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0.89, 0.85, and 0.94, respectively. In linear regression mod-

els, the biomarker risk score was most strongly related to 

neuropsychological tests of language and memory.  Conclu-
sions:  Our previously published diagnostic algorithm can 

be restricted to only 30 serum proteins and still retain excel-

lent diagnostic accuracy. Additionally, the revised biomark-

er risk score is significantly related to neuropsychological 

test performance.  Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 There are currently no rapid cost-effective means for 
providing routine screening of adults age 65 years and 
above for Alzheimer’s disease (AD), which is the most 
common form of neurodegenerative dementia. Currently 
over 5.2 million Americans suffer from the disease, and 
this number is expected to reach 7.7 million in 2030. This 
represents more than a 50% increase from current preva-
lence rates  [1]  and means that, by mid-century, it is ex-

 Key Words 

 Algorithm, blood-based  �  Alzheimer’s disease  �  Diagnosis 

 Abstract 

  Background:  We previously created a serum-based algo-

rithm that yielded excellent diagnostic accuracy in Alzhei-

mer’s disease. The current project was designed to refine 

that algorithm by reducing the number of serum proteins 

and by including clinical labs. The link between the bio-

marker risk score and neuropsychological performance was 

also examined.  Methods:  Serum-protein multiplex bio-

marker data from 197 patients diagnosed with Alzheimer’s 

disease and 203 cognitively normal controls from the Texas 

Alzheimer’s Research Consortium were analyzed. The 30 

markers identified as the most important from our initial 

analyses and clinical labs were utilized to create the algo-

rithm.  Results:  The 30-protein risk score yielded a sensitivi-

ty, specificity, and AUC of 0.88, 0.82, and 0.91, respectively. 

When combined with demographic data and clinical labs, 

the algorithm yielded a sensitivity, specificity, and AUC of 
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pected that one new case will develop every 33 s  [1] . While 
advanced clinical, neuroimaging, and cerebrospinal fluid 
(CSF) analyses are quite accurate in detecting AD, they 
are cost prohibitive as large-scale screening measures. 
Additionally, these technologies and specialty services 
are not readily accessible to all (e.g. rural elders, ethnic 
minorities), which limits their usefulness as screeners for 
AD. A blood-based test, however, would provide a rapid 
cost-effective means of screening for AD at the popula-
tion level, broadening access to care globally  [2, 3] . As 
part of a multi-stage process, such a blood test would pro-
vide an optimal initial screening tool that could be fol-
lowed up by advanced clinical, neuroimaging, and/or 
CSF analyses  [3]  for screen-positive cases. Furthermore, 
an accurate and easily performed screen would create a 
cost-effective means of screening for therapeutic trials 
 [4] . Historically, molecular biomarkers have focused on 
single molecules but as proteomic, genomic, and metabo-
lomic technology improves, it has become increasingly 
feasible to develop classifiers based on many complex sig-
natures of disease status.

  While the search for blood-based biomarkers of AD 
has been largely unsuccessful for decades, recently there 
have been significant advancements. Ray et al.  [5]  ana-
lyzed a range of plasma-based proteins and developed an 
algorithm that accurately classified AD as well as pre-
dicted conversion from MCI to AD. More recently, Booij 
et al.  [6]  and Rye et al.  [7]  conducted a set of analyses uti-
lizing gene expression arrays and found adequate (74%) 
to excellent (92%) overall diagnostic accuracy. Through 
analysis of the longitudinal cohort of the Texas Alzhei-
mer’s Research Consortium (TARC), we created a serum-
based algorithm that yielded excellent diagnostic accu-
racy correctly classifying 95% of AD cases and controls 
 [8] . The purpose of the current study was to refine and 
expand upon the validity of our algorithm. Specifically, 
we sought to: (1) determine if the addition of clinical labs 
(i.e. cholesterol, triglycerides, high-density lipoproteins, 
low-density lipoproteins, lipoprotein-associated phos-
pholipase [Lp-PLA2], homocysteine, C-peptide) would 
increase the overall diagnostic accuracy of the algorithm, 
and (2) refine the algorithm to only the top 30 proteins 
and test the diagnostic accuracy of that briefer version. 
Many steps have been proposed for validation of AD bio-
markers, one of which is to establish link between such 
putative biomarkers and cognitive functioning  [9] ; there-
fore, we also evaluated the link between the 30-protein 
version of the algorithm and neuropsychological test re-
sults.

  Methods 

 Participants 
 Cross-sectional data from the 400 participants (197 AD cases, 

203 controls) enrolled in the TARC utilized in our initial algo-
rithm  [8]  were re-analyzed. The methodology of the TARC pro-
tocol has been described elsewhere  [10, 11] . Briefly, each partici-
pant undergoes an annual standardized assessment at one of the 
five participating sites that includes a medical evaluation, neuro-
psychological testing, an interview, and a blood draw. Diagnosis 
of AD is based on NINCDS-ADRDA criteria  [12]  and performed 
within normal limits on psychometric testing. Institutional Re-
view Board approval is obtained at each site and written informed 
consent is obtained for all participants.

  Biomarker Assays 
 Non-fasting blood samples were collected in serum-separat-

ing tubes during clinical evaluations, allowed to clot at room tem-
perature for 30 min, centrifuged, aliquoted, and stored at –80   °   C 
in plastic vials. Batched specimens from either baseline or year-
one follow-up exams were sent frozen to Rules Based Medicine 
(www.rulesbasedmedicine.com, Austin, Tex., USA) where they 
were thawed for assay without additional freeze-thaw cycles using 
their multiplexed immunoassay human Multi-Analyte Profile 
(humanMAP). Individual proteins were quantified with immu-
noassays on colored microspheres. Information regarding the 
least detectable dose, inter-run coefficient of variation, dynamic 
range, overall spiked standard recovery, and cross-reactivity with 
other humanMAP analytes were obtained from Rules Based 
Medicine. The humanMAP panel has evolved over time, there-
fore, the complete list of analytes can be found in appendix 1 of 
our prior publication that is located on the webpage of the TARC 
(http://www.txalzresearch.org).

  Neuropsychological Testing 
 The TARC neuropsychology core battery consists of common-

ly utilized instruments in AD clinical/research settings and it 
overlaps largely with the NACC Uniform Dataset including digit 
span (WAIS-R, WAIS-III, WMS-R)  [13] , Trail-Making Test  [14] , 
WMS Logical Memory and Visual Reproduction (WMS-R and 
WMS-III)  [13] , Boston Naming Test (30- and 60-item versions) 
 [15] , verbal fluency (FAS)  [15] , Clock-Drawing Test  [15] , the 
American National Adult Reading Test (AMNART)  [15] , the Ge-
riatric Depression Scale (GDS-30)  [16] , Mini-Mental State Exam-
ination (MMSE)  [17] , and ratings on the Clinical Dementia Rating 
scale (CDR)  [18] . In order to equate scores and be consistent across 
tests, all raw scores (with the exception of the 4-point Clock-
Drawing Test) were converted to scale scores based on previously 
published normative data  [19–21] . For the Boston Naming Test, 
we recently published an independent study demonstrating the 
psychometric utility of an estimated 60-item BNT score that can 
be calculated from 30-item versions  [22] ; this estimated 60-item 
score was used for all 30-item administrations. Adjusted scale 
scores were utilized as dependent variables in analyses.

  Statistical Analyses 
 Fisher’s exact and Mann Whitney U tests were used to com-

pare case versus controls for categorical variables (APOE  � 4 allele 
frequency, gender, race, or ethnicity) and continuous variables 
(age and education). In the first set of analyses, the original bio-
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marker risk score  [8]  was applied to the test set along with demo-
graphic (age, gender, education) and clinical (total cholesterol, tri-
glycerides, high-density lipoproteins, low-density lipoproteins, 
Lp-PLA2, homocysteine, C-peptide, APOE4 genotype) variables. 
Clinical variables were added to create a more robust diagnostic 
algorithm given the prior work documenting a link between such 
variables cognitive dysfunction and AD  [23–26] . For the re-anal-
ysis of the biomarker risk score, we utilized only the 30 markers 
that were identified in our prior publication as the most impor-
tant variables in the biomarker risk score ( table 2 ). Random forest 
analyses were re-run on the training and test sets, as previously 
created. In the initial analyses, all analytes were log transformed 
then standardized, which was used in the current analyses. Anal-
yses were performed using R (V 2.10) statistical software  [27] . The 
random forest prediction model was performed using R package 
randomForest (V 4.5)  [28] , with all software default settings. The 
ROC curves were analyzed using R package. AUC was calculated 
using R package DiagnosisMed (V 0.2.2.2). Using the test set of 
(200 AD cases and controls), linear regression models were gener-
ated to examine the link between the biomarker risk score and 
neuropsychological scale scores; age, gender, and education were 
entered as covariates.

  Results 

 Demographic characteristics of the sample are provid-
ed in  table 1 . The cases were older (p  !  0.001), achieved 
fewer years of education (p  !  0.001), had lower MMSE 
scores (p  !  0.001), higher CDR sum of boxes scores (p  !  

0.001), and were more likely to carry at least one copy of 
the APOE  � 4 allele (p  !  0.001) than control participants. 
We have previously demonstrated that our biomarker 
risk score is significantly and independently associated 
with case status from demographic variables  [8] .

  First, we added the clinical labs to the full diagnostic 
algorithm we previously generated. An optimal balance 
between sensitivity (SN) and specificity (SP) for the full 
algorithm utilizing the additional clinical data was found 
at a cut-score of 0.465. The overall diagnostic accuracy of 
the full algorithm with the additional clinical data im-
proved somewhat with an observed AUC = 0.96, SN = 
0.94, and SP = 0.87 ( table 3 ;  fig. 1 ).

  Next, we sought to determine if a 30-protein restricted 
biomarker-based algorithm would yield sufficient accu-
racy. The proteins included were selected from our origi-
nal publication and represent the 30 markers that con-
tributed most to the classification accuracy ( table  2 ).
The overall accuracy of the revised biomarker risk score 
(AUC = 0.91) was comparable to that found from the full 
protein risk score ( tables 3  and  4 ). At the optimal cut-
score of 0.426, there was an observed increase in SN with 
the 30-protein score (SN = 0.88) with an accompanying 
decrease in SP (0.82) ( table 4 ;  fig. 2 ). The overall accuracy 
of the revised algorithm that incorporated the 30-protein 
risk score, demographic characteristics, and the clinical 
data were excellent (AUC = 0.94, SN = 0.89, SP = 0.85).
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  Fig. 1.  ROC for full algorithm.   Fig. 2.  ROC for 30-protein-based algorithm. 
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  Lastly, we sought to determine the link between the 
30-protein risk score and cognitive performance. The 
30-protein biomarker risk score was significantly related 
to global cognition (MMSE) as well as overall disease
severity (CDR). It was also significantly related to the 
neuropsychological domains of executive functioning 
(Clock-, Trail-Making Test), language (Controlled Oral 
Word Association Test, Boston Naming Test), and mem-
ory (Wechsler Memory Scales story and figure, immedi-
ate and delayed recall) ( table 5 ). Average scale scores for 
all neuropsychological tests are presented.

  Discussion 

 There is a significant need for a fast and cost-effective 
means of screening the rapidly growing elderly segment 
of the population. The ideal AD biomarker would come 
from blood  [29] , and we recently published a serum-based 
algorithm that yielded excellent diagnostic accuracy  [8] . 
However, that algorithm utilized over 100 proteins in the 
original model. In order to become more cost efficient, 
such an algorithm would ideally require a more focused 
set of markers. We utilized variable importance estimates 
from Random Forest in our initial publication and uti-
lized the 30 most important markers to create a refined 
algorithm. In the initial analyses, our protein biomarker 
risk score yielded an observed SN = 0.80, SP = 0.91, and 
AUC = 0.91 with the current 30-protein risk score being 
very comparable (SN = 0.88, SP = 0.82, AUC = 0.91). As 
can be seen from  table 2 , the 30 proteins in our biomark-
er portion of the algorithm cover a range of biological 
processes. It is our hypothesis that such a broad scope in 

Table 1.  Demographic characteristics of sample

Total AD (n = 197) Control (n = 203) p value

Male, % 33 34.5 32 0.67
Age, years 73.989.3 77.488.3 70.488.9 <0.0001
Education, years 14.883.2 14.083.5 15.582.7 <0.0001
MMSE 24.486.8 19.286.2 29.480.9 <0.001
CDR sum of boxes score 3.885.0 7.884.4 0.0180.05 <0.001
APOE4 carrier (yes/no) 163/218 (19 unknown) 110/71 (16 unknown) 53/147 (3 unknown) <0.0001
Hispanic ethnicity, % 9 3.6 5.4 0.47
Race

White 377 187 190
Non-White 23 10 13 0.67

Where indicated, data presented as means 8 SD.

Table 2.  Biomarkers utilized in 30-protein version of risk score

Thrombopoietin

Microphage inflammatory protein 1�
Eotaxin 3

Tumor necrosis factor-�
Tenascin C

FAS

Fibrinogen

Interleukin-10

Interleukin-7

Cancer antigen 19.9

Prostatic acid phosphatase

Apolipoprotein CIII

FAS ligand

C-reactive protein

Tissue inhibitor of metalloproteinases 1

Angiopoietin 2 

Stem cell factor

Interleukin-5

Lipoprotein(a)

�2-Macroglobulin

ACE CD143 angiotensin-converting enzyme

Monocyte chemotactic protein 1

Ferritin

Pulmonary and activation-regulated chemmocine

Cancer antigen 125

Von Willebrand factor

Carcinoembryonic antigen

Macrophage migration inhibitory factor

Creatine kinase MB

Pancreatic polypeptide
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Table 3.  Diagnostic accuracy of full algorithm plus new clinical variables

AUC Sensitivity Specificity

Demographic data only (cutoff 0.550) 0.799 (0.741–0.858) 0.713 (0.618–0.792) 0.781 (0.692–0.854)
Clinical data only (cutoff 0.494) 0.809 (0.747–0.870) 0.742 (0.647–0.819) 0.761 (0.664–0.836)
RBM data only (cutoff 0.476) 0.914 (0.878–0.951) 0.802 (0.714–0.868) 0.889 (0.812–0.937)
Combined (cutoff 0.465) 0.962 (0.937–0.986) 0.938 (0.872–0.971) 0.870 (0.786–0.924)

Rules Based Medicine data only.

Table 4.  Diagnostic accuracy of 30-protein-based algorithm

AUC Sensitivity Specificity

Demographic data only (cutoff 0.550) 0.799 (0.741–0.858) 0.713 (0.618–0.792) 0.781 (0.692–0.854)
Clinical data only (cutoff 0.494) 0.809 (0.747–0.870) 0.742 (0.647–0.819) 0.761 (0.664–0.836)
RBM data only (cutoff 0.426) 0.905 (0.865–0.945) 0.881 (0.804–0.931) 0.818 (0.731–0.881)
Combined (cutoff 0.399) 0.942 (0.913–0.972) 0.887 (0.808–0.936) 0.848 (0.761–0.907)

Rules Based Medicine data only.

Table 5.  Results of regression analyses of the link between the 30-protein biomarker risk score and neuropsy-
chological test results

Total sample AD cases Controls B (8SE) p

MMSE 24.486.8 19.286.2 29.480.9 –16.6482.95 <0.001
CDR SB 3.985.0 7.984.4 0.080.1 15.0082.21 <0.001
CDR GS 0.780.8 1.380.8 0.080.0 2.5080.37 <0.001
CLOCK1 3.181.2 2.481.2 3.980.4 –2.9480.54 <0.001
COWAT 9.683.7 7.183.1 11.682.7 –7.0781.76 <0.001
BNT 9.384.4 6.383.8 11.983.0 –10.6382.05 <0.001
AMNART 10.583.9 8.883.6 12.083.5 –4.4481.81 0.02
Trails A 8.483.6 6.183.1 10.382.7 –7.0981.78 <0.001
Trails B 8.684.1 4.883.3 11.082.5 –7.8582.33 0.001
Digit span 10.083.3 8.383.0 11.782.8 –3.8481.56 0.01
WMS LM I 9.385.4 4.082.4 13.682.8 –16.4682.69 <0.001
WMS LM II 9.385.7 3.681.8 14.082.6 –18.0582.78 <0.001
WMS VR I 8.984.9 4.682.9 12.483.2 –14.0482.33 <0.001
WMS VR II 9.685.2 4.782.3 13.683.1 –16.7482.39 <0.001

W here indicated, data presented as means 8 SD. B = Unstandardized beta; SB = sum of boxes score; GS = 
global score; COWAT = Controlled Oral Word Association Test scale score; BNT = Boston Naming Test scale score; 
AMNART = American North American Reading Test scale score; Trails A = Trail-Making Test part A scale score; 
Trails B = Trail-Making Test part B scale score; Digit Span scale score; WMS = Wechsler Memory Scale; LM = 
logical memory; VR = visual reproduction, all scale scores. 

1 Clock-drawing test, raw scores (range of possible scores: 0–4).
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the biomarker risk score will be necessary for the gener-
alizability of the algorithm and approach to other popu-
lations. In fact, a lack of such breadth may be one reason 
for the failure of prior attempts to cross-validate.

  There are several advantages to our approach. One of 
the recommended criteria proposed by the Consensus 
Report of the Working Group on Molecular and Bio-
chemical Markers of Alzheimer’s disease  [30]  was that 
biomarkers for AD have a SN and SP of  1 0.80. Even 
though the SP of our 30-protein risk score decreased to 
0.82, the SN increased to 0.88, thereby providing a better 
balance across both estimates than the original biomark-
er risk score, which also meet the Consensus Working 
Group’s criteria. The balance between SN and SP is an-
other excellent feature of the current results as this also 
will provide a balance between positive and negative pre-
dictive power  [31] . An additional advantage of our work 
is the direct comparison of the biomarker risk score to the 
diagnostic accuracy of common demographic and clini-
cal data. Given the significant difference in age, gender, 
education, and APOE4 frequency between AD cases and 
controls in those at risk for this disease, one can classify 
a large number of individuals without the use of biomark-
er data (blood, imaging, CSF, genetic or otherwise). In 
fact, using only age, gender, and education, we find an 
AUC of 0.80. This may be somewhat inflated by the group 
differences in demographics in this study; however, the 
addition of demographic factors adds ecological validity 
to our methodology. In fact, Vemuri et al.  [32]  have shown 
that adding demographic factors to structural MRI diag-
nostics added to the overall accuracy of the models, even 
when cases and controls were matched by these variables. 
Others have also found that a multimodal approach to 
the search for biomarkers for AD is superior to any single 
method  [33, 34] ; our method adds the modalities of de-
mographics and clinical labs to the algorithm, which are 
more cost and time efficient than adding additional bio-
marker modalities. While it is not necessary that the bio-
marker surpass the accuracy provided by demographic 
and/or clinical labs, it is necessary that the biomarker add 
unique information to the overall accuracy thereby im-
proving the utility of the approach. As such, presentation 
of the biomarker results in the absence of such compari-
sons should be considered inadequate. When examining 
our biomarker risk score, both of our serum-based pro-
tein risk scores (1) yield better overall diagnostic accu-
racy than demographic or clinical variables alone, (2) 
contributed significantly and independently to case sta-
tus from demographic factors, and (3) the combination of 
all modalities yielded far superior results. The combined 

multimodal nature of our algorithm also increases the 
likelihood of utility across settings and populations, 
which we are currently testing.

  In the current analyses, the biomarker algorithm was 
also significantly related to neuropsychological status 
and disease severity. In fact, the biomarker risk score was 
most strongly associated with the cognitive domains of 
memory and language, which are among the first impact-
ed by AD pathology. While this may be confounded by 
the fact that our cohort consisted of only AD cases and 
controls, such strong associations of the biomarker risk 
score with neuropsychological status and disease severity 
suggest utility of the algorithm to predict decline pro-
spectively and we are working on those statistical models 
currently. 

  As can be seen from  table 2 , a large number of the pro-
teins included in our biomarker algorithm are inflamma-
tory in nature, which is consistent with our initial find-
ings  [8] . Therefore, it is possible that our biomarker algo-
rithm is detecting a globally dysregulated inflammatory 
system (and other biological pathways) and future work 
will include non-AD disease groups (e.g. Parkinson’s dis-
ease, Lewy body dementia, vascular dementia) for com-
parison purposes. There is a large body of literature doc-
umenting a significant link between inflammation and 
AD. In fact, in our prior work, we have proposed the ex-
istence of an inflammatory endophenotype of AD  [8, 35] . 
Such an endophenotype may explain inconsistent find-
ings in the biomarker literature as well as the discrepancy 
between epidemiological studies demonstrating a protec-
tive effect of anti-inflammatory medications against AD 
development  [36–38]  and the failure of therapeutic trials 
using these compounds  [39–41] .

  There are limitations to the current study. First, while 
the multiplex platform we utilized is superior to individ-
ual assay (e.g. ELISA) methodologies, we have not cross-
validated the blood test on a separate platform. Addition-
ally, we have not yet incorporated non-AD dementia cas-
es into the analyses in an effort to determine the 
differential diagnostic utility of the algorithm. However, 
our neuropsychological findings that the biomarker risk 
score is most strongly related to the domains of language 
and memory may provide initial support for the notion 
of discriminative ability, though such analyses must be 
conducted. An additional limitation is the use of a clinic-
based sample and our findings need to be tested in a pop-
ulation-based cohort. Lastly, our study is cross-sectional 
in nature and does not address the utility of the algorithm 
in predicting AD risk. Future work will include mild cog-
nitive impairment cases as well as longitudinal data (con-
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trols, mild cognitive impairment, and AD) in order to 
determine the utility of the algorithm, or possibly the 
need for a separate algorithm, in predicting incident risk 
of AD.

  Overall, the current results suggest that (1) the addi-
tion of standard clinical labs to the diagnostic algorithm 
yields increased overall accuracy, (2) the addition of clin-
ical labs to the 30-protein algorithm (along with demo-
graphic data) results in excellent diagnostic accuracy, and 
finally (3) the biomarker risk score is a significantly as-
sociated with neuropsychological test scores, particularly 
memory and language function. While we must still ap-
ply our algorithm to an independent cohort, these analy-
ses provide further support for our serum-based diagnos-
tic algorithm for detecting AD.
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