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Abstract

Context-dependent genetic effects, including genotype-by-environment and genotype-by-sex interactions, are a potential
mechanism by which genetic variation of complex traits is maintained in populations. Pleiotropic genetic effects are also
thought to play an important role in evolution, reflecting functional and developmental relationships among traits. We
examine context-dependent genetic effects at pleiotropic loci associated with normal variation in multiple metabolic
syndrome (MetS) components (obesity, dyslipidemia, and diabetes-related traits). MetS prevalence is increasing in Western
societies and, while environmental in origin, presents substantial variation in individual response. We identify 23 pleiotropic
MetS quantitative trait loci (QTL) in an F16 advanced intercross between the LG/J and SM/J inbred mouse strains
(Wustl:LG,SM-G16; n = 1002). Half of each family was fed a high-fat diet and half fed a low-fat diet; and additive, dominance,
and parent-of-origin imprinting genotypic effects were examined in animals partitioned into sex, diet, and sex-by-diet
cohorts. We examine the context-dependency of the underlying additive, dominance, and imprinting genetic effects of the
traits associated with these pleiotropic QTL. Further, we examine sequence polymorphisms (SNPs) between LG/J and SM/J
as well as differential expression of positional candidate genes in these regions. We show that genetic associations are
different in different sex, diet, and sex-by-diet settings. We also show that over- or underdominance and ecological cross-
over interactions for single phenotypes may not be common, however multidimensional synthetic phenotypes at loci with
pleiotropic effects can produce situations that favor the maintenance of genetic variation in populations. Our findings have
important implications for evolution and the notion of personalized medicine.
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Introduction

Metabolic syndrome (MetS) is an array of co-occurring

disorders including dyslipidemia, high blood pressure, impaired

glucose tolerance, and obesity. Individuals diagnosed with MetS

have increased risk of developing cardiovascular disease (CVD)

and type-2 diabetes (T2D) [1]. MetS prevalence currently exceeds

20% in the United States and is increasing in developing countries

[2]. This increase is hypothesized to be the result of over-

consumption of high-caloric foods in conjunction with sedentary

lifestyles [3]. There is also a genetic component as individual

responses to dietary environment and to lifestyle modifications

vary [1,4]. Understanding MetS etiology is challenging because

phenotypic variation is caused by complex interactions of many

genes of small effects, by environmental factors, and by gene-by-

environment interactions [5–9]. Thus animal models are valuable

because genetic and environmental influences can be controlled

for and monitored in populations of known genetic structure [10].

Mouse models have made major contributions to our

understanding of complex disease etiology, including hyperten-

sion, obesity, and T2D [11–15]. However, MetS per se is not well

defined in mice because the physiological features of individual

components vary between mice and humans, reflecting 65–85

million years of divergent evolution [16–19]. Nevertheless, mouse

models have increased our understanding of the pathophysiology

of metabolic disorders and genes with robust effects have been

identified using both spontaneous (e.g. ob/ob mice) and transgenic

models. Further understanding of MetS will come from interro-

gating genes with small allelic effects on physiological processes,

the source of variation in complex traits relevant to evolution and

biomedicine, rather than from single genes with large defects.

We present results of a study of loci associated with normal

variation in multiple MetS components: obesity (fatpad and organ

weights), serum lipid levels (cholesterol, triglycerides and free-fatty

acids levels), and diabetes (serum insulin and glucose levels, and

response to a glucose challenge) in an F16 generation of an

Advanced Intercross Line (AIL) formed from the LG/J and SM/J

inbred mouse strains (Wustl:LG,SM-G16). Variation in complex

traits in LG/J x SM/J is due to many genes of small effect

interacting with each other and with the environment. Quantita-

tive trait loci (QTL) have previously been mapped for obesity,

serum chemistries and growth-related phenotypes in crosses of

PLoS Genetics | www.plosgenetics.org 1 September 2011 | Volume 7 | Issue 9 | e1002256



these strains [20–25]. This study is the first to look at variation in

multiple MetS components mapping to the same locus in a very

advanced generation of the LG/J x SM/J AIL. Here we examine

these MetS QTL under a systems biology framework, incorpo-

rating both biomedical and evolutionary perspectives.

We report additive and dominance genotypic effects in addition

to parent-of-origin genomic imprinting effects. Parent-of-origin

imprinting is defined as the unequal expression of maternally and

paternally derived copies of an allele, and has been shown to affect

variation in metabolic traits [26–28]. We examine the context-

dependency of these genetic effects – additive, dominance and

imprinting – by examining response to high- and low-fat dietary

treatments. Context-dependency, defined as genotype-by-environ-

ment and genotype-by-sex interactions [29] is a proposed

mechanism by which genetic variation is maintained in popula-

tions [30–33]. We examine whether additive genotypic values for a

given trait or trait combination change rank across different

environments, which is consistent with a so-called ecological cross-

over [34]. When different alleles are favored in different

environments, selection can maintain genetic variation at the

locus.

Another mechanism that can maintain genetic variation in a

population is balancing selection at pleiotropic loci, those

associated with variation in multiple phenotypes, with different

dominance relations for the different traits, so-called differential

dominance [22,35]. When differential dominance is present, some

linear combination of traits will display over- or underdominance,

even when no single trait does. If directional selection occurs along

these linear combinations, there is balancing selection on the locus

and genetic variation will be maintained.

We examine context-dependent genetic effects and differential

dominance at pleiotropic loci associated with MetS components.

Patterns of pleiotropy are thought to reflect functional and

developmental relationships among traits [36], and have been

hypothesized to serve as potential constraints on adaptive

evolution [37] as well as underlie correlated phenotypic responses

to selection [38]. Although pleiotropy has long been proposed to

be ubiquitous, few studies have measured enough traits in a focal

population to analyze this aspect of genetic architecture [39]. Our

results show that additive, dominance and parent-of-origin

genomic imprinting genetic effects vary among diet, sex and

diet-by-sex environments among metabolic traits mapping to the

same locus. This indicates that context-dependency is an

important aspect of pleiotropic connections among components

of MetS, a result supported by recent work on the foraging gene in

Drosophila melanogaster [40,41]. Understanding these connections

and their evolutionary implications is important for understanding

disease etiology and is relevant to personalized medicine.

Results

Pleiotropic QTL
We identify 23 pleiotropic QTL associated with normal

variation in two or more MetS components. Of these 23 loci, 12

pass genome-wide significance while 11 pass chromosome-wise

significance. The average locus is associated with variation in 4

traits. The traits examined here show moderate to high genetic

correlations among each other and are reported with their

respective heritabilities in Ehrich et al. 2005 [22]. Fourteen loci

(61%) are associated with both diabetes (glucose levels, glucose

tolerance, and serum insulin) and obesity (fatpad and organ

weights). Six loci (26%) are associated with both dyslipidemia

(serum cholesterol, free-fatty acid and triglycerides levels) and

obesity. Three loci (13%) are associated with adiposity (fatpad

weight) and liver weight. Liver weight is moderately correlated

with percent liver fat (r = 0.61) [42], and nonalcoholic fatty liver

disease is strongly associated with MetS [43,44].

Additive effects are found at 20 loci (87%), and dominance and

imprinting effects are found at 21 loci (91%). On average, in

cohorts showing additive effects, LL homozygotes have higher

serum lipid levels (cholesterol, triglyceride, free-fatty acid) and

heavier weights (fatpad and/or organ weights) but respond better

to a glucose challenge (intra-peritoneal glucose tolerance test) than

SS homozygotes. In cohorts showing dominance effects, the L

allele is dominant to the S allele 52% of the time. In cohorts with

dominance effects and no additivity, we find overdominance

(heterozygotes have significantly higher genotypic values) 60% of

the time and underdominance (heterozygotes have significantly

lower genotypic values) 40% of the time. In cohorts showing

parent-of-origin imprinting effects, 15% show maternal expression

imprinting, 10% show paternal expression imprinting, 21% show

polar dominance imprinting (no additive effects), and 54% show

bipolar dominance imprinting (no additive or dominance effects)

(Table S1). Description of the various parent-of-origin imprinting

patterns is found in Wolf et al. (2008) [45]. High-fat fed males are

the most commonly affected cohort for the organ weights and

diabetes-related traits, and high-fat fed females are the most

commonly affected cohort for the serum lipid levels and fatpad

weights [24,25,46].

Context-Dependency of Genetic Effects
Table S1 breaks down the context-dependency of the QTL

reported here and lists candidate genes found in the intervals. The

mean QTL support interval is <4.0 Mb and contains 39 genes,

many previously associated with metabolic disorders. Some of

these positional candidates show expression differences between

LG/J and SM/J in liver and white-fat tissues (Tables S1, S2 and

S3), and we have annotated SNPs between the two strains in both

coding and noncoding DNA in these intervals (Table S4). For

example, we find a highly significant QTL on chromosome 1,

DMetS1b, associated with variation in both serum lipid levels and

obesity. This region overlaps QTL previously associated with

Author Summary

We look at gene-by-diet and gene-by-sex interactions
underlying natural variation in multiple metabolic traits
mapping to the same regions of the genome in a mouse
model. We find that the underlying genetic architecture of
these traits is different in different sex and diet contexts.
We further use expression data and whole-genome
polymorphism data to identify compelling candidates for
experimental follow-up. We use these results to examine
theoretical evolutionary predictions about how variation in
populations can be maintained. There has been much
discussion of late on how to use evolutionary theory to
inform medical genomics. Mouse models may be espe-
cially appropriate for bridging the divide between
evolutionary and biomedical research, because they allow
the study of the effects of natural alleles on normal
variation and because human-mouse homology is well
defined. Our study is unique in examining quantitative trait
loci from both evolutionary and biomedical perspectives,
and we highlight the complex connections of the traits
comprising the metabolic syndrome and the evolutionary
implications of their underlying genetic architecture. This
is important for understanding disease etiology and is
relevant to personalized medicine.
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high-density lipoprotein cholesterol (HDL) levels in studies using

multiple crosses of mouse [15,25,47,48]. Additionally, this region

was recently reported as associated with both cholesterol and free-

fatty acid levels in LG/J x SM/J [25]. The current analysis reveals

this region is also associated with variation in gonadal and total fat-

pad weights.

The genotypic effects at this QTL are complex (Figure 1a–1d).

For cholesterol, there is an additive effect in the full population

whereby individuals homozygous for the L allele have higher

cholesterol. For free-fatty acid levels, in addition to this additive

effect, high-fat fed females have maternal expression imprinting

and low-fat fed females have paternal expression imprinting. High-

fat fed males have polar dominance imprinting and low-fat fed

males have underdominance effects with no significant additive or

imprinting effects. For gonadal fatpad weight, high-fat fed females

have bipolar dominance imprinting. For total fatpad weight, high-

fat fed females have bipolar dominance imprinting and high-fat

fed males have an additive effect.

This QTL spans 2.2Mb and contains 47 genes, 10 of which are

candidates previously associated with metabolic disorders. Expres-

sion analysis of genes in this QTL show that in white-fat, 43 of

these 47 genes are expressed in LG/J and SM/J, and 9 (21%) are

significantly differentially expressed between the two strains. Three

of these 9 genes, F11r, Fcgr2b and Nr1i3, are associated with

variation in MetS components (Figure S1a-S1c and Table S2)

[49–51]. In liver, 39 genes in the interval are expressed in LG/J

and SM/J, and 10 (26%) of these genes are significantly

differentially expressed between the two strains. Five of these 10

genes, Apoa2, F11r, Hsd17b7, Nr1i3, and Usf1, are MetS candidates

(Figure S2a-S2e and Table S3) [47,49–53].

There are 4,933 SNPs between LG/J and SM/J in DMetS1b

(Table S4). Twenty–four of these SNPs are non-synonymous, and

two of these non-synonymous SNPs (rs8258232 and rs8258226)

fall in Apoa2. One of these SNPs, rs8258226, is the location of a

mutation previously found to affect HDL cholesterol levels in

multiple strains of mice [47]. The same Ala61 -to- Val61

substitution first identified by Wang et al. (2004) as the potential

causal change underlying HDL variation is the same substitution

found in LG/J. Many other DMetS1b SNPs, both in and around

MetS candidates, fall within noncoding DNA having high

regulatory potential [54].

Differential Dominance
Differential dominance is a property of pleiotropy that occurs

when different traits mapping to the locus vary in the magnitude of

their dominance ratios (d/a). Because the dominance ratios vary, the

additive and dominance vectors are not colinear and some

combination of traits will display over- or underdominance

[35,55,56]. An example of differential dominance is found at a

QTL on chromosome 6, DMetS6c. This locus is associated with

variation in diabetes-related traits and liver weight (Table S1). The

dominance ratios at DmetS6c differ between glucose levels in low-fat

fed females (d/a = 20.9) and insulin levels in high-fat fed males

(d/a = 1.2). These two traits also display antagonistic pleiotropy,

where glucose in the low-fat fed females has a significant positive

additive genotypic value (LL homozygotes have higher levels) and

insulin in the high-fat fed males has a significant negative additive

genotypic value (SS homozygotes have higher levels) (Figure 2a-2b).

Six loci (26%; DMets2c, DMetS6b, DMetS6c, DMetS7c, DMetS10b,

DMetS16a) show differential dominance (Table S1).

Gene-by-Environmental Interactions
Statistically significant interactions are of two types: ‘spreading’,

where there is no difference between the genotypes in one sex

and/or environment but a substantial difference in the alternate

sex and/or environment, and ‘crossing’, where the rank order of

allelic effects changes between sexes and/or environments [57].

Only crossing interactions can act to maintain allelic variation at a

locus. We find 4 loci (17% of loci) having traits (6% of traits

mapping to these loci) showing significant crossing interactions

(DMetS6c, DMetS8b, DMetS15a, DMetS16a, Figure 3, Tables S1 and

S7), indicating that with a few exceptions, the rank order of the

homozygote genotypes remains the same in multiple environments

for individual traits mapping to these loci. Three of the four

crossing interactions occur in diabetes-related traits (glucose and

insulin levels and area under the curve at 10wks), which have

relatively lower genetic correlations among the traits mapped here

[22]. This supports theoretical predictions that crossing genotype-

by-environmental interactions would give rise to lower genetic

correlations among traits [38].

Discussion

Pleiotropic effects underlie genetic correlations among traits.

Variation in pleiotropy is essential for selection to shape patterns of

phenotypic covariation [58].

We identify 23 pleiotropic loci affecting normal variation in

multiple components of MetS, including obesity-, T2D-, and CVD-

related traits. We find additive, dominance and parent-of-origin

imprinting effects are equally prevalent, highlighting the complex

genetic architecture underlying these common/ complex traits that

together characterize a syndrome. This result has implications for

human genome-wide association studies (GWAS), which generally

assume just additivity despite growing evidence for non-additive

genetic effects on complex traits [59,60]. Indeed a recent study

identified parent-of-origin effects associated with T2D in the Icelandic

genealogy database, finding the effects are different between males

and females [61] and illustrating the complex connections among

genomic sequence, genetic effects, environment, and disease risk.

Identifying these connections is a challenge in human

population studies because recording or controlling an individual’s

environment over time is not possible, although some studies have

successfully examined gene-by-environment interactions [5,62–

64]. We show that genotype interacts with environment in

significant ways, and these interactions are not always consistent

among genotypes, across environments, or across traits within the

same population.

This is seen clearly at DMetS1b discussed above [25,47,65].

While multiple traits individually map to this locus (cholesterol,

free-fatty acids, gonadal fatpad and total fatpad weight), the

underlying genetic effects vary among the traits and are highly

context dependent (Figure 1a–1d). We find the additivity is

consistent among cohorts showing significant additive effects.

However, when considering the heterozygotes, we find complex

interactions between the L and S alleles in the different patterns of

imprinting and dominance. For free-fatty acids, the females have

opposite parent-of-origin imprinting effects depending on whether

they were fed a high-fat (maternal expression imprinting) or low-

fat (paternal expression imprinting) diet. If females were pooled

together for analysis without considering dietary environment, no

parent-of-origin effects would be detected because the two sex-by-

diet cohorts’ effects negate each other when combined. Further,

for high-fat fed females, paternal inheritance of the L allele is

protective for free-fatty acids, gonadal fatpad weight, and total

fatpad. For gonadal fatpad and total fatpad weight, maternal

inheritance of the L allele results in higher weight. Thus the same

allele, in the same cohort, confers both protection and risk

depending on parent-of-origin.

Context-Dependency at Pleiotropic Loci
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Figure 1. Context-dependent genetic effects at DMetS1b. Each single trait’s genotypic value is represented on the y-axis, and the genotypes
are represented on the x-axis. The different values reflect the different traits’ and cohorts’ different genotypic means. All of these traits map to the
same genomic locus, however the cohort-specific genetic effects among these traits are highly context dependent, as illustrated in the patterns of
the genotypic means. For cholesterol, there is an additive effect in the full population (A). For gonadal fatpad weight, high-fat fed females have
bipolar dominance imprinting (B). For total fatpad weight, high-fat fed females have bipolar dominance imprinting and high-fat fed males have an
additive effect (C). For free-fatty acid levels, in addition to additive effects, high-fat fed females have maternal expression imprinting, low-fat fed
females have paternal expression imprinting, and high-fat fed males have polar dominance imprinting. Low fat-fed males have underdominance
effects with no additive or imprinting effects (D). ***p#0.001, **p#0.01, *p#0.05.
doi:10.1371/journal.pgen.1002256.g001
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We find differential dominance among traits at some of these

loci, for example at DMets6c discussed above. We acknowledge

that our QTL contain multiple genes that may be tightly linked

and may individually influence each trait mapped to the locus

[66]. While our results are consistent with differential dominance

occurring at some QTL, we do not have the resolution to test if

this is due to multiple tightly linked genes. However, Keightley and

Kascer showed that differential dominance is expected in systems

in which nonlinearities are present, for example in the saturation

and feedback inhibition systems of metabolic networks [67]. In this

situation, some combination of traits will display under- or

overdominance at the same locus, even in the absence of trait-

specific under- or overdominance, a phenomenon called multi-

variate overdominance [55]. Directional selection on the synthetic

phenotype could result in balancing selection at the locus and the

maintenance of genetic variability [33]. At DMetS6c, directional

selection for fitness could favor a genotype associated with lower

levels of both insulin and glucose levels (Figure 4). It is tempting to

speculate that maintenance of variability through interactions

between alleles at a locus associated with metabolic traits could

facilitate short-term adaptations to rapidly changing environ-

ments. While this issue is outside the scope of the current study, the

results presented here can inform testing of evolutionary

hypotheses such as The Thrifty Gene Hypothesis [68], under a

systems biology framework, in an attempt to understand the

determinants of the increasing prevalence of MetS and other

disorders affecting metabolic homeostasis.

Genetic variation can also be maintained when the rank order

of homozygous genotypes changes between environments. While

most loci examined here do not show significant crossing

interactions within the range of the experiment, we do see a few

loci consistent with an ecological cross-over between sex and

dietary environments for single traits (Figure 3). It is important to

note, however, that an interaction between sexes is different than

Figure 2. Differential dominance at DMetS6c. Variation in d/a ratios (dominance:additive genotypic values) between the two traits leads to
differential dominance at this locus. Here the reciprocal heterozygotes have been pooled for simplicity because there are no significant imprinting
effects at this locus. The two traits display antagonistic pleiotropy, meaning the additive genotypic values are significantly different between the two
traits (A). Antagonistic pleiotropy is an example of a multidimensional synthetic crossing-over interaction, wherein the ranks of the homozygote
genotypes change in different environments for some multivariate combination of traits. In this example the traits are serum glucose levels in low-fat
fed females and serum insulin levels in high-fat fed males. In panel 2.B, the additive and dominance genotypic values for the homozygotes (LL and SS)
and the heterozygotes (pooled LS and SL) have been standardized for graphical representation. The standardized insulin genotypic means in high-fat
fed males are represented on the y-axis and the standardized glucose genotypic means in low-fat fed females are represented on the x-axis. The
heterozygote values do not fall at the midpoint of the additive vector as expected under within-locus additivity. Directional selection on the
orthogonal overdominance (represented by pooled LS and SL genotypic values) vector, for lower glucose and insulin levels, could result in balancing
selection and maintenance of variation at this locus (B). ***p#0.001, **p#0.01, *p#0.05.
doi:10.1371/journal.pgen.1002256.g002
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an interaction across environments. The evolutionary outcome of

an ecological cross-over will depend on the frequency with which

each environment is experienced. For sex it is generally <50:50.

Thus even in the absence of differential selection between the

sexes, allelic variation will be maintained in a crossing scenario.

For environmental interactions such as diet, allelic variation will be

a function of the relative frequency of the environment

experienced. Empirical evidence supporting the theory that

heterogeneous environments produce crossing interactions is

inconsistent [69,70]. In this study, the genotypes for most of our

single traits at these loci differ in magnitude between environments

without significant crossing, a so-called spreading interaction.

However, the QTL examined here are pleiotropic and multivar-

iate combinations of traits may exhibit rank order changes in

heterogeneous environments. Consider, for example, the antago-

nistic pleiotropy and hence rank order change of homozygous

genotypes seen between glucose levels in low-fat fed females and

insulin levels in high-fat fed males at DMetS6c (Figure 2a–2b). Such

a multidimensional synthetic interaction is consistent with the

complex nonlinear connection of the traits comprising the MetS,

and remains an open question for further exploration [14].

Once a genomic association is made, examination of the QTL

can lead to identification of the quantitative trait gene (QTG) and

eventually the quantitative trait nucleotide (QTN) affecting

variation in the trait. We acknowledge that our QTL may contain

multiple QTG and QTN, even when we fail to reject pleiotropy.

We have identified candidate QTGs in our QTL regions, both

from the literature and by examining differential expression

between LG/J and SM/J in relevant tissues. We further identified

QTN for experimental follow-up by examining SNPs between the

strains both in and around QTGs. We present many fruitful

regions for follow-up, including some novel positional candidate

genes, for example Cacna7a located in DMetS8b, which is associated

with normal variation in obesity and cholesterol levels. This gene

encodes the pre-forming A1A subunit of voltage-gated calcium

channels and has been found to influence the functionality of

cholesterol-rich microdomains [71]. It is differentially expressed

between LG/J and SM/J in both liver and white-fat and contains

many SNPs in non-coding flanking and intronic regions having

high-regulatory potential. This gene is associated with chron-

odisruption, the desynchronization of circadian rhythms [72], and

with migraine headaches [73]. Recent research demonstrates an

Figure 3. Crossing interactions at single traits comprising pleiotropic QTL. Significant crossing interactions, where the homozygote
genotypic values change rank between environments (here diet and/or sex environment) for a trait, were found at 4 QTL. These genotype-by-
environmental interactions, while rare, are consistent with an evolutionary ‘ecological cross-over’ hypothesis. Crossing interactions can act to
maintain allelic variation at a locus.
doi:10.1371/journal.pgen.1002256.g003
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association among chronodisruption, migraine, and MetS com-

ponents [74–76].

Another attractive locus for follow-up is the Apoa2 gene, which falls

in DMetS1b. Variations in the homologous human APOA2 sequence

have been well studied for association with MetS components in

humans [77,78]. We not only find Apoa2 is differentially expressed

between LG/J and SM/J, but also identify a non-synonomous

coding SNP (rs8258226) that has been independently associated with

elevated cholesterol levels in multiple other strains of mice [47].

While this result is encouraging proof-of-principle in going from

QTL R QTG R QTN, further experimentation is required to

know if this mutation, let along this gene, is associated with variation

in the other traits mapping to this locus. Indeed it has been found

that, when a single locus is associated with multiple traits, different

polymorphisms within the locus are independently associated with

the various traits [29,79]. So while the QTL is pleiotropic, the

pleiotropy breaks down at the nucleotide level.

Overall, we find the genetic effects at these 23 QTL are highly

context-dependent and are not consistent among the individual

traits mapped. Our results indicate that if context such as sex and/

or diet are not considered, not only can genetic signals in specific

cohorts be masked and/or cancelled out in an aggregate study

population, but also genetic effects can be erroneously assigned to

specific cohorts within a population if the effects are pooled over

all its members. We have shown that the genetic architecture

underlying the individual traits mapping to these QTL is

complicated, and so are the relationships among the traits

themselves. Further, some patterns are consistent with evolution-

ary theory with respect to the maintenance of genetic variation in

populations, even when specific variants are deleterious in

particular environments or in particular combinations. While

over- or underdominance and crossing interactions for single

phenotypes may not be common, multidimensional synthetic

phenotypes at QTL with pleiotropic effects can produce situations

that favor the maintenance of genetic variation in populations. As

Lewontin ([80]; p318) noted, ‘‘Context and interaction are of the

essence’’.

Gluckman et al. [81] recently discussed the challenges associated

with understanding human biology in light of the current epidemic

of metabolic disorders, and Sing et al. [6] proposed a series of steps

a researcher should take to address issues of complex disease

etiology. As the era of personalized medicine and individual

whole-genome sequencing looms, it is important to keep in mind

the ultimate goal of developing treatments and prevention

strategies for individuals. For MetS, this goal may be attained

through understanding the underlying genetic architecture of its

disease components, of how these components relate to each other

evolutionarily, and in what context. Mouse models may be

especially appropriate for bridging the divide between evolution-

ary and biomedical research because they allow the study of the

effects of natural alleles on normal variation, and human-mouse

homology is well defined. Our results are important because they

can be used to elucidate gene-by-environmental effects that could

inform large-scale genomic study design in humans.

Materials and Methods

Ethics Statement
Our study involved mice and all animal care and handling

procedures conformed to IACUC guidelines.

Population
The LG/J x SM/J Advanced Intercross Line (AIL) is managed

as a pseudo-randomly mated line starting from the F2 generation.

The LG/J strain originated from a selection experiment for large

body size at 60 days and the SM/J strain originated from a

selection experiment for small body size at 60 days [82]. Animals

from each strain have been inbred by brother-sister mating for

over 150 generations making them genetically homozygous with

the exception of spontaneous mutations and the agouti locus in

SM/J which is maintained heterozygous (a/Aw) for breeding

purposes [83,84].

The AIL was generated from an initial cross of 10 male SM/J

mice and 10 female LG/J mice. Animals are randomly mated but

brother-sister mating is not allowed. Only one male and one

female are chosen from each family as breeders for the next

generation, thereby eliminating variation in familial contributions

to the next generation. This is an effective method of reducing

inbreeding and doubling the effective population size of a colony

relative to its census size [85]. The average number of breeding

pairs in the AIL is 75, giving a census size of 150 and an effective

population size of approximately 300 individuals.

This study used an experimental F16 population of 1,002

animals in 76 sibships, each averaging 6.8 animals. Animal

husbandry details can be found in Ehrich et al. 2005 [86]. At

weaning, males and females from each litter were partitioned into

cohorts fed either high-fat (253 males; 248 females) or low-fat (247

males; 254 females) diets. The diets were isocaloric with the

exception of calories from fat (Harlan Teklad cat. No. TD88137,

42% energy from fat; and Research Diets cat. No. D12284, 15%

energy from fat, specially formulated; Table 1).

Phenotypes
Animals were weighed weekly for 20 weeks. A subset of animals

(217 females, 113 fed the low-fat diet and 104 fed the high-fat diet;

Figure 4. A scenario of fitness between traits at a pleiotropic
locus. When considering differential dominance effects (as seen at
DMetS6c) and the relationship not only among the genotypes, but also
between insulin and glucose (as illustrated in Figure 2b), it is tempting
to speculate that directional selection for the synthetic trait of ‘‘fitness’’
could result in balancing selection at a locus that would favor alleles
contributing to low levels of both insulin and glucose. This is illustrated
in the ‘Ideal’ quadrant representing relatively low levels of both insulin
and glucose.
doi:10.1371/journal.pgen.1002256.g004
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213 males, 103 fed the low-fat diet and 110 fed the high-fat diet)

were subject to an intra-peritoneal glucose tolerance test (IPGTT)

at 10 and 20 weeks of age as described in Ehrich et al. 2005 [86].

Readings taken over the course of 2 hours were used to calculate

the area under the curve (AUC), a measure of glucose tolerance.

Animals were necropsied at 20 weeks of age (also described in

Ehrich et al. 2005) and fasting (4 hr) serum cholesterol, free-fatty

acid, triglyceride, glucose, and insulin were obtained from blood

via cardiac puncture. Serum was frozen at 220uC until assayed by

the Nutrition Obesity Research Center – Animal Model Research

Core at Washington University. Additionally, fat pads (inguinal,

mesenteric, renal and gonadal) and internal organs (heart, kidneys,

liver, and spleen) were removed and weighed.

Genotypes
DNA was extracted from liver tissue using the QIAGEN kit.

1,536 single nucleotide polymorphisms (SNPs) were chosen

from the CTC/Oxford SNP survey (www.well.ox.ac.uk/mouse/

INBREDS/) and scored with the Illumina Golden Gate Bead

Array. Genotyping was performed at the Washington University

Genome Sequencing and Analysis Center. 1,402 autosomal SNPs

were reliably scored and used in this study (Table S5).

A genetic map was created based on physical order of the SNPs

along the autosomes (mm9; NCBI build 37). Recombination

fractions were estimated using R/qtl [87]. Ordered genotypes

were reconstructed at each marker from familial SNP data (F15

parents and their F16 offspring) using the Integer Linear

Programming algorithm as implemented in PedPhase 2.1 [88].

Due to the computational intensity of the algorithm, it was

necessary to partition the larger chromosomes before running the

program. Additive (Xa) and dominance (Xd) genotypic scores were

assigned at each marker: Xa = 1, 0, 21 and Xd = 0, 1, 0 for the

LL, LS and SL, and SS genotypes, respectively. ‘L’ refers to an

allele derived from the LG/J strain and ‘S’ refers to an allele

derived from the SM/J strain. Further, we assigned parent-of-

origin imprinting genotypic scores (Xi) to distinguish between

reciprocal heterozygotes, LS and SL. By convention the first allele

refers to that inherited from the father and the second from the

mother. Imprinting genotypic scores for LL, LS, SL, and SS are

Xi = 0, +1, 21, 0, respectively [89]. Additional genotypes were

imputed at 1cM intervals between the markers using the equations

of Haley and Knott [90] with the inclusion of equations derived

for imputing imprinting genotypic scores [91].

QTL Mapping
Single locus analyses were performed using maximum likeli-

hood in the Mixed Procedure in SAS 9.2. Our full mapping

included: sex, diet, sex-by-diet interaction, the direct effects of the

genomic locations (Xa, Xd, Xi), and their two- and three-way

interactions with sex and diet as fixed effects. The full model

explains variation in trait (Y) using the linear equation:

Yijklm~mzSexizDietjzaXakzdXdlziXimz

sd(SexixDietj)zas(XakxSexi)zds(XdlxSexi)

zis(XimxSexi)zad(XakxDietj)zdd(XdlxDietj)z

id(XimxDietj)zasd(XakxSexixDietj)z

dsd(XdlxSexixDietj)zisd(XimxSexixDietj)zeijklm

where m is the population mean and e is the residual. The regression

coefficients are the additive [a = (GLL)2(GSS))/2], dominance [d

= ((GLS+GSL)2(GLL-GSS))/2] and imprinting [i = (GLS2GSL)/2]

genotypic scores, where G refers to the mean phenotype of all

individuals sharing the subscripted genotype, and their interactions

with sex (s) and/or with diet (d). Family and its interactions with sex

and diet, including the three-way interaction, were included as

random effects in the model. The 22 ln(likelihood) of this model

was compared to a null model including only sex, diet and sex-by-

diet interaction terms using a chi-square test with 12 df. Probabilities

were transformed into LOD = 2log10(Pr).

The number of independent tests was calculated using the Li

and Ji method based on the eigenvalues of the correlation matrix

of marker additive genotype scores [92]. This was used to calculate

Bonferroni adjusted significance thresholds, 12(12a)1/M, where

M is the number of independent tests. A significance threshold was

calculated at the genome-wide level (LOD $3.90) as well as

separately for each autosome (Table S6). With chromosome-wise

significance, we expect 1 false positive result per trait. Our results

overwhelm this in that there are 6–10 times the number of

significant results for each trait as expected by chance under a null

model of no QTL. Further, QTL with chromosome-wise

significance have a history of replication across different mapping

populations of this cross [24].

Pleiotropy
QTL for separately analyzed traits related to two or more

metabolic syndrome (MetS) components mapping to the same cM

position are considered pleiotropic QTL. When QTL support

intervals for separately analyzed MetS component traits overlapped,

but the separate trait peaks did not map to the same cM position, a

formal test of pleiotropy was performed as described by Cheverud

[36]. First, the most likely peak QTL positions for each single trait

were identified, e.g. the position with the highest LOD score, and

then the most likely combined position of the all the traits mapping

to the region, weighted by their LOD scores, was identified. A X2

for model fit was obtained at each single trait peak and at the

combined-trait position. The differences in X2 values between the

separate and the combined-trait models were added together to

generate a X2 test for pleiotropy [34]. The degrees of freedom were

determined by the number of positions (corresponding to the

number of traits) in the separate model minus the single position of

the combined model. The null hypothesis is that the combined

model fits the data better and there is most likely a single pleiotropic

QTL. Because it is statistically simpler to have 1 QTL rather than

multiple QTL, a significant result (Prob(X2) # 0.05) indicates there

is most likely more than one QTL in the region (hence rejecting the

Table 1. Composition of the high- and low-fat diets used in
this experiment.

Source High-fat Low-fat

Energy from fat 42% 15%

Casein (g/kg) 195 197

Sugars (g/kg) 341 307

Corn starch (g/kg) 150 313

Cellulose (g/kg) 50 30

Corn Oil (g/kg) -- 58

Hydrogenated coconut oil (g/kg) -- 7

Anhydrous milkfat (g/kg) 210 --

Cholesterol (g/kg) 1.5 --

Total energy (kJ/g) 18.95 16.99

doi:10.1371/journal.pgen.1002256.t001
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null hypothesis of pleiotropy). Support intervals were determined

using a standard one-LOD drop from the highest LOD at the

combined peak of the QTL [93] (Table S1).

Crossing Analysis
The genotypic values for each cohort were obtained at QTL

showing significant additive*sex, additive*diet, and/or additive

*sex*diet interactions. When the genotypic values for individuals

with LL and SS genotypes were of opposite ranks between two

cohorts showing significant additive effects, a formal test for crossing

interactions was run. The effect of differential dispersion of trait

means in different cohorts was removed by standardizing the

variance in trait means for each cohort by the following equation:

((Xkl{Xk)=SDk) � SDpooledzXk

where Xkl is the trait value for the lth individual of the kth cohort. Xk

and SDk are the mean and standard deviation of the kth cohort, and

SDpooled is the average SD over all cohorts. This standardization

removes the effect of differential dispersion of cohorts’ means, hence

eliminating the differences in the scale of the genotypic effects and

leaving only the changes in the order of the genotypic means as the

source of the interaction [57,94]. These transformed trait values

were analyzed by the mixed model in SAS as described above. If the

significant additive*sex, additive*diet, and/or additive*sex*diet

interaction effects remained at the QTL, and the genotypic values

for individuals with LL and SS genotypes were of opposite ranks

between cohorts, the interaction was considered to be ‘crossing’ and

not ‘spreading’ (Table S7).

Expression Data
At necropsy, liver and gonadal fat pads (white fat) were collected

from 4 males and 4 females representing each strain and diet.

Tissue was immediately frozen in liquid nitrogen and stored at

280uC until extraction. RNA was extracted using RNeasy 96

Universal Tissue extraction kits (Qiagen, Valencia, CA), and

quantified using a Nanodrop 2000 (Thermo Scientific, Wilming-

ton, DE). Samples were submitted to the Washington University

Microarray Core Facility, where quality was assessed using a 2100

Bioanalyzer (Agilent Tecnologies, Palo Alto, CA). RNA was

reverse transcribed and amplified using an Illumina TotalPrep

amplification kit (Ambion, Austin, TX) and then hybridized onto

Illumina WG-6 v.2 BeadChips (Illumina, San Diego, CA). Arrays

were scanned using the Illumina Beadstation 500, and images

processed using Illumina BeadScan software. Intensity values were

analyzed using Illumina BeadStudio.

Illumina raw data from 45,281 unique probes were examined

using LUMI [95]. Data were transformed using a variance

stabilization transformation [96], which takes into account the

large number of technical replicates on Illumina arrays, and

normalized using a robust spline normalization. Genes showing no

significant expression were filtered from the data set prior to

analysis, leaving 26,209 transcripts analyzed for the liver and

29,285 for white fat. The data were analyzed using Partek

Genomics software v6.5 (Partek Incorporated, St. Louis, MO).

Significant differences in gene expression were assessed using a 3-

factor ANOVA, testing for the main effects of diet, of sex, of strain

and of their interactions and correcting for multiple tests using the

False Detection Rate approach. To correct for multiple tests

within these focal regions, q-values were generated for genes

falling in the 23 MetS support intervals using QVALUE (method

= bootstrap)[97] (Tables S2 and S3).

Whole-Genome Polymorphism Data
Whole-genome sequencing for the LG/J (<20X haploid

coverage) and the SM/J (<14X haploid coverage) inbred mouse

strains was completed by the Washington University School of

Medicine Genome Sequencing Center using Illumina sequencing

in two steps as described in Mardis et al. [98] and Ding et al. [99].

The reference genome used was the July 2007 assembly NCBI

build37(mm9). Illumina reads from liver tissue from a single LG/J

female and a single SM/J female were aligned to the reference

genome using MAQ [100].

High-quality SNPs for each strain were called using SamTools

(http://samtools.sourceforge.net/) [101], requiring three or more

reads and a SNP quality score $ 20. We identified 4,406,015 high-

confidence polymorphisms between LG/J and SM/J. These

polymorphisms were annotated with custom Python programs

using RefSeq [102] coordinates downloaded from the UCSC

Genome Browser [103] accessed May 2010. The LG/J and SM/J

whole-genome SNPs have been submitted to dbSNP [104] for

public use under the handle ‘‘Cheverud’’.

Supporting Information

Figure S1 Expression differences in white fat between LG/J and

SM/J for positional candidate genes in DMetS1b. Three of 9 genes

in DMetS1b that are significantly differentially expressed between

LG/J and SM/J in white fat are associated with MetS

components. F11r is involved in lesion formation in atherosclero-

sis-prone mice [49] and shows higher levels of expression in LG/J.

Fcgrb2 influences atherosclerosis in apoE(-/-) male mice [50] and

shows higher expression levels in SM/J. Nr1i3 is involved in lipid

homeostasis [51] and shows differential expression in a strain-by-

diet interaction, where individuals fed a low-fat diet have higher

expression levels in the LG/J strain and individuals fed a high-fat

diet have higher expression levels in the SM/J strain.

(TIF)

Figure S2 Expression differences in liver between LG/J and

SM/J for positional candidate genes in DMetS1b. Five of 10 genes

that are significantly differentially expressed between LG/J and

SM/J in liver are associated with MetS components. F11r is also

differentially expressed in white fat, and in both tissues the LG/J

strain shows the highest levels of expression. Nr1i3 is differentially

expressed in a strain-by-dietary context in white fat, and shows

significantly higher expression levels in LG/J in liver. Apoa2 affects

cholesterol levels [47] and shows higher expression in LG/J.

Hsd17b7 is involved in fetal cholesterol synthesis [52] and shows

higher expression levels in LG/J. Usf1 is associated with blood

serum lipid levels and MetS [53], and has higher levels of

expression in SM/J.

(TIF)

Table S1 Pleiotropic QTL affecting MetS components, their

interactions and MetS positional candidate genes.

(DOC)

Table S2 Differential expression in MetS QTL among genes

that are expressed in LG/J and SM/J strains in white fat tissue.

(DOC)

Table S3 Differential expression in MetS QTL among genes

that are expressed in LG/J and SM/J strains in liver tissue.

(DOC)

Table S4 Number of SNPs between LG/J and SM/J in both

coding and non-coding sequence in MetS QTL.

(DOC)
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Table S5 Markers used for QTL mapping in the F16 LG/J x

SM/J Advanced Intercross.

(DOC)

Table S6 Chromosome-wise and genome-wide significance

thresholds.

(DOC)

Table S7 Significant crossing interactions at MetS QTL.

(DOC)
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