar = 2  � m.  d  The ensuing early peri-adipo-
cyte fibrosis (solid arrows) that progresses with continued chronic injury and the wound healing response. 
Note the disgorging of cytoplasmic lipid vacuoles into the large lipid-laden granule of the adipocyte (dotted 
arrows). Exploded inset depicts a higher magnification of collagen adhering to the adipocyte (arrows). 
There also exists pericapillary fibrosis (not shown).  !  3,000; bar = 1  � m. In the past, we have thought clas-
sically that the fibroblast was important for fibrosis, however we are constantly learning that the pericyte is 
also capable of synthesizing collagen and that pericytes can differentiate into fibroblast-myofibroblast cell 
types. We currently speculate that this direct adherence (direct cell-matrix interaction) of collagen to the 
adipocyte (peri-adipocyte fibrosis) may result in a relative inability of adipocytes to undergo delipidation. 
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lular remodeling events within the liver. A ‘two-hit’ model has been proposed regarding the 
progression of non-alcoholic fatty liver disease, with the first hit being the obesity related to 
the CRS leading to the development of steatosis, and the second hit being hepatocyte injury, 
inflammation (primarily the macrophage), and fibrosis with the best candidates for the sec-
ond hit being oxidative stress and increased production of cytokines (primarily TNF- � )  [80, 
81] . The hepatic stellate cell (a sinusoidal pericyte cell) is central to the underlying ECM ac-
cumulation and fibrosis. As a stellate-pericyte cell, it initially begins laying down ECM (types 
I and III collagen) adjacent to the hepatic sinusoids and may be responsible for a sinusoidal/
endothelial cell-hepatocyte structural and functional uncoupling. There is evidence of an 
activated local tRAS in liver fibrosis  [19] . Recent publications have demonstrated the attenu-
ation of increased levels of AngII, oxidative stress, steatosis, inflammation, and fibrosis with 
the use of RAS blockade and antioxidants  [82–84] .

  Endocrine Pancreatic Tissue 
 The pancreatic islet tissue is now known to harbor a full complement of the RAS in ad-

dition to the exocrine pancreas and, importantly, this tRAS becomes activated in the CRS 
and T2DM  [18, 85, 86] .

  The endocrine islet and  � -cell are affected by the early development of insulin resistance 
in the obese adipose tissue, SkM and hepatic tissues in the development of CRS and T2DM. 
In response to systemic insulin resistance, there is an initial compensatory hyperinsulinemia, 
hyperproinsulinemia, and hyperamylinemia by the islet  � -cell to overcome this resistance 
and contribute to the activation of both systemic cRAS and local tRAS  [44–46, 64] . Addition-
ally, increased levels of islet ROS as a result of increased ROS production from multiple met-
abolic toxicities may be associated with a ROS-tRAS axis activation. These redox injuries and 
the wounded islet could then set in motion the islet wound healing response, which results 
in peri-islet-islet exocrine interface inflammation involving the macrophage and pericyte 
hyperplasia resulting in an attenuation of communication between the islet and exocrine 
pancreas  [35] . Early on, the  � -cell begins to dysfunction due to the multiple metabolic tox-
icities and later fails due to  � -cell apoptosis. The resulting hyperglycemia and subsequent 
glucotoxicity (glucose autoxidation, glycated proteins, and AGE) with associated ROS gen-
eration would become the driving force behind islet tRAS activation. This persistent activa-
tion of tRAS-ROS generation/injury within the islet would further instigate an ongoing 
wound healing response mechanism ( fig. 4 ). These multiple complex interactions with islet 
wounding would result in a chronic injury process resulting in intra- and peri-islet fibrosis 
 [30] . Additionally, the earlier amyloidogenic islet amyloid amylin (islet amyloid polypeptide) 
would be hypersecreted (hyperamylinemia) in a redox-sensitive oxidative stress milieu. 
These structural cellular and ECM remodeling processes contribute greatly along with  � -cell 
apoptosis to not only progress to a prediabetes stage but also to overt T2DM and – if not ag-
gressively controlled – to exogenous insulin replacement therapy  [30, 87–94] . Islet fibrosis 
and amylin-derived islet amyloid deposition may serve as a barrier to nutrient/toxic meta-
bolic products, which contributes to the development of a barrier to insulin diffusion from 
the  � -cell to the systemic microcirculation; however, this has yet to be fully investigated ex-
cept for preliminary ultrastructural studies. Importantly, improved functional islet response 
has been found to be associated with the structural improvement in ECM fibrosis remodel-
ing with the use of RAS blockade in the Zucker model of T2DM  [95] . Zucker obese models 
of insulin resistance have demonstrated the ultrastructural findings of pericapillary fibrosis 
as early as 14 weeks of age. In addition to islet fibrosis and islet amyloid deposition, there is 
the deposition of adipose tissue within the islet and exocrine pancreas in humans. The func-
tional and structural changes within the islet result in  � -cell dysfunction and apoptotic fail-
ure demonstrating the important role of the ROS-tRAS axis activation.
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  Differential Regulation and Sequestration of tRAS Components in CRS and T2DM 

 In some circumstances, injured organs have not been shown conclusively to activate a 
full complement of RAS components necessary to result in the generation of AngII. Herein 
lies the construct of the interaction between the cRAS and tRAS. A classic example of this 
scenario occurs in the myocardium where it is unclear if renin is capable of being synthesized 
or upregulated within the myocardium  [96] . Even if the full complement of tRAS compo-
nents cannot be generated in injured organs or tissues in sufficient amounts, there is the po-
tential of injured organs to have previously sequestered these components and therefore ef-
fectively generate the effector peptide AngII  [10] . Importantly, as can be noted in  figures 5  
and  6 , macrophages and MC are also capable of providing a full RAS complement as the in-
flammatory phase of the local tissue wound healing process proceeds. Our group often refers 
to the ‘pump-primer effect’ of renin regarding the supply of intermittent renin to local tis-
sues as only intermittent small amounts of cRAS renin may be required to instigate the ac-
tivated tRAS-AngII-generating system in addition to possible sequestration of circulating 
renin or other missing components of tRAS.

  Importance of Profibrotic Aldosterone and Endothelin-1 

 Importantly, aldosterone and endothelin-1 (ET-1), activated via the RAS, are involved in 
this ongoing fibrosis. Aldosterone is synthesized primarily in the adrenal cortical zona glo-
merulosa cells, and its synthesis and secretion are activated by AngII and possibly ET-1  [97] . 
In addition to the mineralocorticoid effects, there are profibrotic effects of aldosterone. Both 
aldosterone and ET-1 activate transforming growth factor  � -1 (TGF � -1) and connective tis-
sue growth factor-1  [98] . The 21-amino-acid peptide ET-1 is synthesized primarily by the 
endothelial cell and is the most potent human vasoconstrictor known. ET-1 is activated by 
AngII via AT 1 R and is capable of turning on the transcription of the preproET-1 gene via 
activation of the phospholipase C and protein kinase C pathways  [99] .

  The myocardial fibrotic aspects of aldosterone have been shown to be abrogated in the 
Ren2 transgenic rat model by treatment with a subpressor dose of the mineralocorticoid an-
tagonist spironolactone  [37] . Additionally, in a postmyocardial infarction model in the rat, 
it has been demonstrated that an ET-1 antagonist (bosentan) had a positive effect on sur-
vival, hemodynamics, and myocardial ECM remodeling fibrosis  [99] . In clinical trials, the 
Randomized Aldactone Evaluation Study (RALES), the mineralocorticoid receptor antago-
nist spironolactone was shown to reduce mortality by 30% without affecting blood pressure 
in patients with NYHA class III and IV  [100] . Likewise, for postmyocardial infarction heart 
failure patients in the Eplerenone in Patients with Heart Failure due to Systolic Dysfunction 
(EPHESUS) trial, the more specific aldosterone antagonist eplerenone proved to reduce total 
mortality by 26%  [101] . In summary, there is a definite interaction between ET-1, aldosterone, 
and the ROS-tRAS axis  [97] .

  Novel RAS Components 
 Novel RAS components that may add to our understanding of both cRAS and tRAS have 

been discovered in recent years. These include ACE2, AngIII, AngIV, Ang(1–7), Mas recep-
tor, prorenin, and preprorenin and its renin receptor ( fig. 2 ). While important, an individu-
al discussion of each of these novel components is beyond the scope of this review. As we 
learn more about each of these novel additions, we will be able to better understand the cRAS 
and tRAS axes  [102] .
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  Emerging Role of the MC in Inflammation, tRAS Activation, and Fibrosis 

 Classically, the MC has been related to allergic diseases and responses; however, recent 
evidence indicates that MC may also contribute to other diseases such as rheumatoid arthri-
tis, cardiovascular disease, atherosclerosis, vascular aneurysms, cancer, and multiple sclero-
sis  [103, 104] . Resident MC within the ECM are known to synthesize and secrete two impor-
tant proteases (the aspartic acid protease renin and non-ACE pathway serine protease en-
zyme chymase), which are important in the generation of AngII at the local tissue level ( fig. 5 , 
 6 ). When tissue injury occurs, MC undergo activation and degranulation, which supplies the 
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  Fig. 6.  Local injury to tissues due to ROS results in resident MC activation and degranulation: mediator 
release and actions. These events, in turn, may result in local tRAS activation resulting in local wound 
healing mechanisms and resultant tissue maladaptive remodeling with excessive fibrosis and scarring to 
the tissues with loss of function. Upon activation and degranulation the MC secretes and releases a pleth-
ora of active soluble mediators which include inflammatory cytokines and chemokines (1), growth factors 
(2), leukotrienes (3), and proteases (4). These mediators are responsible for numerous actions: inflamma-
tory and immune regulation, cellular recruitment of inflammatory cells, increased vascular permeability, 
bronchoconstriction, acute allergic responses, and importantly cellular and ECM remodeling. Activation 
of tRAS via MC activation and degranulation allow for an increase in proteases, specifically the aspartic 
acid protease renin and the serine protease chymase, an enzyme important for the activation of a local 
tRAS, which in turn accelerates local tissue ECM accumulation, fibrosis, and scarring. AKT = Protein 
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mTOR = mammalian target of rapamycin; NGF = nerve growth factor; PAF = platelet-activating factor; 
PGD 2 /PGE 2  = prostaglandin D 2 /E2; PI3K = phosphoinositide 3-kinase; SCF = stem cell factor; VEGF = 
vascular endothelial growth factor. 
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necessary protease substrates (renin and chymase) allowing a local tRAS to be activated 
( fig. 4–6 )  [105, 106] . Importantly, the nutrient sensor mTOR (mammalian target of rapamy-
cin receptor) not only links obesity and insulin resistance with CRS, via a nutrient excess 
pathway mTOR signaling may also regulate innate inflammatory responses  [106, 107] . Inter-
estingly, the discovery that deficiency in or pharmacological stabilization of MC reduced 
diet-induced obesity and diabetes in mice has definitely highlighted the importance of the 
MC in obesity, insulin resistance, CRS, and T2DM in humans and may be of high impor-
tance  [103] . MC activation and degranulation is important in activating the inflammatory 
response with subsequent fibrosis, and may be directly involved in the nutrient excess asso-
ciated with the obesity epidemic and its relation to ROS, tissue injury, and the association of 
obesity with the CRS and T2DM  [108] .

  Discussion and Perspectives 

 While the activation of the cRAS has been extensively studied and well accepted, the 
importance of tRAS is somewhat nascent. We have reviewed some of the possible mecha-
nisms responsible for tRAS activation in the CRS and T2DM. Furthermore, we have elected 
to use the mechanism of tissue/organ injury, redox stress-ROS generation, the ROS-tRAS 
axis, and the innate wound healing response paradigm to better understand the mechanisms 
of tRAS activation.

  tRAS is increasingly recognized as an important element of tissue injury and remodel-
ing, and acts in concert with cRAS as well as independently of cRAS  [6, 9] . While the con-
cepts presented in this discussion definitely support a central role for RAS blockade in the 
treatment of CRS and T2DM, it can be noted that the clinician must additionally utilize a 
global risk reduction concept in order to decrease the excessive activation of tRAS/AngII-
generating system  [43, 44, 77, 87] .

  Human and animal models of CRS display activation of a local tRAS and increases in 
ROS in each of the end-organs affected by this syndrome. Therefore, we have attempted to 
present a unifying mechanism of how a local tRAS may be activated in those organs that 
are importantly involved in the development of the CRS and T2DM ( fig. 3 ,  4 ). By limiting 
our discussion to these particular end-organs, we did not go into any in-depth discussion 
of the cardiovascular system, retina, neuronal systems (brain or peripheral neuronal unit), 
kidney or ovary. The following references may be helpful to those who wish to learn more 
about those end-organ systems that were not included in this discussion  [30, 39, 40, 109–
117] .
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